Physicochemical and Nutritional Characterization of Winemaking Lees: A New Food Ingredient
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Statistical Analysis
3. Results
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pérez-Serradilla, J.A.; Luque de Castro, M.D. Role of lees in wine production: A review. Food Chem. 2008, 111, 447–456. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Moral, R.; Paredes, C.; Pérez-Espinosa, A.; Moreno-Caselles, J.; Pérez-Murcia, M.D. Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry. Waste Manag. 2008, 28, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Chassagne, D.; Guilloux-Benatier, M.; Hervé, A.; Voilley, A. Sorption of wine volatile phenols by yeast lees. Food Chem. 2005, 91, 39–44. [Google Scholar] [CrossRef]
- Lubbers, S.; Lèger, B.; Charpentier, C.; Feuillat, M. Effect colloide proteteur d’extraits de parois de levures sur la stabilitè tartrique d’une solution hydroalcoolique modèle. OENO One 1993, 27, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Vidal, S.; Francis, L.; Williams, P.; Kwiatkowski, M.; Gawel, R.; Cheynier, V.; Waters, E. The mouth-feel properties of polysaccharides and anthocyanins in a wine like medium. Food Chem. 2004, 85, 519–525. [Google Scholar] [CrossRef]
- Escot, S.; Feuillat, M.; Dulau, L.; Charpentier, C. Release of polysaccharides by yeasts and the influence of released polysaccharides on colour stability and wine astringency. Aust. J. Grape Wine Res. 2001, 7, 153–159. [Google Scholar] [CrossRef]
- Fernández, O.; Martínez, O.; Hernández, A.; Guadalupe, Z.; Ayesterán, B. Effect of the presence of lysated lees on polysaccharides, color and main phenolic compounds of red wine during barrel ageing. Food Res. Int. 2011, 44, 84–91. [Google Scholar]
- Pérez-Bibbins, B.; Torrado-Agrasar, A.; Salgado, J.M.; Pinheiro de Souza Oliveira, R.; Domínguez, J.M. Potential of lees from wine, beer and cider manufacturing as a source of economic nutrients: An overview. Waste Manag. 2015, 40, 72–81. [Google Scholar] [CrossRef]
- Balance de la OIV de la Situación Vtivinícola Mundial. Available online: http://www.oiv.int/public/medias/5347/press-release-2017-bilan-es.pdf (accessed on 13 January 2019).
- Dimou, C.; Vlysidis, A.; Kopsahelis, N.; Papanikolau, S.; Koutinas, A.; Kookos, I.K. Techno-economic evaluation of wine lees refining for the production of value-added products. Biochem. Eng. J. 2016, 116, 157–165. [Google Scholar] [CrossRef]
- Braga, F.G.; Lencant e Silva, F.A.; Alves, A. Recovery of winery by-products in the Douro demarcated region: Production of calcium tartrate and grape pigments. Am. J. Enol. Viticult. 2002, 53, 41–45. [Google Scholar]
- Ruggieri, L.; Cadena, E.; Martínez-Blanco, J.; Gasol, C.M.; Rieradevall, J.; Gabarrell, X.; Gea, T.; Sort, X.; Sánchez, A. Recovery of organic wastes in the Spanish wine industry. Technical, economic and environmental analyses of the composting process. J. Clean. Prod. 2009, 17, 830–838. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Serradilla, J.A.; Luque de Castro, M.D. Micro-wave assisted extraction of phenolic compounds from wine lees and spray-drying of the extract. Food. Chem. 2011, 124, 1652–1659. [Google Scholar] [CrossRef]
- Sancho-Galán, P.; Amores-Arrocha, A.; Jiménez-Cantizano, A.; Ferreiro-González, M.; Palacios, V.; Barbero, G.F. Ultrasound-assisted extraction of anthocyanins and total phenolic compoundsin Vitis vinifera L. ’Tempranillo’ winemaking lees. Vitis 2019, 58, 39–47. [Google Scholar]
- Romero-Díez, R.; Matos, M.; Rodrigues, L.; Bronze, M.R.; Rodríguez-Rojo, S.; Cocero, M.J.; Matias, A.A. Microwave and ultrasound pre-treatments to enhance anthocyanins extraction from different wine lees. Food Chem. 2019, 272, 258–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.J.; Lin, J.C.; Wang, C.H.; Jong, T.T.; Yang, H.L.; Hsu, S.L.; Chang, C.; Ming, J. Extraction of antioxidative compounds from wine lees using supercritical fluids and associated anti-tyrosinase activity. J. Supercrit. Fluid. 2009, 50, 33–41. [Google Scholar] [CrossRef]
- Bustos, G.; Moldes, A.B.; Cruz, J.M.; Domínguez, J.M. Formulation of low-cost fermentative media for lactic acid production with Lactobacillus rhamnosus using vinification lees as nutrients. J. Agric. Food Chem. 2004, 52, 801–808. [Google Scholar] [CrossRef]
- Dimou, C.; Kopsahelis, N.; Papadaki, A.; Papanikolau, S.; Kookos, I.K.; Mandala, I.; Koutinas, A.A. Wine lees valorization: Biorefinery development including production of a generic fermentation feedstock employed for poly(3-hydroxybutyrate) synthesis. Food Res. Int. 2015, 73, 81–87. [Google Scholar] [CrossRef]
- Cechini, F.; Bevilacqua, N.; Giannini, M.; Morassut, M. The potential use of yeast lees (1-3, 1-6)-beta-glucans as functional food ingredients. InfoWine 2016, 4, 3–7. [Google Scholar]
- Hwang, J.Y.; Shyu, Y.S.; Hsu, C.K. Grape wine lees improves the rheological and adds antioxidant properties to ice cream. LWT Food Sci. Technol. 2009, 42, 312–318. [Google Scholar] [CrossRef]
- Measuring Total Anthocyanins (Colour) in Berries. Available online: https://www.awri.com.au/wp-content/uploads/anthocyanins_fact_sheet.pdf (accessed on 24 April 2019).
- Blois, M.S. Antioxidant determinations by the use of stable free radical. Nature 1958, 26, 1199–1200. [Google Scholar] [CrossRef]
- AFNOR. Dosage des Minéraux-Méthodes par Spectrométrie d’Emission de Flame; NF-T-90-019; Association Française de Normalisation: Paris, France, 1996. [Google Scholar]
- AOAC International. Official Methods of Analysis; Association of Official Agricultural Chemists: Rockville, MD, USA, 2000. [Google Scholar]
- Rodríguez-Alcántara, R.; Roldán, A.M.; Bernal-Casasola, D.; García-Vargas, E.; Palacios, V. Nuevas contribuciones tecnológicas al estudio de la salsa garum a partir del análisis químico de restos ictiológicos de la ‘tienda del garum’ de Pompeya. Zephyrus 2018, 82, 149–163. [Google Scholar] [CrossRef]
- Yasumatsu, K.; Sawada, K.; Moritaka, S.; Misaki, M.; Toda, J.; Wada, T.; Ishii, K. Whipping and emulsifying properties of soybean products. Agric. Biol. Chem. 1972, 36, 719–727. [Google Scholar] [CrossRef]
- Patel, P.D.; Stripp, A.M.; Fry, J.C. Whipping test for the determination of foaming capacity of protein: A collaborative study. Int. J. Food Sci. Tech. 1988, 23, 57–63. [Google Scholar] [CrossRef]
- Landeka, I.J.; Dora, M.; Guberovic, I.; Petras, M.; Brncic, S.R.; Dikic, D. Polyphenols from wine lees as a novel functional bioactive compound in the protection against oxidative stress and hyperlipidaemia. Food Technol. Biotechnol. 2017, 77, 675–683. [Google Scholar]
- Feuillat, M. Mise en evidence d’une production de proteases exocellulaires par les levures au cours de la fermentation alcoolique de moût de raisin. OENO One 1980, 14, 37–52. [Google Scholar] [CrossRef]
- Mataix Verdú, J.; Llopis González, J.; Iglesias Cid, I. Tablas de Composición de Alimentos y Dietética, 5th ed.; Universidad de Granada: Granada, España, 2009; p. 139. [Google Scholar]
- Troton, D. Evolution of the lipid contents of Champagne wine during the second fermentation of Saccharomyces cerevisiae. Am. J. Enol. Viticult. 1989, 40, 175–182. [Google Scholar]
- Kessell, R.H.J. Fatty acids of Rodhotorula gracilis: Fat production in submerged culture and the particular effect of pH value. J. Appl. Bacteriol. 1968, 31, 220–231. [Google Scholar] [CrossRef]
- Züge, L.C.B.; Maieves, H.A.; Silveira, J.L.M.; da Silva, V.R.; Scheer, A.P. Use of avocado phospholipids as emulsifier. LWT Food. Sci. Tecnhol. 2017, 79, 42–51. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers spent grain: Generation, characteristics and potential applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Fernández, V.; Berradre, M.; Sulbarán, B.; Ojeda de Rodríguez, G.; Peña, J. Chemical characterization and mineral content in Venezuelan commercial wines. Rev. Fac. Agron. 2009, 26, 382–397. [Google Scholar]
- Álvarez, M.; Moreno, I.; Jos, I.; Camean, A.; González, G. Study of mineral profile Montilla Moriles “fino” wines using inductively coupled plasma atomic emission spectrometry methods. J. Food Comp. Anal. 2007, 20, 391–395. [Google Scholar] [CrossRef]
- Vasantha, H.; Clegg, S. Total antioxidant capacity, total phenolic content, mineral elements and histamine concentrations in wines of different fruit sources. J. Food Comp. Anal. 2007, 20, 133–137. [Google Scholar]
- Nikolakaki, G.; Kallitharakas, N.; Katsanos, A. Trace element analysis of Cretan wines and wine products. Sci. Total Env. 2002, 285, 155–163. [Google Scholar] [CrossRef]
- Azcón, J.; Talon, M. Fundamentos de Fisiología Vegetal, 2nd ed.; McGraw-Hill Interamericana: Barcelona, Spain, 2000; p. 704. [Google Scholar]
- Aranceta, J.; Pérez-Rodrigo, C. Recommended dietary reference intakes, nutritional goals and dietary guidelines for fat and fatty acids: A systematic review. Brit. J. Nutr. 2012, 107, S8–S22. [Google Scholar] [CrossRef] [PubMed]
- Lichtenstein, A.H.; Appel, L.J.; Brands, M.; Carnethon, M.; Daniels, S.; Franch, H.A.; Franklin, B.; Kris-Etherton, P.; Harris, W.S.; Howard, B.; et al. Diet and lifestyle recommendations revision 2006: A scientific statement from the American Heart Association Nutrition Committee. Circulation 2006, 114, 82–96. [Google Scholar] [CrossRef] [Green Version]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled traits. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
- FAO-WHO. Fats and Fatty Acids in Human Nutrition. Report of an Expert Consultation; FAO Food and Nutrition Paper 91; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010. [Google Scholar]
- Gebauer, S.K.; Psota, T.L.; Harris, W.S.; Kris-Etherton, P.M. N-3 Fatty acid dietary recommendations and food sources to achieve essentiality and cardiovascular beneftis. Am. J. Clin. Nutr. 2006, 83, 1526S–1535S. [Google Scholar] [CrossRef] [PubMed]
White WL | Rosé WL | Red WL | |
---|---|---|---|
pH | 3.450 ± 0.010 | 3.450 ± 0.040 | 3.380 ± 0.050 |
TA (mg M3G/L) | n.d | 1.147 ± 0.004 | 2.149 ± 0.059 |
Antioxidant capacity (g Trolox/ L WL) | 0.190 ± 0.065 | 0.646 ± 0.041 | 2.919 ± 0.031 |
Total Nitrogen * (%) | 4.106 ± 0.037 | 3.135 ± 0.125 | 0.855 ± 0.025 |
Total fat * (%) | 0.783 ± 0.063 | 1.802 ± 0.009 | 0.132 ± 0.047 |
Ashes * (%) | 32.753 ± 0.218 | 10.733 ± 0.265 | 33.283 ± 0.171 |
(mg/L) | White WL | Rosé WL | Red WL |
---|---|---|---|
Ca | 105.500 ± 0.707 | 74.350 ± 2.758 | 18.850 ± 3.748 |
K | 756.500 ± 0.707 | 1392.500 ± 26.163 | 2405.050 ± 319.612 |
Mg | 7.740 ± 0.255 | 10.000 ± 0.141 | 6.490 ± 0.983 |
Na | 3.700 ± 0.240 | 4.415 ± 3.260 | 3.010 ± 1.047 |
Fe | 0.746 ± 0.105 | 2.605 ± 0.064 | 1.195 ± 0.177 |
Cu | 1.480 ± 0.014 | 0.473 ± 0.016 | 4.115 ± 0.700 |
P | 42.000 ± 2.830 | 62.300 ± 1.980 | 6.250 ± 0.100 |
(µg/L) | |||
Mn | 121.500 ± 28.991 | 133.000 ± 0.828 | 296.000 ± 42.430 |
Zn | 151.000 ± 12.782 | 102.900 ± 11.455 | 815.500 ± 13.345 |
Cr | 8.605 ± 2.397 | 1.400 ± 13.081 | 51.150 ± 5.303 |
Co | 0.581 ± 0.127 | 1.080 ± 0.170 | 4.350 ± 0.325 |
Ni | 7.670 ± 0.594 | 18.280 ± 4.667 | 23.650 ± 2.192 |
Cd | 0.168 ± 0.115 | 0.175 ± 0.012 | 0.279 ± 0.016 |
Pb | 4.660 ± 3.705 | 3.565 ± 0.021 | 11.950 ± 0.212 |
Fatty Acid (mg/L) | White WL | Rosé WL | Red WL | ||
---|---|---|---|---|---|
IUPAC Name | Common Name | Saturation | |||
Butanoic acid | Butiric acid | S | 59.663 ± 3.594 | 23.352 ± 1.598 | 20.280 ± 0.331 |
Decanoic acid | Capric acid | S | 56.183 ± 0.32 | 25.391 ± 1.918 | 24.010 ± 0.894 |
Undecanoic acid | Undecylic acid | S | 1683.143 ± 11.670 | 627.158 ± 10.033 | 134,081.000 ± 1.193 |
Dodecanoic acid | Lauric acid | S | 1919.208 ± 60.615 | 477.789 ± 27.899 | 455.876 ± 15.804 |
Tetradecanoic acid | Miristic acid | S | 36.207 ± 3.265 | 4.668 ± 0.215 | 0.000 ± 0.000 |
Tetradecenoic acid | Miristoleic acid | U | 44.419 ± 0.314 | 29.132 ± 1.475 | 10.530 ± 1.194 |
Pentadecanoic acid | Pentadecilic acid | S | 6418.080 ± 83.427 | 1172.515 ± 34.407 | 463.881 ± 9.713 |
Hexadecenoic acid | Palmitoleic acid | U | 1850.926 ± 67.714 | 440.892 ± 16.064 | 57.923 ± 0.442 |
Hexadecanoic acid | Palmitic acid | S | 3082.708 ± 31.075 | 8380.932 ± 115.950 | 7433.159 ± 499.714 |
Heptadecanoic acid | Margaric acid | IP | |||
Octadecanoic acid | Estearic acid | S | 1851.276 ± 67.219 | 440.892 ± 16.064 | 57.923 ± 0.442 |
Octadecadienoic acid | Linoleic acid | P | 24.970 ± 0.641 | 15.715 ± 0.453 | 6.212 ± 0.043 |
Octadecatrienoic acid | Linolenic acid | P | 12,037.146 ± 95.509 | 9176.035 ± 263.204 | 7452.159 ± 49.714 |
Eicosanoic acid | Arachidic acid | S | 2.200 ± 0.223 | 5.757 ± 0.139 | 2.990 ± 0.200 |
Eicosadienoic acid | U | 12,050.210 ± 96.056 | 4522.236 ± 33.005 | 12,322.756 ± 297.580 | |
Eicosatrienoic acid | P | 133.162 ± 5.327 | 598.605 ± 16.205 | 184.081 ± 71.904 | |
Eicosapentanoic acid | EPA | P | 174.640 ± 11.186 | 187.845 ± 7.470 | 138.690 ± 28.922 |
Docosanoic acid | Behenic acid | S | 186.020 ± 4.646 | 189.846 ± 2.182 | 205.515 ± 7.096 |
Docosadienoic acid | U | 6.730 ± 0.413 | 7.232 ± 0.357 | 5.391 ± 1.124 | |
Docosapentaenoic acid | P | 8.096 ± 0.248 | 3.960 ± 0.184 | 5.874 ± 3.927 | |
Docosenoic acid | Erucic acid | S | 2.000 ± 0.223 | 5.757 ± 0.139 | 2.023 ± 0.055 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sancho-Galán, P.; Amores-Arrocha, A.; Jiménez-Cantizano, A.; Palacios, V. Physicochemical and Nutritional Characterization of Winemaking Lees: A New Food Ingredient. Agronomy 2020, 10, 996. https://doi.org/10.3390/agronomy10070996
Sancho-Galán P, Amores-Arrocha A, Jiménez-Cantizano A, Palacios V. Physicochemical and Nutritional Characterization of Winemaking Lees: A New Food Ingredient. Agronomy. 2020; 10(7):996. https://doi.org/10.3390/agronomy10070996
Chicago/Turabian StyleSancho-Galán, Pau, Antonio Amores-Arrocha, Ana Jiménez-Cantizano, and Víctor Palacios. 2020. "Physicochemical and Nutritional Characterization of Winemaking Lees: A New Food Ingredient" Agronomy 10, no. 7: 996. https://doi.org/10.3390/agronomy10070996
APA StyleSancho-Galán, P., Amores-Arrocha, A., Jiménez-Cantizano, A., & Palacios, V. (2020). Physicochemical and Nutritional Characterization of Winemaking Lees: A New Food Ingredient. Agronomy, 10(7), 996. https://doi.org/10.3390/agronomy10070996