Weeds and Their Responses to Management Efforts in A Changing Climate
Abstract
:1. Introduction
2. Weed Composition and Distribution
3. Weed Demography
4. Weed Species Shift
5. Weed Invasion
6. Weed Growth
6.1. Effect of Elevated Atmospheric CO2
6.2. Effect of Increased Temperature
6.3. Effect of Changes in Precipitation
7. Crop–Weed Competition and Interaction
8. Resource Utilization Efficiency by Weed
9. Weed Management
9.1. Herbicide Efficacy
9.2. Herbicide Resistance
9.3. Mechanical Control
9.4. Biological Control
10. Final Thoughts
11. Research Thrust and Policy Recommendations
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- UN. United Nations Population Estimates. 2019. Available online: https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html (accessed on 13 November 2020).
- Ziska, L.H. Climate change and the herbicide paradigm: Visiting the future. Agronomy 2020, 10, 1953. [Google Scholar] [CrossRef]
- Killman, W. Foreword, in Climate Change and Food Security: A Framework Document; FAO of the United Nations: Rome, Italy, 2008. [Google Scholar]
- Ramesh, K.; Matloob, A.; Aslam, F.; Florentine, S.K.; Chauhan, B.S. Weeds in a changing climate: Vulnerabilities, consequences, and implications for future weed management. Front. Plant Sci. 2017, 8, 95. [Google Scholar] [CrossRef] [PubMed]
- Amare, T. Review on impact of climate change on weed and their management. J. Agric. Biol. Environ. Stat. 2016, 2, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.S.; Banga, S.S. Global agriculture and climate change: A perspective. In Combating Climate Change: An Agricultural Perspective; Kang, M.S., Banga, S.S., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 11–25. [Google Scholar] [CrossRef]
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Chandrasena, N. How will weed management change under climate change? Some perspectives. J. Crop Weed 2009, 5, 95–105. [Google Scholar]
- Auld, B.A. The persistence of weeds and their social impact. Int. J. Soc. Econ. 2004, 31, 879–886. [Google Scholar] [CrossRef]
- Smith, S.D.; Strain, B.R.; Sharkey, T.D. Effects of CO2 enrichment on four Great Basin grasses. Funct. Ecol. 1987, 1, 139–143. [Google Scholar] [CrossRef]
- Webster, C.R.; Jenkins, M.A.; Jose, S. Woody invaders and the challenges they pose to forest ecosystems in the eastern United States. J. For. 2006, 104, 366–374. [Google Scholar]
- Pejchar, L.; Mooney, H.A. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 2009, 24, 497–504. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2007: Mitigation of Climate Change Synthesis Report; Cambridge University Press: Cambridge, UK, 2007; p. 15. [Google Scholar] [CrossRef]
- Rosenzweig, C.R.; Hillel, D. Climate Change and Global Harvest; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Upasani, R.R.; Barla, S. Weed dynamics in changing climate. Int. J. Curr. Microbiol. Appl. Sci. 2018, 66, 3435–3450. [Google Scholar]
- Field, C.B.; Barros, V.R.; Dokken, D.J.; Mach, K.J.; Mastrandrea, M.D.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova, R.C.; et al. Climate Change 2014—Impacts, Adaptation and Vulnerability: Regional Aspects; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2001: The Scientific Basis; Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate, Change; Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A., Eds.; Cambridge University Press: Cambridge, UK, 2001; p. 881. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects; Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef] [Green Version]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Midgley, P.M. Climate Change 2013: THE PHYSICAL SCIENCE Basis; Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5); Cambridge University Press: New York, NY, USA, 2013; p. 25. [Google Scholar]
- Mittler, R.; Finka, A.; Goloubinoff, P. How do plants feel the heat? Trends Biochem. Sci. 2012, 37, 118–125. [Google Scholar] [CrossRef]
- Hayman, P.; Sadras, V. Climate change and weed management in Australian farming systems. In Proceedings of the 15th Australian Weeds Conference, Adelaide, Australia, 24–28 Sepetember 2006; Preston, C., Watts, J.H., Crossman, N.D., Eds.; CSIRO: Canberra, Australia, 2006; pp. 22–26. [Google Scholar]
- Matzrafi, M.; Seiwert, B.; Reemtsma, T.; Rubin, B.; Peleg, Z. Climate change increases the risk of herbicide-resistant weeds due to enhanced detoxification. Planta 2016, 244, 1217–1227. [Google Scholar] [CrossRef]
- Dayan, F.E. Current status and future prospects in herbicide discovery. Plants 2019, 8, 341. [Google Scholar] [CrossRef] [Green Version]
- Pautasso, M.; Dehnen-Schmutz, K.; Holdenrieder, O.; Pietravalle, S.; Salama, N.; Jeger, M.J.; Lange, E.; Hehl-Lange, S. Plant health and global change-some implications for landscape management. Biol. Rev. 2010, 85, 729–755. [Google Scholar] [CrossRef]
- Andreasen, C.; Skovgaard, I.M. Crop and soil factors of importance for the distribution of plant species on arable fields in Denmark. Agric. Ecosyst. Environ. 2009, 133, 61–67. [Google Scholar] [CrossRef]
- Gunton, R.M.; Petit, S.; Gaba, S. Functional traits relating arable weed communities to crop characteristics. J. Veg. Sci. 2011, 22, 541–550. [Google Scholar] [CrossRef]
- Fleming, A.; Vanclay, F. Farmer responses to climate change and sustainable agriculture. A review. Agron. Sustain. Dev. 2010, 30, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Chauhan, B.S.; Prabhjyot-Kaur Mahajan, G.; Randhawa, R.J.; Singh, H.; Kang, M.S. Global warming and its possible impact on agriculture in India. Adv. Agron. 2014, 123, 65–121. [Google Scholar] [CrossRef]
- Holm, L.G.; Doll, J.; Holm, E.; Pancho, J.; Herverger, J. Worlds Weeds: Natural Histories and Distribution; John Wiley & Sons: New York, NY, USA, 1997; p. 1129. [Google Scholar]
- McDonald, A.; Riha, S.; DiTommaso, A.; DeGaetano, A. Climate change and the geography of weed damage: Analysis of U.S. maize systems suggests the potential for significant range transformations. Agric. Ecosys. Environ. 2009, 130, 131–140. [Google Scholar] [CrossRef]
- Ziska, L.H.; Dukes, J.S. Weed Biology and Climate Change; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2011; pp. 68–205. [Google Scholar] [CrossRef]
- Boese, S.R.; Wolfe, D.W.; Melkonian, J. Elevated CO2 mitigates chilling-induced water stress and photosynthetic reduction during chilling. Plant Cell Environ. 1997, 20, 625–632. [Google Scholar] [CrossRef]
- Parry, M.L. The impact of climate change on European agriculture. In The Bawden Memorial Lectures 1973–1998, Silver Jubilee Edition; Lewis, T., Ed.; British Crop Protection Council: Surrey, UK, 1998; pp. 325–338. [Google Scholar]
- Bunce, J.A. Weeds in a changing climate. In Proceedings of the World’s Worst Weeds—Proceedings of an International Symposium, Brighton, UK, 12 November 2001; pp. 109–118. Available online: https://www.cabdirect.org/cabdirect/abstract/20023001912 (accessed on 16 April 2021).
- Singh, M.C.; Dubey, S.C.; Yaduraju, N.T. Climate change and its possible impacts on weeds. Int. J. Environ. Sci. Technol. 2016, 5, 1530–1539. [Google Scholar]
- Ziska, L.H.; Tomecek, M.B.; Gealy, D.R. Competitive interactions between cultivated and red rice as a function of recent and projected increases in atmospheric carbon dioxide. Agron. J. 2010, 102, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, G.; Singh, S.; Chauhan, B.S. Impact of climate change on weeds in the rice-wheat cropping system. Curr. Sci. 2012, 102, 1254–1255. [Google Scholar]
- Ziska, L.H.; Goins, E.W. Elevated atmospheric carbon dioxide and weed populations in glyphosate treated soybean. Crop Sci. 2006, 46, 1354–1359. [Google Scholar] [CrossRef]
- Luo, Y.; Mooney, H.A. Carbon Dioxide and Environmental Stress; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Rodenburg, J.; Meinke, H.; Johnson, D.E. Challenges for weed management in African rice systems in a changing climate. J. Agric. Sci. 2011, 149, 427–435. [Google Scholar] [CrossRef] [Green Version]
- Phillips, O.L.; Martinez, R.V.; Arroyo, L.; Baker, T.R.; Killeen, T.; Lewis, S.L.; Malhi, Y.; Mendoza, A.M.; Neill, D.; Vargas, P.N.; et al. Increasing dominance of large lianas in Amazonian forests. Nature 2002, 418, 770–774. [Google Scholar] [CrossRef] [Green Version]
- Polley, H.W.; Johnson, H.B.; Tischler, C.R. Woody invasion of grasslands: Evidence that CO2 enrichment indirectly promotes establishment of Prosopis glandulosa. Plant Ecol. 2002, 164, 85–94. [Google Scholar] [CrossRef]
- Belote, R.T.; Weltzin, J.F.; Norby, R.J. Response of an understory plant community to elevated CO2 depends on differential responses of dominant invasive species and is mediated by soil water availability. New Phytol. 2003, 161, 827–835. [Google Scholar] [CrossRef]
- Mooney, H.A.; Hobbs, R.J. Invasive Species in a Changing World; Island Press: Washington, DC, USA, 2000; p. 457. [Google Scholar]
- Bunce, J.A. Acclimation of photosynthesis to temperature in eight cool and warm climate herbaceous C3 species: Temperature dependence of parameters of a biochemical photosynthesis model. Photosynth. Res. 2000, 63, 59–67. [Google Scholar] [CrossRef]
- Ziska, L.H.; Blumenthal, D.M.; Franks, S.J. Understanding the nexus of rising CO2, climate change, and evolution in weed biology. Invasive Plant Sci. Manag. 2019, 12, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Ziska, L.H.; Blumenthal, D.M.; Runion, G.B.; Hunt, E.R., Jr.; Diaz-Soltero, H. Invasive species and climate change: An agronomic perspective. Clim. Change 2011, 105, 13–42. [Google Scholar] [CrossRef]
- Liu, Y.; Oduor, A.M.; Zhang, Z.; Manea, A.; Tooth, I.A.; Leishman, M.R.; van Kleunen, M. Do invasive alien plants benefit more from global environmental change than native plants? Glob. Change Biol. 2017, 23, 3363–3370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, S.D.; Huxman, T.E.; Zitzer, S.F.; Charlet, T.N.; Housman, D.C.; Coleman, J.S.; Fenstermaker, L.K.; Seemann, J.R.; Nowak, R.S. Elevated CO2 increases productivity and invasive species success in an arid ecosystem. Nature 2000, 408, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Dukes, J.S.; Chiariello, N.R.; Loarie, S.R.; Field, C.B. Strong response of an invasive plant species (Centaurea solstitialis L.) to global environmental changes. Ecol. Appl. 2011, 21, 1887–1894. [Google Scholar] [CrossRef] [Green Version]
- Blumenthal, D.M.; Resco, V.; Morgan, J.A.; Williams, D.G.; LeCain, D.R.; Hardy, E.M.; Pendall, E.; Bladyka, E. Invasive forb benefits from water savings by native plants and C-fertilization under elevated CO2 and warming. New Phytol. 2013, 200, 1156–1165. [Google Scholar] [CrossRef]
- Gealy, D.R.; Mitten, D.H.; Rutger, J.N. Gene flow between red rice (Oryza sativa) and herbicide-resistant rice (O. sativa): Implications for weed management. Weed Technol. 2003, 17, 627–645. [Google Scholar] [CrossRef]
- Thomson, F.J.; Moles, A.T.; Auld, T.D.; Kingsford, R.T. Seed dispersal distance is more strongly correlated with plant height than with seed mass. J. Ecol. 2011, 99, 1299–1307. [Google Scholar] [CrossRef]
- Benech-Arnold, R.L.; Sánchez, R.A.; Forcella, F.; Kruk, B.C.; Ghersa, C.M. Environmental control of dormancy in weed seed banks in soil. Field Crop. Res. 2000, 67, 105–122. [Google Scholar] [CrossRef]
- Grossman, J.D.; Rice, K.J. Contemporary evolution of an invasive grass in response to elevated atmospheric CO2 at a Mo-jave Desert FACE site. Ecol. Lett. 2014, 17, 710–716. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, B.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; De Siqueira, M.F.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. [Google Scholar] [CrossRef]
- Early, R.; Bradley, B.A.; Dukes, J.S.; Lawler, J.J.; Olden, J.D.; Blumenthal, D.M.; Gonzalez, P.G.; Grosholz, E.D.; Ibanez, I.; Miller, L.P.; et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 2016, 7, 12485. [Google Scholar] [CrossRef]
- Olesen, J.E.; Trnka, M.; Kersebaum, K.C.; Skjelvåg, A.O.; Seguin, B.; Peltonen-Sainio, P.; Rossi, F.; Kozyra, J.; Micale, F. Impacts and adaptation of European crop production systems to climate change. Euro. J. Agron. 2011, 34, 96–112. [Google Scholar] [CrossRef]
- Oduor, A.M.O.; Leimu, R.; van Kleunen, M. Invasive plant species are locally adapted just as frequently and at least as strongly as native plant species. J. Ecol. 2016, 104, 957–968. [Google Scholar] [CrossRef] [Green Version]
- Das, T.K.; Sharma, A.R.; Pathak, H. Crop-weed balance studies under climate change. In Climate Change Impact, Adaptation and Mitigation in Agriculture: Methodology for Assessment and Application; Pathak, H., Aggarwal, P.K., Singh., S.D., Eds.; Indian Agricultural Research Institute: New Delhi, India, 2012; p. 131. [Google Scholar]
- Woodward, F.I.; Cramer, W. Plant functional types and climatic changes: Introduction. J. Veg. Sci. 1996, 7, 306–308. [Google Scholar] [CrossRef]
- Peters, K.; Breitsameter, L.; Gerowitt, B. Impact of climate change on weeds in agriculture: A review. Agron. Sustain. Dev. 2014, 34, 707–721. [Google Scholar] [CrossRef] [Green Version]
- Patterson, D.T. Implications of global climate change for impact of weeds, insects and plant diseases. Int. Crop Sci. 1993, 1, 273–280. [Google Scholar] [CrossRef]
- Patterson, D.T. Effects of environmental stress on weed/crop interactions. Weed Sci. 1995, 43, 483–490. [Google Scholar] [CrossRef]
- Sasek, T.W.; Strain, B.R. Implications of atmospheric CO2 enrichment and climatic change for the geographical distribution of two introduced vines in the USA. Clim. Change 1990, 16, 31–51. [Google Scholar] [CrossRef]
- Patterson, D.T. Weeds in a changing climate. Weed Sci. 1995, 43, 685–701. [Google Scholar] [CrossRef]
- Ziska, L.H. Climate Change Impacts on Weeds, Crop Systems and Global Change Laboratory. Climate Change and Agriculture: Promoting Practical and Profitable Responses. 2010. Available online: http://www.demeter.org.es/pdf/investi_a/Climate_Change_Impacts_on_Weeds.pdf (accessed on 22 June 2021).
- Blumenthal, D.; Chimner, R.A.; Welker, J.M.; Morgan, J.A. Increased snow facilitates plant invasion in mixedgrass prairie. New Phytol. 2008, 179, 440–448. [Google Scholar] [CrossRef]
- Kriticos, D.J.; Sutherst, R.W.; Brown, J.R.; Adkins, S.W.; Maywald, G.F. Climate change and biotic invasions: A case history of a tropical woody vine. Biol. Invasions 2003, 5, 147–165. [Google Scholar] [CrossRef]
- Ziska, L.H.; George, K. Rising carbon dioxide and invasive, noxious plants: Potential threats and consequences. World Res. Rev. 2004, 16, 427–447. [Google Scholar]
- Fordham, D.A.; Mellin, C.; Russell, B.D.; Akçakaya, R.H.; Bradshaw, C.J.; Aiello-Lammens, M.E.; Caley, J.M.; Connell, S.D.; Mayfield, S.; Shepherd, S.A.; et al. Population dynamics can be more important than physiological limits for determining range shifts under climate change. Glob. Change Biol. 2013, 19, 3224–3237. [Google Scholar] [CrossRef] [PubMed]
- Hulme, P.E.; Barrett, S.C.H. Integrating trait- and niche-based approaches to assess contemporary evolution in alien plant species. J. Ecol. 2013, 101, 68–77. [Google Scholar] [CrossRef]
- Mack, R.N.; Simberloff, D.; Lansdale, W.F.; Evans, H. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 2000, 10, 689–710. [Google Scholar] [CrossRef]
- Kathiresan, R.; Gualbert, G. Impact of climate change on the invasive traits of weeds. Weed Biol. Manag. 2016, 16, 59–66. [Google Scholar] [CrossRef]
- Hellmann, J.J.; Byers, J.E.; Bierwagen, B.G.; Dukes, J.S. Five potential consequences of climate change for invasive species. Conserv. Biol. 2008, 22, 534–543. [Google Scholar] [CrossRef]
- Irmaileh, B.A. Climate change impact on weeds. In Food Security and Climate Change in Dry Areas, Proceedings of the International Conference, Amman, Jordan, 1–4 February 2010; Solh, M., Saxena, M.C., Eds.; International Center for AgriculturalResearch in the Dry Areas (ICARDA): Aleppo, Syria, 2011; pp. 170–175. [Google Scholar]
- Singh, M.K.; Singh, R.K. Alien Invasive Weeds—An Emerging Threat to Agricultural Biodiversity in India. Souvenir-Cum-Abstract, SAARC Workshop on Biodiversity Conservation; Department of Plant Physiology, Institute of Agricultural Sciences, BHU: Varanasi, India, 2010; p. 91. [Google Scholar]
- Singh, R.P.; Singh, R.K.; Singh, M.K. Impact of climate and carbon dioxide change on weeds and their management-a review. Indian J. Weed Sci. 2011, 43, 1–11. [Google Scholar]
- Bradley, B.A.; Blumenthal, D.M.; Wilcove, D.S.; Ziska, L.W. Predicting plant invasions in an era of global change. Trends Ecol. Evol. 2010, 25, 310–318. [Google Scholar] [CrossRef]
- Acock, B. Effects of Carbon Dioxide on photosynthesis, plant growth, and other processes. In Impact of Carbon Dioxide, Trace Gases, and Climate Change on Global Agriculture; Bruce, A., Chair, K., Rosenberg, N.J., Allen, L.H., Jr., Eds.; ASA Special Publication; American Society of Agronomy, Inc.; Crop Science Society of America, Inc.; Soil Science Society of America, Inc.: Madison, WI, USA, 1990; pp. 45–60. [Google Scholar] [CrossRef]
- Naidu, V.S. Invasive potential of C3-C4 intermediate Parthenium hysterophorus under elevated CO2. Indian J. Agric. Sci. 2013, 83, 176–179. [Google Scholar]
- Manisankar, G.; Ramesh, T. Response of weeds under elevated CO2 and temperature: A review. J. Pharmacogn. Phytochem. 2019, SP2, 427–431. [Google Scholar]
- Ziska, L.H.; Bunce, J.A. Influence of increasing carbon dioxide concentration on the photosynthetic and growth stimulation of selected C4 crops and weeds. Photosynth. Res. 1997, 54, 199–208. [Google Scholar] [CrossRef]
- O’donnell, C.C.; Adkins, S.W. Wild oat and climate change: The effect of CO2 concentration, temperature, and water deficit on the growth and development of wild oat in monoculture. Weed Sci. 2001, 49, 694–702. [Google Scholar] [CrossRef]
- Ziska, L.H.; Teasdale, J.R.; Bunce, J.A. Future atmospheric carbon dioxide may increase tolerance to glypho-sate. Weed Sci. 1999, 47, 608–615. [Google Scholar] [CrossRef]
- Ziska, L.H. Changes in competitive ability between a C4 crop and a C3 weed with elevated carbon dioxide. Weed Sci. 2001, 49, 622–627. [Google Scholar] [CrossRef]
- Ziska, L.H.; Caulfield, F.A. Rising carbon dioxide and pollen production of common ragweed, a known allergy-inducing species: Implications for public health. Aust. J. Plant Physiol. 2000, 27, 893–898. [Google Scholar] [CrossRef]
- Wayne, P.S.; Foster, S.; Connolly, J.; Bazzaz, F.A.; Epstein, P.R. Production of allergenic pollen by ragweed (Ambrosia artemissiifolia L.) is increased in CO2-enriched atmospheres. Ann. Allergy Asthma Immunol. 2002, 80, 669–679. [Google Scholar] [CrossRef]
- Metz, B.; Davidson, O.; Bosch, P.; Dave, R.; Mayer, L.A. Climate change. In Synthesis Report: Summary for Policymakers; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Yin, X.; Struik, P.C. Applying modelling experiences from the past to shape crop systems biology: The need to converge crop physiology and functional genomics. New Phytol. 2008, 179, 629–642. [Google Scholar] [CrossRef]
- Jagadish, K.S.; Cairns, J.E.; Kumar, A.; Somayanda, I.M.; Craufurd, P.Q. Does susceptibility to heat stress confound screening for drought tolerance in rice. Funct. Plant Biology 2011, 38, 261–269. [Google Scholar] [CrossRef] [Green Version]
- Tungate, K.D.; Israel, D.W.; Watson, D.M.; Rufty, T.W. Potential changes in weed competitiveness in an agroecological system with elevated temperatures. Environ. Exp. Bot. 2007, 60, 42–49. [Google Scholar] [CrossRef]
- Matsunaka, S. Evolutions of rice weed control practices and research world perspective. In Weed Control in Rice; IRRI: Manila, Philippines, 1983; pp. 5–18. [Google Scholar]
- Patterson, D.T. Responses of soybean CO2 enrichment during drought. Weed Sci. 1986, 34, 203–210. [Google Scholar] [CrossRef]
- Sun, Y.; Ding, J.; Frye, M.J. Effects of resource availability on tolerance of herbivory in the invasive Alternanthera philoxeroides and the native Alternanthera sessilis. Weed Res. 2010, 50, 527–536. [Google Scholar] [CrossRef]
- Malarkodi, N.; Manikandan, N.; Ramaraj, A.P. Impact of climate change on Weeds and Weed management. J. Innov. Agric. 2017, 4, 1–6. [Google Scholar]
- Alberto, A.M.P.; Ziska, L.H.; Cervancia, C.R.; Manalo, P.A. The influence of increasing carbon dioxide and tempera-ture on competitive interactions between a C3 crop, rice (Oryza sativa) and a C4 weed (Echinochloa glabrescens). Aust. J. Plant Physiol. 1996, 23, 795–802. [Google Scholar] [CrossRef]
- Carter, D.R.; Peterson, K.M. Effects of a CO2-enriched atmosphere on the growth and competitive interaction of a C3 and a C4 grass. Oecologia 1983, 58, 188–193. [Google Scholar] [CrossRef]
- Bunce, J.A.; Ziska, L.H. Crop ecosystem responses to climatic change: Crop/weed interactions. In Climate Change and Global Crop Productivity; Reddy, K.R., Hodges, H.F., Eds.; CABI: New York, NY, USA, 2000; pp. 333–348. [Google Scholar] [CrossRef]
- Ward, J.K.; Tissue, D.T.; Thomas, R.B.; Strain, B.R. Comparative responses of model C3 and C4 plants to drought in low and elevated CO2. Glob. Change Biol. 1999, 5, 857–867. [Google Scholar] [CrossRef]
- Israel, A.A.; Nobel, P.S. Activities of carboxylating enzymes in the CAM species Opuntia Ficus indica grown un-der current and elevated CO2 concentrations. Photosynth. Res. 1994, 40, 223–229. [Google Scholar] [CrossRef]
- Poorter, H. Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. Vegetatio 1993, 104, 77–97. [Google Scholar] [CrossRef]
- Moya, T.B.; Ziska, L.H.; Namuco, O.S.; Olszyk, D. Growth dynamics and genotypic variation in tropical field-grown paddy rice (Oryza sativa L.) in response to increasing carbon dioxide and temperature. Glob. Change Biol. 1998, 4, 645–656. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. Food and Agriculture Organization of the United Nations. 2020. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 5 June 2021).
- Holm, L.G.; Plucknett, D.L.; Pancho, J.V.; Herberger, J.P. The World’s Worst Weeds. Distribution and Biology; University Press of Hawaii: Honolulu, HI, USA, 1977. [Google Scholar]
- Jinger, D.; Kaur, R.; Kaur, N.; Rajanna, G.A.; Kumari, K.; Dass, A. Weed dynamics under changing climate scenario: A Review. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 2376–2388. [Google Scholar] [CrossRef] [Green Version]
- Ziska, L.W. The impact of elevated CO2 on yield loss from a C3 and C4 weed in field-grown soybean. Glob. Change Biol. 2000, 6, 899–905. [Google Scholar] [CrossRef]
- Ziska, L.W. Evaluation of yield losss in field sorghum from a C3 and C4 weeds with increasing CO2. Weed Sci. 2003, 51, 914–918. [Google Scholar] [CrossRef]
- Carlson, R.W.; Bazzaz, F.A. The effects of elevated CO2 concentrations on growth, photosynthesis, transpiration, and water-use efficiency of plants. In Environmental and Climatic Impact of Coal Utilities; Singh, J.J., Deepak, A., Eds.; Academic Press: New York, NY, USA, 1980. [Google Scholar]
- Kimball, B.A.; Idso, S.B. Increasing atmospheric CO2: Effects on crop yield, water use and climate. Agric. Water Manag. 1983, 7, 55–72. [Google Scholar] [CrossRef]
- Drake, B.G.; Gonzàlez-Meler, M.A.; Long, S.P. More efficient plants: A consequence of rising atmospheric CO2? Ann. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48, 609–639. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Parker, K.M.; Luo, Y.; Wan, S.; Wallace, L.L.; Hu, S. Soil microbial responses to experimental warming and clipping in a tall grass prairie. Glob. Change Biol. 2005, 11, 266–277. [Google Scholar] [CrossRef]
- Hall, A.E.; Allen, L.H., Jr. Designing cultivars for the climatic conditions of the next century. In International Crop Science I; Buxton, D.R., Shibles, R., Forsberg, R.A., Blad, B.L., Asay, K.H., Paulsen, G.M., Wilson, R.F., Eds.; Crop Science Society of America, Inc.: Madison, WI, USA, 1993; pp. 291–297. [Google Scholar] [CrossRef]
- Bleier, J.S.; Jackson, R.D. Manipulating the quantity, quality and manner of C addition to reduce soil inorganic N and increase C4: C3 grass biomass. Restor. Ecol. 2007, 15, 688–695. [Google Scholar] [CrossRef]
- Bailey, S.W. Climate change and decreasing herbicide persistence. Pest Manag. Sci. 2003, 60, 158–162. [Google Scholar] [CrossRef]
- Madafiglio, G.P.; Medd, R.W.; Cornish, P.S.; Van de Ven, R. Temperature mediated responses of flumetsulam and metosulam on Raphanus raphanistrum. Weed Res. 2000, 40, 387–395. [Google Scholar] [CrossRef]
- Medd, R.W.; Van de Ven, R.; Pickering, D.I.; Nordblom, T. Determination of environment specific dose response relationships for clodinafoppropargyl on Avena spp. Weed Res. 2001, 41, 351–368. [Google Scholar] [CrossRef]
- Howden, S.M.; Soussana, J.F.; Tubiello, F.N.; Chhetri, N.; Dunlop, M.; Meinke, H. Adapting agriculture to climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19691–19696. [Google Scholar] [CrossRef] [Green Version]
- Patterson, D.T.; Westbrook, J.K.; Joyce, R.J.V.; Lingren, P.D.; Rogasik, J. Weeds, insects and diseases. Clim. Change 1999, 43, 711–727. [Google Scholar] [CrossRef]
- Loladze, I. Hidden shift of the ionome of plants exposed to elevated CO2 depletes minerals at the base of human nutrition. eLife 2014, 3, e02245. [Google Scholar] [CrossRef]
- Varanasi, A.; Prasad, P.V.V.; Jugulam, M. Impact of climate change factors on weeds and herbicide efficacy. Adv. Agron. 2015, 135, 107–146. [Google Scholar] [CrossRef]
- Patterson, D.T.; Flint, E.P. Implications of increasing carbon dioxide and climate change for plant communities and competition in natural and managed ecosystems. In Impact of Carbon Dioxide, Trace Gases and Climate Change on Global Agriculture; Kimball, B.A., Rosenberg, N.J., Allen, L.H., Jr., Eds.; American Society of Agronomy Special Publication No. 53; American Society of Agronomy: Madison, WI, USA, 1990; pp. 83–110. [Google Scholar] [CrossRef]
- Ziska, L.H.; Faulkner, S.S.; Lydon, J. Changes in biomass and root: Shoot ratio of field-grown Canada thistle (Cirsium arvense), a noxious, invasive weed, with elevated CO2: Implications for control with glyphosate. Weed Sci. 2004, 52, 584–588. [Google Scholar] [CrossRef]
- Ziska, L.H.; Teasdale, J.R. Sustained growth and increased tolerance to glyphosate observed in a C3 perennial weed, quackgrass (Elytrigia repens), grown at elevated carbon dioxide. Aust. J. Plant Physiol. 2000, 27, 159–164. [Google Scholar] [CrossRef] [Green Version]
- Ziska, L.H.; Reunion, G.B. Future weed, pest and disease problems for plants. In Agroecosystems in a Changing Climate; Newton, P.C.D., Carran, A., Edwards, G.R., Niklaus, P.A., Eds.; CRC: Boston, MA, USA, 2007; pp. 262–279. [Google Scholar]
- Archambault, D.J.; Li, X.; Robinson, D.; O’Donovan, J.T.; Klein, K.K. The effects of elevated CO2 and temperature on herbicide efficacy and weed/crop competition. Rept. Prairie Adapt. Res. Collab. 2001, 29. Available online: https://www.parc.ca/project/the-effects-of-elevated-co2-and-temperature-on-herbicide-efficacy-and-weed-crop-competition/ (accessed on 24 July 2014).
- Arıkan, N.; Burçak, A.A.; Türktemel, I.; Akbaş, A. Persistence of herbicide in soil. Turk. J. Occup./Environ. Med. Saf. 2015, 1, 1. [Google Scholar]
- Nguyen, T.H.; Malone, J.M.; Boutsalis, P.; Shirley, N.; Preston, C. Temperature influences the level of glyphosate resistance in barnyard grass (Echinochloacolona). Pest Manag. Sci. 2015, 72, 1031–1039. [Google Scholar] [CrossRef]
- Ziska, L.H. The role of climate change and increasing atmospheric carbon dioxide on weed management: Herbicide efficacy. Agric. Ecosyst. Environ. 2016, 231, 304–309. [Google Scholar] [CrossRef] [Green Version]
- Ziska, L.H.; Gealy, D.R.; Tomecek, M.B.; Jackson, A.K.; Black, H.L. Recent and projected increases in atmospheric CO2 concen-tration can enhance gene flow between wild and genetically altered rice (Oryza sativa). PLoS ONE 2012, 7, e37522. [Google Scholar] [CrossRef] [Green Version]
- Rogers, H.H.; Runion, G.B.; Krupa, S.V. Plant responses to atmospheric CO2 enrichment, with emphasis on roots and the rhizosphere. Environ. Pollut. 1994, 83, 155–189. [Google Scholar] [CrossRef]
- Kriticos, D.J.; Crossman, N.D.; Ota, N.; Scott, J.K. Climate Change and Invasive Plants in South Australia; National Research Flagship Climatic Adaptation: Canberra, Australia, 2010; p. 92. [Google Scholar]
- Cardarelli, E.; Musacchio, A.; Montagnani, C.; Bogliani, G.; Citterio, S.; Gentili, R. Ambrosia artemisiifolia control in agricultural areas: Effect of grassland seeding and herbivory by the exotic leaf beetle Ophraella communa. NeoBiota 2018, 38, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Ziska, L.H.; Emche, S.D.; Johnson, E.L.; George, K.; Reed, D.R.; Sicher, R.C. Alterations in the production and con-centration of selected alkaloids as a function of rising atmospheric carbon dioxide and air temperature: Implications for ethno-pharmacology. Glob. Change Biol. 2005, 11, 1798–1807. [Google Scholar] [CrossRef]
- Gerard, P.J.; Kean, J.M.; Phillips, C.B.; Fowler, S.V.; Withers, T.M.; Walker, G.P.; Charles, J.G. Possible impacts of climate change on biocontrol systems in New Zealand Agri research. Report for MAF Pol Project 0910-11689. 2010. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.224.588&rep=rep1&type=pdf (accessed on 14 June 2021).
- Reeves, J.L. Climate change effects on biological control of invasive plants by insects. CAB Rev. 2017, 12. [Google Scholar] [CrossRef]
- Holt, R.D.; Hochberg, M.E. When is biological control evolutionarily stable (or is it)? Ecology 1997, 78, 1673–1683. [Google Scholar] [CrossRef]
Major Crops [104] | Noxious Weeds [105] | ||||||
---|---|---|---|---|---|---|---|
Common Name | Scientific Names | Family Names | Photosynthetic Pathways | Common Name | Scientific Names | Family Names | Photosynthetic Pathways |
Wheat | Triticum aestivum L. | Poaceae | C3 | Purple nutsedge | Cyperus rotundus L. | Cyperaceae | C4 |
Corn | Zea mays L. | Poaceae | C4 | Bermuda grass | Cynodon dactylon (L.) Pers. | Poaceae | C4 |
Rice | Oryza sativa L. | Poaceae | C3 | Barnyard grass | Echinochloa crus-galli (L.) Beauv | Poaceae | C4 |
Soybeans | Glycine max (L.) Merr. | Fabaceae | C3 | Jungle rice | Echinochloa colona (L.) Link | Poaceae | C4 |
Sorghum | Sorghum bicolor (L.) Moench | Poaceae | C4 | Indian goose grass | Eleusine indica (L.) Gaertn. | Poaceae | C4 |
Cassava | Manihot esculenta Crant | Euphorbiaceae | C3 | Johnson grass | Sorghum halepense (L.) Pers. | Poaceae | C4 |
Potatoes | Solanum tuberosum L. | Solanaceae | C3 | Cogon grass | Imperata cylindrica (L.) Raeuschel | Poaceae | C4 |
Yams | Dioscorea alata L. | Dioscoreaceae | C4 | Water hyacinth | Eichhornia crassipes (Mart.) Solms | Pontederiaceae | C3 |
Sweet potatoes | Ipomoea batatas (L.) Lam. | Convolvulaceae | C3 | Purselane | Portulaca oleracea L. | Portulacaceae | C3-C4 intermediates |
Plantains | Musa × paradisiaca | Musaceae | C3 | Lambsquarters | Chenopodium album L. | Chenopodiaceae | C3 |
Interaction between | Exposed Conditions | Outcome | Remarks | Reference | |
---|---|---|---|---|---|
Crop Species | Weed Species | ||||
Rice (Oryza sativa) (C3) | Red rice (Oryza sativa f. spontanea) (C3) | Increased CO2 levels up to 500 ppm | (i) Rice biomass increased with increase in CO2 up to 400 ppm (ii) Red rice biomass and seed production increased up to 500 ppm | Red rice is more competitive than cultivated rice under elevated CO2 levels | Ziska et al. [36] |
Rice (Oryza sativa) (C3) | Echinochloaglabrescens L. (C4) | Two different CO2 concentrations (393 and 594 µL L–1) under day/night temperatures of 27/21 °C and 37/29 °C | (i) In monoculture, increasing the CO2 concentration, at 27/21 °C, significantly increased biomass (+47%) and seed yield (+55%) of rice but not those of C4 weed (ii) When grown in mixture, at elevated CO2 level and 27/21 °C, rate of increase in rice biomass was more than that of C4 weed; while at elevated CO2 level and 37/29 °C, rate of increase in rice biomass was less than that of C4 weed | A C3 crop may compete better against a C4 weed at elevated CO2 alone, but simultaneous increases in CO2 and temperature could favor a C4 weed | Alberto et al. [97] |
Soybean (Glycine max) (C3) | Lambsquarters (Chenopodium album) (C3) and Amaranthus retroflexus (C4) | Amibient and elevated CO2 (ambient + 250 ppm) | (i) Soybean yield (23%) increased when grown in monoculture due to increased CO2 level (ii) However, when grown with C. album, soybean yield reduction increased from 28% at ambient CO2 to 39% at elevated CO2 (iii) When grown with A. retroflexus, soybean yield diminished from 45% to 30% at elevated CO2 compared to ambient CO2 | Under elevated CO2, C. album would be benefited more than soybean and A. retroflexus would be less benefitted. Thus, C. album could become more dominating weed. | Ziska [107] |
Sorghum (Sorghum halepense (L.) Pers (C4) | Festuca elatior L. (C3) | Ambient CO2 levels and elevated CO2 | Festuca elatior out-competed Sorghum at both ambient and elevated CO2 levels. | A C3 weed can be benefitted more than a C4 at increased CO2 levels | Carter and Peterson [98] |
Sorghum (Sorghum halepense (L.) Pers (C4) | Velvetleaf (Abutilon theophrasti) (C3) and Redroot pigweed (Amaranthus retrojlexus) (C4) | Ambient CO2 levels and elevated CO2 | Both crop–weed interactions resulted in increased weed biomass and reduced sorghum yield loss at elevated CO2 | Elevated CO2 level favors both C3 and C4 weeds compared to a C4 crop like sorghum | Ziska [108] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwar, M.P.; Islam, A.K.M.M.; Yeasmin, S.; Rashid, M.H.; Juraimi, A.S.; Ahmed, S.; Shrestha, A. Weeds and Their Responses to Management Efforts in A Changing Climate. Agronomy 2021, 11, 1921. https://doi.org/10.3390/agronomy11101921
Anwar MP, Islam AKMM, Yeasmin S, Rashid MH, Juraimi AS, Ahmed S, Shrestha A. Weeds and Their Responses to Management Efforts in A Changing Climate. Agronomy. 2021; 11(10):1921. https://doi.org/10.3390/agronomy11101921
Chicago/Turabian StyleAnwar, Md. Parvez, A. K. M. Mominul Islam, Sabina Yeasmin, Md. Harun Rashid, Abdul Shukor Juraimi, Sharif Ahmed, and Anil Shrestha. 2021. "Weeds and Their Responses to Management Efforts in A Changing Climate" Agronomy 11, no. 10: 1921. https://doi.org/10.3390/agronomy11101921
APA StyleAnwar, M. P., Islam, A. K. M. M., Yeasmin, S., Rashid, M. H., Juraimi, A. S., Ahmed, S., & Shrestha, A. (2021). Weeds and Their Responses to Management Efforts in A Changing Climate. Agronomy, 11(10), 1921. https://doi.org/10.3390/agronomy11101921