Significant Parent-of-Origin Effects for Seed, Cotyledon, and Early Plant Growth Traits in Cucumber
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Trait Correlations, Combining Abilities, and Reciprocal Effects
3.2. RNA-Seq of Reciprocal Hybrids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kihara, H. Importance of cytoplasm in plant genetics. Cytologia 1982, 47, 435–450. [Google Scholar] [CrossRef] [Green Version]
- Roach, D.A.; Wulff, R.D. Maternal effects in plants. Annu. Rev. Ecol. Syst. 1987, 18, 209–235. [Google Scholar] [CrossRef]
- Greiner, S.; Bock, R. Tuning a ménage à trois: Co-evolution and co-adaptation of nuclear and organellar genomes in plants. BioEssays 2013, 35, 354–365. [Google Scholar] [CrossRef] [PubMed]
- Dobler, R.; Rogell, B.; Budar, F.; Dowling, D. A meta-analysis of the strength and nature of cytoplasmic genetic effects. J. Evol. Biol. 2014, 27, 2021–2034. [Google Scholar] [CrossRef]
- Joseph, B.; Corwin, J.; Li, B.; Atwell, S.; Kliebenstein, D.J. Author response: Cytoplasmic genetic variation and extensive cytonuclear interactions influence natural variation in the metabolome. eLife 2013, 2, e00776. [Google Scholar] [CrossRef] [PubMed]
- Lawson, H.; Cheverud, J.M.; Wolf, J. Genomic imprinting and parent-of-origin effects on complex traits. Nat. Rev. Genet. 2013, 14, 609–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raissig, M.T.; Baroux, C.; Grossniklaus, U. Regulation and Flexibility of Genomic Imprinting during Seed Development. Plant Cell 2011, 23, 16–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kermicle, J.L. Androgenesis Conditioned by a Mutation in Maize. Science 1969, 166, 1422–1424. [Google Scholar] [CrossRef]
- Adams, S.; Vinkenoog, R.; Spielman, M.; Dickinson, H.; Scott, R. Parent-of-origin effects on seed development in Arabidopsis thaliana require DNA methylation. Development 2000, 127, 2493–2502. [Google Scholar] [CrossRef]
- Waters, A.J.; Makarevitch, I.; Eichten, S.; Swanson-Wagner, R.A.; Yeh, C.-T.; Xu, W.; Schnable, P.; Vaughn, M.; Gehring, M.; Springer, N.M. Parent-of-Origin Effects on Gene Expression and DNA Methylation in the Maize Endosperm. Plant Cell 2011, 23, 4221–4233. [Google Scholar] [CrossRef] [Green Version]
- Bai, F.; Daliberti, M.; Bagadion, A.; Xu, M.; Li, Y.; Baier, J.; Tseung, C.-W.; Evans, M.M.S.; Settle, A.M. Parent-of-origin-effect rough endosperm mutants in maize. Genetics 2016, 204, 221–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hornslien, K.S.; Miller, J.R.; Grini, P.E. Regulation of Parent-of-Origin Allelic Expression in the Endosperm. Plant Physiol. 2019, 180, 1498–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahnke, S.; Scholten, S. Epigenetic Resetting of a Gene Imprinted in Plant Embryos. Curr. Biol. 2009, 19, 1677–1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickinson, H.; Scholten, S. And baby makes three: Genomic imprinting in plant embryos. PLoS Genet. 2013, 9, e1003981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raissig, M.T.; Bemer, M.; Baroux, C.; Grossniklaus, U. Genomic imprinting in the Arabidopsis embryo is partly regulated by PRC2. PLoS Genet. 2013, 9, e1003862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, A.; Shi, C.; Zhang, L.; Sun, M.-X. The expression and roles of parent-of-origin genes in early embryogenesis of angiosperms. Front. Plant Sci. 2014, 5, 729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugiura, M. The chloroplast genome. Plant Mol. Biol. 1992, 19, 149–168. [Google Scholar] [CrossRef]
- Beck, C.F. Signaling pathways from the chloroplast to the nucleus. Planta 2005, 222, 743–756. [Google Scholar] [CrossRef]
- Inaba, T.; Yazu, F.; Ito-Inaba, Y.; Kakizaki, T.; Nakayama, K. Retrograde signaling pathway from plastid to nucleus. In International Review of Cell and Molecular Biology, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 167–204. [Google Scholar]
- Barajas-López, J.D.D.; Blanco, N.E.; Strand, Å. Plastid-to-nucleus communication, signals controlling the running of the plant cell. Biochim. Biophys. Acta 2013, 1833, 425–437. [Google Scholar] [CrossRef] [Green Version]
- Chase, C.D. Cytoplasmic male sterility: A window to the world of plant mitochondrial–nuclear interactions. Trends Genet. 2007, 23, 81–90. [Google Scholar] [CrossRef]
- Chen, L.; Liu, Y.-G. Male Sterility and Fertility Restoration in Crops. Annu. Rev. Plant Biol. 2014, 65, 579–606. [Google Scholar] [CrossRef] [PubMed]
- Havey, M.J. The use of cytoplasmic male sterility for hybrid seed production. In Molecular Biology and Biotechnology of Plant Organelles; Daniel, H., Chase, C., Eds.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 2004; pp. 623–634. [Google Scholar]
- Yamato, K.T.; Newton, K.J. Heteroplasmy and homoplasmy for maize mitochondrial mutants: A rare homoplasmic nad4 deletion mutant plant. J. Hered. 1999, 90, 369–373. [Google Scholar] [CrossRef] [Green Version]
- Bartoszewski, G.; Malepszy, S.; Havey, M.J. Mosaic (MSC) cucumbers regenerated from independent cell cultures possess different mitochondrial rearrangements. Curr. Genet. 2004, 45, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Hirschberg, J.; Bleecker, A.; Kyle, D.J.; McIntosh, L.; Arntzen, C.J. The Molecular Basis of Triazine-Herbicide Resistance in Higher-Plant Chloroplasts. Z. Nat. C 1984, 39, 412–420. [Google Scholar] [CrossRef] [Green Version]
- Bühler, M.; Bogenrieder, A.; Sandermann, H.; Ernst, D. Heteroplasmy and atrazine resistance in Chenopodium album and Senecio vulgaris. Z. Nat. C 2016, 71, 267–272. [Google Scholar] [CrossRef]
- Flood, P.J.; Theeuwen, T.P.J.M.; Schneeberger, K.; Keizer, P.; Kruijer, W.; Severing, E.; Kouklas, E.; Hageman, J.A.; Wijfjes, R.; Calvo-Baltanas, V.; et al. Reciprocal cybrids reveal how organellar genomes affect plant phenotypes. Nat. Plants 2020, 6, 13–21. [Google Scholar] [CrossRef]
- Reboud, X.; Zeyl, C. Organelle inheritance in plants. Heredity 1994, 72, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Havey, M.J. Predominant Paternal Transmission of the Mitochondrial Genome in Cucumber. J. Hered. 1997, 88, 232–235. [Google Scholar] [CrossRef] [Green Version]
- Havey, M.J.; McCreight, J.D.; Rhodes, B.; Taurick, G. Differential transmission of the Cucumis organellar genomes. Theor. Appl. Genet. 1998, 97, 122–128. [Google Scholar] [CrossRef]
- Bartoszewski, G.; Havey, M.J.; Ziółowska, A.; Długosz, M.; Malepszy, S. The selection of mosaic (MSC) phenotype after passage of cucumber (Cucumis sativus L.) through cell culture—A method to obtain plant mitochondrial mutants. J. Appl. Genet. 2007, 48, 1–9. [Google Scholar] [CrossRef]
- Echevarria, A.D.V.; Kiełkowska, A.; Bartoszewski, G.; Havey, M.J. The Mosaic Mutants of Cucumber: A Method to Produce Knock-Downs of Mitochondrial Transcripts. G3 Genes Genomes Genet. 2015, 5, 1211–1221. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.-S.; Jung, J.D.; Lee, J.-A.; Park, H.-W.; Oh, K.-H.; Jeong, W.-J.; Choi, D.-W.; Liu, J.R.; Cho, K.Y. Complete sequence and organization of the cucumber (Cucumis sativus L. cv. Baekmibaekdadagi) chloroplast genome. Plant Cell Rep. 2005, 25, 334–340. [Google Scholar] [CrossRef]
- Chung, S.-M.; Gordon, V.S.; Staub, J.E. Sequencing cucumber (Cucumis sativus L.) chloroplast genomes identifies differences between chilling-tolerant and -susceptible cucumber lines. Genome 2007, 50, 215–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pląder, W.; Yukawa, Y.; Sugiura, M.; Malepszy, S. The complete structure of the cucumber (Cucumis sativus L.) chloroplast genome: Its composition and comparative analysis. Cell. Mol. Biol. Lett. 2007, 12, 584–594. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Li, R.; Zhang, Z.; Li, L.; Gu, X.; Fan, W.; Lucas, W.J.; Wang, X.; Xie, B.; Ni, P.; et al. The genome of the cucumber, Cucumis sativus L. Nat. Genet. 2009, 41, 1275–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alverson, A.; Rice, D.W.; Dickinson, S.; Barry, K.; Palmer, J.D. Origins and Recombination of the Bacterial-Sized Multichromosomal Mitochondrial Genome of Cucumber. Plant Cell 2011, 23, 2499–2513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Koo, D.-H.; Li, Y.; Zhang, X.; Luan, F.; Havey, M.J.; Jiang, J.; Weng, Y. Chromosome rearrangements during domestication of cucumber as revealed by high-density genetic mapping and draft genome assembly. Plant J. 2012, 71, 895–906. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, D.; Gao, L.-Z. The complete chloroplast genome sequence of Cucumis sativus var. Hardwickii, the wild progenitor of cultivated cucumber. Mitochondrial DNA Part A 2015, 27, 4627–4628. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, H.; Huang, W.; Xu, Y.; Zhou, Q.; Wang, S.; Ruan, J.; Huang, S.; Zhang, Z. A chromosome-scale genome assembly of cucumber (Cucumis sativus L.). Gigascience 2019, 8, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Osipowski, P.; Pawełkowicz, M.; Wojcieszek, M.; Skarzyńska, A.; Przybecki, Z.; Pląder, W. A high-quality cucumber genome assembly enhances computational comparative genomics. Mol. Genet. Genom. 2020, 295, 177–193. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Dirks, R.; Havey, M.J. Diallel crossing among doubled haploids of cucumber reveals significant reciprocal-cross differences. J. Am. Soc. Hort. Sci. 2015, 140, 178–182. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Clavijo Michelangeli, J.A.; Gezan, S.A.; Lee, H.; Vallejos, C.E. Maternal effects on seed and seedling phe-notypes in reciprocal F1 hybrids of the common bean (Phaseolus vulgaris L.). Front. Plant Sci. 2017, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, D.R. Studies of seed development in Pisum sativum. Planta 1975, 124, 297–302. [Google Scholar] [CrossRef] [PubMed]
- Lemontey, C.; Mousset-Déclas, C.; Munier-Jolain, N.; Boutin, J. Maternal genotype influences pea seed size by controlling both mitotic activity during early embryogenesis and final endoreduplication level/cotyledon cell size in mature seed. J. Exp. Bot. 2000, 51, 167–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Revilla, P.; Butrón, A.; Malvar, R.A.; Ordás, A. Relationships among kernel weight, early vigor, and growth in maize. Crop Sci. 1999, 39, 654–658. [Google Scholar] [CrossRef]
- El-Keblawy, A.; Lovett-Doust, J. Maternal effects in the progeny generation in zucchini Cucurbita pepo (Cucurbitaceae). Int. J. Plant Sci. 1999, 160, 331–339. [Google Scholar] [CrossRef]
- Sprague, G.F.; Tatum, L.A. General versus specific combining ability in single crosses of corn. Agronomy 1942, 34, 923–932. [Google Scholar] [CrossRef]
- Ramírez-Madera, A.O.; Miller, N.D.; Spalding, E.P.; Weng, Y.; Havey, M.J. Spontaneous polyploidization in cucumber. Theor. Appl. Genet. 2017, 130, 1481–1490. [Google Scholar] [CrossRef]
- Wei, T.; Simko, V.R. R Package “Corrplot”: Visualization of a Correlation Matrix. Version 0.84. 2017. Available online: https://github.com/taiyun/corrplot (accessed on 15 April 2020).
- Griffing, B. Concept of General and Specific Combining Ability in Relation to Diallel Crossing Systems. Aust. J. Biol. Sci. 1956, 9, 463–493. [Google Scholar] [CrossRef]
- Jiang, H.; Lei, R.; Ding, S.-W.; Zhu, S. Skewer: A fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 2014, 15, 182. [Google Scholar] [CrossRef]
- Robinson, M.D.; Oshlack, A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010, 11, R25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2012, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, M.D.; McCarthy, D.; Smyth, G. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2009, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Reiner, A.; Yekutieli, D.; Benjamini, Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 2003, 19, 368–375. [Google Scholar] [CrossRef]
- Oliveros, J.C. VENNY: An Interactive Tool for Comparing Lists with Venn Diagrams. 2007. Available online: http://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 8 September 2021).
- Thomas, P.D.; Kejariwal, A.; Guo, N.; Mi, H.; Campbell, M.J.; Muruganujan, A.; Lazareva-Ulitsky, B. Applications for protein sequence-function evolution data: mRNA/protein expression analysis and coding SNP scoring tools. Nucleic Acids Res. 2006, 34, W645–W650. [Google Scholar] [CrossRef] [Green Version]
- Mi, H.; Muruganujan, A.; Ebert, D.; Huang, X.; Thomas, P.D. PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2018, 47, D419–D426. [Google Scholar] [CrossRef]
- Mi, H.; Muruganujan, A.; Huang, X.; Ebert, D.; Mills, C.; Guo, X.; Thomas, P.D. Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat. Protoc. 2019, 14, 703–721. [Google Scholar] [CrossRef]
- Olberg, M. Evaluation and Elucidation of The Genetic Bases of Maternally-Inherited Cold Tolerance and Parent-of-Origin Effects in Cucumber (Cucumis sativus). Ph.D. Thesis, University of Wisconsin-Madison, Madison, WI, USA, 2020; 158p. [Google Scholar]
- Cramer, C.S.; Wehner, T.C. Little heterosis for yield and yield components in hybrids of six cucumber inbreds. Euphytica 1999, 110, 99–108. [Google Scholar] [CrossRef]
- Tiwari, R.; Singh, D.K. Study of heterosis and combining ability for earliness and vegetative traits in Cucumber (Cucumis sativus L.). J. Appl. Nat. Sci. 2016, 8, 999–1005. [Google Scholar] [CrossRef] [Green Version]
- Preger, V.; Tango, N.; Marchand, C.; Lemaire, S.; Carbonera, D.; Di Valentin, M.; Costa, A.; Pupillo, P.; Trost, P. Auxin-Responsive Genes AIR12 Code for a New Family of Plasma Membrane b-Type Cytochromes Specific to Flowering Plants. Plant Physiol. 2009, 150, 606–620. [Google Scholar] [CrossRef] [Green Version]
- Xu, Q.; Xu, X.; Shi, Y.; Qi, X.; Chen, X. Elucidation of the molecular responses of a cucumber segment substitution line carrying Pm5.1 and its recurrent parent triggered by powdery mildew by comparative transcriptome profiling. BMC Genom. 2017, 18, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kollipara, K.P.; Saab, I.N.; Wych, R.D.; Lauer, M.J.; Singletary, G.W. Expression Profiling of Reciprocal Maize Hybrids Divergent for Cold Germination and Desiccation Tolerance. Plant Physiol. 2002, 129, 974–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Springer, N.M.; Stupar, R. Allele-Specific Expression Patterns Reveal Biases and Embryo-Specific Parent-of-Origin Effects in Hybrid Maize. Plant Cell 2007, 19, 2391–2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, M.; Rupe, M.A.; Yang, X.; Crasta, O.; Zinselmeier, C.; Smith, O.S.; Bowen, B. Genome-wide transcript analysis of maize hybrids: Allelic additive gene expression and yield heterosis. Theor. Appl. Genet. 2006, 113, 831–845. [Google Scholar] [CrossRef] [PubMed]
- He, G.; Zhu, X.; Elling, A.A.; Chen, L.; Wang, X.; Guo, L.; Liang, M.; He, H.; Zhang, H.; Chen, F.; et al. Global Epigenetic and Transcriptional Trends among Two Rice Subspecies and Their Reciprocal Hybrids. Plant Cell 2010, 22, 17–33. [Google Scholar] [CrossRef] [Green Version]
- Groszmann, M.; Greaves, I.K.; Albertyn, Z.I.; Scofield, G.N.; Peacock, W.J.; Dennis, E.S. Changes in 24-nt siRNA levels in Arabidopsis hybrids suggest an epigenetic contribution to hybrid vigor. Proc. Natl. Acad. Sci. USA 2011, 108, 2617–2622. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; He, H.; Li, J.; Chen, W.; Wang, X.; Guo, L.; Peng, Z.; He, G.; Zhong, S.; Qi, Y.; et al. Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 2012, 24, 875–892. [Google Scholar] [CrossRef] [Green Version]
Trait | Seed Length | Seed Width | Seed Perimeter | Cotyledon Length | Cotyledon Width | Fresh Weight | Dry Weight |
---|---|---|---|---|---|---|---|
Seed area | 0.82 | 0.81 | 0.92 | 0.34 | 0.38 | 0.12 | 0.09 |
Seed length | 0.35 | 0.97 | 0.18 | 0.3 | 0.11 | 0.11 | |
Seed width | 0.53 | 0.38 | 0.32 | 0.09 | 0.04 NS | ||
Seed perimeter | 0.24 | 0.34 | 0.13 | 0.11 | |||
Cotyledon length | 0.88 | 0.22 | 0.21 | ||||
Cotyledon width | 0.17 | 0.15 | |||||
Fresh weight | 0.88 |
Source | DF | Seed Area | Cotyledon Length | Fresh Weight |
---|---|---|---|---|
Geno (G) | 55 | 5.8 × 10−3 *** | 186.5 *** | 111.4 *** |
GCA | 7 | 8.0 × 10−3 *** | 594.1 *** | 36.7 *** |
SCA | 20 | 1.9 × 10−3 *** | 114.1 *** | 256.8 *** |
Recip | 28 | 8.1 × 10−3 *** | 142.5 *** | 27.0 *** |
Exp (E) | 2 | 1.2 × 10−3 *** | 1766.0 *** | 5969.0 *** |
G × E | 110 | 4.4 × 10−5 | 47.4 *** | 47.5 *** |
GCA × E | 14 | 5.0 × 10−4 | 114.3 *** | 99.2 *** |
SCA × E | 40 | 2.0 × 10−3 | 26.5 *** | 27.0 *** |
Recip × E | 56 | 2.5 × 10−3 | 46.1 *** | 49.5 *** |
Block(E) | 6 | 3.4 × 10−3 *** | 5.2 | 156.8 *** |
Error | 330 | 1.3 × 10−2 | 3.1 | 7.5 |
Parent | Seed Area (mm2) | Cotyledon Length (mm) | Plant Fresh Weight (g) |
---|---|---|---|
9930-3 | −0.009 *** | −0.772 | −0.77 |
9930-5 | −0.009 *** | −0.712 | 0.19 |
GY14-15 | 0.007 *** | −1.615 *** | 0.30 |
GY14-9 | −0.008 *** | −4.079 *** | −0.60 |
ST8-2 | −0.005 *** | 0.174 | 0.03 |
ST8-4 | 0.007 *** | 3.174 *** | 0.82 |
TMG1-4 | 0.012 *** | 2.512 *** | 0.57 |
TMG1-5 | 0.005 ** | 1.319 ** | −0.55 |
Seed Area (mm2) | |||||||
Parents | 9930-5 | GY14-15 | GY14-9 | ST8-2 | ST8-4 | TMG1-4 | TMG1-5 |
9930-3 | −0.002 | 0.002 | 0.007 * | −0.014 ** | −0.007 * | −0.003 | 0.017 ** |
9930-5 | - | 0.004 | 0.011 ** | −0.005 | −0.003 | −0.017 ** | 0.013 ** |
GY14-15 | – | −0.003 | 0.009 ** | −0.007 * | 0.004 | −0.010 ** | |
GY14-9 | - | 0.001 | −0.005 | −0.004 | −0.008 * | ||
ST8-2 | – | 0.013 ** | 0.009 ** | −0.013 ** | |||
ST8-4 | - | 0.009 ** | −0.001 | ||||
TMG1-4 | – | 0.002 | |||||
Cotyledon Length (mm) | |||||||
Parents | 9930-5 | GY14-15 | GY14-9 | ST8-2 | ST8-4 | TMG1-4 | TMG1-5 |
9930-3 | −3.49 ** | 0.14 | 3.42 ** | −2.85 ** | −0.81 | 0.84 | 2.74 ** |
9930-5 | - | 3.66 ** | 0.98 | −2.15 * | 0.98 | −0.68 | 0.69 |
GY14-15 | – | −3.11 ** | 0.76 | −0.55 | −1.17 | 0.28 | |
GY14-9 | - | 1.28 | −4.39 ** | 0.92 | 0.9 | ||
ST8-2 | – | 2.10 * | 1.81 * | −0.94 | |||
ST8-4 | - | 2.32 * | 0.35 | ||||
TMG1-4 | – | −4.04 ** | |||||
Plant Fresh Weight (g) | |||||||
Parents | 9930-5 | GY14-15 | GY14-9 | ST8-2 | ST8-4 | TMG1-4 | TMG1-5 |
9930-3 | −10.18 ** | 0.91 | 3.73 * | 2.30 | 2.72 * | −0.31 | 0.83 |
9930-5 | - | 4.12 ** | 3.43 * | 1.28 | 2.25 | −0.74 | −0.15 |
GY14-15 | – | −5.66 ** | −2.01 | −0.1 | 1.44 | 1.29 | |
GY14-9 | – | 0.27 | −5.31 ** | 2.29 | 1.26 | ||
ST8-2 | - | −2.96 | 0.75 | 0.36 | |||
ST8-4 | – | 1.78 | 1.62 | ||||
TMG1-4 | - | −5.21 ** |
Seed Area (mm2) | ||||||||
Male Parent | Female Parent | |||||||
9930-3 | 9930-5 | GY14-15 | GY14-9 | ST8-2 | ST8-4 | TMG1-4 | TMG1-5 | |
9930-3 | – | −0.001 | 0.026 ** | 0.024 ** | 0.017 ** | 0.021 ** | 0.018 ** | 0.037 ** |
9930-5 | 0.001 | – | 0.022 ** | 0.024 ** | 0.023 ** | 0.026 ** | 0.032 ** | 0.035 ** |
GY14-15 | −0.026 ** | −0.022 ** | – | 0.004 * | −0.020 ** | 0.008 ** | <0.001 | 0.030 ** |
GY14-9 | −0.024 ** | −0.024 ** | −0.004 * | – | −0.012 ** | 0.016 ** | 0.010 ** | 0.025 ** |
ST8-2 | −0.017 ** | −0.023 ** | 0.020 ** | 0.012 ** | – | 0.003 | 0.021 ** | −0.008 ** |
ST8-4 | −0.021 ** | −0.026 ** | −0.008 ** | −0.016 ** | −0.003 | – | 0.001 | 0.029 ** |
TMG1-4 | −0.018 ** | −0.032 ** | <0.001 | −0.010 ** | −0.021 ** | −0.001 | – | 0.021 ** |
TMG1-5 | −0.037 ** | −0.035 ** | −0.030 * | −0.025 ** | 0.008 ** | −0.029 ** | −0.021 ** | – |
Cotyledon Length (mm) | ||||||||
♀ ♂ | 9930-3 | 9930-5 | GY14-15 | GY14-9 | ST8-2 | ST8-4 | TMG1-4 | TMG1-5 |
9930-3 | – | −0.87 | 2.87 ** | 0.9 | −1.17 * | 3.48 ** | 3.13 ** | 3.98 ** |
9930-5 | 0.87 | – | 2.39 ** | 0.85 | 1.73 ** | 4.78 ** | 3.83 ** | 4.43 ** |
GY14-15 | −2.87 ** | −2.39 ** | – | 1.33 * | 2.33 ** | 2.81 ** | 3.88 ** | 3.04 ** |
GY14-9 | −0.9 | −0.85 | −1.33 * | – | 2.11 ** | 4.34 ** | 3.95 ** | 4.33 ** |
ST8-2 | 1.17 * | −1.73 ** | −2.33 ** | −2.11 ** | – | 0.86 | 0.77 | −1.89 ** |
ST8-4 | −3.48 ** | −4.78 ** | −2.81 ** | −4.34 ** | −0.86 | – | −0.7 | 0.78 |
TMG1-4 | −3.13 ** | −3.83 ** | −3.88 ** | −3.95 ** | −0.77 | 0.7 | – | 1.73 ** |
TMG1-5 | −3.98 ** | −4.43 ** | −3.04 ** | −4.33 ** | 1.89 ** | −0.78 | −1.73 ** | – |
Plant Fresh Weight (g) | ||||||||
♀ ♂ | 9930-3 | 9930-5 | GY14-15 | GY14-9 | ST8-2 | ST8-4 | TMG1-4 | TMG1-5 |
9930-3 | – | −0.06 | 1.93 * | 0.42 | −0.27 | 2.09 * | 0.84 | −1.29 |
9930-5 | 0.06 | – | 0.7 | 0.51 | 1.52 | 1.69 * | 0.79 | 0.34 |
GY14-15 | −1.93 * | −0.7 | – | 1.80 * | 2.71 ** | −0.06 | 1.91 * | −0.21 |
GY14-9 | −0.42 | −0.51 | −1.80 * | – | 1.01 | 1.32 | 0.34 | 0.39 |
ST8-2 | 0.27 | −1.52 | −2.71 ** | −1.01 | – | −1.59 | 0.4 | −1.75 ** |
ST8-4 | −2.09 * | −1.69 * | 0.06 | −1.32 | 1.59 | – | −0.93 | <0.01 |
TMG1-4 | −0.84 | −0.79 | −1.91 * | −0.34 | −0.4 | 0.93 | – | 0.88 |
TMG1-5 | 1.29 | −0.34 | 0.21 | −0.39 | 1.75 * | <0.01 | −0.88 | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oravec, M.W.; Havey, M.J. Significant Parent-of-Origin Effects for Seed, Cotyledon, and Early Plant Growth Traits in Cucumber. Agronomy 2021, 11, 1908. https://doi.org/10.3390/agronomy11101908
Oravec MW, Havey MJ. Significant Parent-of-Origin Effects for Seed, Cotyledon, and Early Plant Growth Traits in Cucumber. Agronomy. 2021; 11(10):1908. https://doi.org/10.3390/agronomy11101908
Chicago/Turabian StyleOravec, Madeline W., and Michael J. Havey. 2021. "Significant Parent-of-Origin Effects for Seed, Cotyledon, and Early Plant Growth Traits in Cucumber" Agronomy 11, no. 10: 1908. https://doi.org/10.3390/agronomy11101908
APA StyleOravec, M. W., & Havey, M. J. (2021). Significant Parent-of-Origin Effects for Seed, Cotyledon, and Early Plant Growth Traits in Cucumber. Agronomy, 11(10), 1908. https://doi.org/10.3390/agronomy11101908