Use of X-ray Mutagenesis to Increase Genetic Diversity of Zantedeschia aethiopica for Early Flowering, Improved Tolerance to Bacterial Soft Rot, and Higher Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials, Bacterial Strains, and Growth Media
2.2. Germination Rates of Z. Aethiopica Varieties
2.3. Mutagenesis
2.4. Growth Conditions and Field Experiment
2.5. Collection of Data about Plant Traits
2.6. Tolerance to Pectobacterium
2.7. Statistical Analysis
3. Results
3.1. Calibration of the Dose of X-ray Irradiation
3.2. X-ray Radiation of Z. Aethiopica Seeds
3.3. First-Season (2017–2018) Mutant Phenotypes
3.4. Phenotypes of Mutated Plants during the Second Growing Season (2018–2019)
3.4.1. Early and Late Flowering
3.4.2. Flower Yield
3.4.3. Flower Size
3.4.4. Desired Flower Shape
3.4.5. Tolerance to Pectobacterium Infection
3.5. Summary of the Mutated Phenotypes (2018–2019)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hlophe, N.P.; Moyo, M.; Van Staden, J.; Finnie, J.F. Micropropagation of Zantedeschia aethiopica (L.) Spreng.: Towards its commercial use in the cut flower industry. Propag. Ornam. Plants 2015, 15, 73–78. [Google Scholar]
- Singh, Y.; van Wyk, A.E.; Baijnath, H. Floral biology of Zantedeschia aethiopica (L) Spreng (Araceae). South Afr. J. Bot. 1996, 62, 146–150. [Google Scholar] [CrossRef] [Green Version]
- Funnell, K.A. Zantedeschia. In The Physiology of Flower Bulbs; De Hertogh, A., Le Nard, M., Eds.; Elsvier Science Publisher: Amsterdam, The Netherlands, 1993; pp. 683–704. [Google Scholar]
- Letty, C. The genus Zantedeschia. Bothalia 1973, 11, 5–26. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, H.; Wang, Y.; Huali, Z.; Xiong, M.; Wang, X.; Zhou, D. Assessing genetic diversity and population differentiation of colored calla lily (Zantedeschia hybrid) for an efficient breeding program. Genes 2017, 8, 168. [Google Scholar] [CrossRef] [PubMed]
- Snijder, R.C.; Cho, H.-R.; Hendriks, M.M.; Lindhout, P.; Van Tuyl, J.M. Genetic variation in Zantedeschia spp. (Araceae) for resistance to soft rot caused by Erwinia carotovora subsp. carotovora. Euphytica 2004, 135, 119–128. [Google Scholar] [CrossRef]
- Snijder, R.C.; Lindhout, P.; van Tuyl, J.M. Genetic control of resistance to soft rot caused by Erwinia carotovora subsp. carotovora in Zantedeschia spp. (Araceae), section Aestivae. Euphytica 2004, 136, 319–325. [Google Scholar] [CrossRef]
- Guttman, Y.; Joshi, J.R.; Chriker, N.L.; Khadka, N.; Kleiman, M.; Reznik, N.; Wei, Z.; Kerem, Z.; Yedidia, I. Ecological adaptations influence the susceptibility of plants in the genus Zantedeschia to soft rot Pectobacterium spp. Hortic. Res. 2021, 8, 13. [Google Scholar] [CrossRef]
- Yao, J.L.; Cohen, D. Multiple gene control of plastome-genome incompatibility and plastid DNA inheritance in interspecific hybrids of Zantedeschia. Theor. Appl. Genet. 2000, 101, 400–406. [Google Scholar] [CrossRef]
- Yao, J.L.; Cohen, D.; Rowland, R.E. Plastid DNA inheritance and plastome-genome incompatibility in interspecific hybrids of Zantedeschia (Araceae). Theor. Appl. Genet. 1994, 88, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.L.; Cohen, D.; Rowland, R.E. Interspecific albino and variegated hybrids in the genus Zantedeschia. Plant Sci. 1995, 109, 199–206. [Google Scholar] [CrossRef]
- Yedidia, I. Zantedeschia aethiopica. In Geophytes for Flowering in Israeli Agriculture: A Promise in the Ground; Ministry of Agriculture and Rural Development, Extension Services: Rishon LeZion, Israel, 2016; pp. 244–259. (In Hebrew) [Google Scholar]
- Cruz-Castillo, J.G.; Torres-Lima, P.A. ‘Deja Vu’ a new calla lily (Zantedeschia aethiopica) cultivar. Rev. Chapingo Ser. Hortic. 2017, 23, 97–101. [Google Scholar]
- Cho, H.R.; Kim, K.S.; Joung, H.Y.; Lim, K.-B. Development of two new Zantedeschia cultivars resistant to bacterial soft rot. Flower Res. J. 2014, 22, 88–94. [Google Scholar] [CrossRef]
- Ahloowalia, B.S.; Maluszynski, M. Induced mutations—A new paradigm in plant breeding. Euphytica 2001, 118, 167–173. [Google Scholar] [CrossRef]
- Jain, S.M. Major mutation-assisted plant breeding programs supported by FAO/IAEA. Plant Cell Tissue Organ Cult. 2005, 82, 113–123. [Google Scholar] [CrossRef]
- Jain, S.M. Mutagenesis in crop improvement under the climate change. Rom. Biotechnol. Lett. 2010, 15, 88–106. [Google Scholar]
- Kersey, C.M.; Agyemang, P.A.; Dumenyo, C.K. CorA, the magnesium/nickel/cobalt transporter, affects virulence and extracellular enzyme production in the soft rot pathogen Pectobacterium Carotovorum. Mol. Plant Pathol. 2012, 13, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Ngamau, K. Selection for Early Flowering, Temperature and Salt Tolerance of Zantedeschia aethiopica ‘Green Goddess’; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2008. [Google Scholar]
- Ignatchenko, V.; Ignatchenko, A.; Sinha, A.; Boutros, P.C.; Kislinger, T. VennDIS: A JavaFX-based Venn and Euler diagram software to generate publication quality figures. Proteomics 2015, 15, 1239–1244. [Google Scholar] [CrossRef]
- Yishay, M.; Burdman, S.; Valverde, A.; Luzzatto, T.; Ophir, R.; Yedidia, I. Differential pathogenicity and genetic diversity among Pectobacterium carotovorum ssp. carotovorum isolates from monocot and dicot hosts support early genomic divergence within this taxon. Environ. Microbiol. 2008, 10, 2746–2759. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Luzzatto, T.; Golan, A.; Yishay, M.; Bilkis, I.; Ben-Ari, J.; Yedidia, I. Priming of antimicrobial phenolics during induced resistance response towards Pectobacterium carotovorum in the ornamental monocot calla lily. J. Agric. Food Chem. 2007, 55, 10315–10322. [Google Scholar] [CrossRef]
- Luzzatto, T.; Yishay, M.; Lipsky, A.; Ion, A.; Belausov, E.; Yedidia, I. Efficient, long-lasting resistance against the soft rot bacterium Pectobacterium carotovorum in calla lily provided by the plant activator methyl jasmonate. Plant Pathol. 2007, 56, 692–701. [Google Scholar] [CrossRef]
- Luzzatto-Knaan, T.; Kerem, Z.; Doron-Faigenboim, A.; Yedidia, I. Priming of protein expression in the defence response of Zantedeschia aethiopica to Pectobacterium Carotovorum. Mol. Plant Pathol. 2014, 15, 364–378. [Google Scholar] [CrossRef] [PubMed]
- Tsror, L.; Hélias, V.; Mordechai-Lebiush, S.; Erlich, O.; Hazanovsky, M.; Chalupowicz, L.; Reuven, M.; Dror, O.; Valinsky, L.; Laurent, A.; et al. Characterization of Pectobacterium brasiliense strains from potato and vegetables in Israel. Plant Pathol. 2021, 70, 2179–2187. [Google Scholar]
- Maphosa, S.; Moleleki, L.N. Isolation and characterization of outer membrane vesicles of Pectobacterium brasiliense 1692. Microorganisms 2021, 9, 1918. [Google Scholar] [CrossRef] [PubMed]
Duration (Min) | 0 | 2 | 4 | 10 | 20 | 100 | 150 | 200 |
---|---|---|---|---|---|---|---|---|
Radiation dose (Gy) | 0 | 10 | 20 | 50 | 100 | 500 | 750 | 1000 |
Survival rate (%) | 70 | 75 | 59 | 46 | 16 | 0 | 0 | 0 |
Early fl. (34) | Large F. (43) | Small F. (39) | Desired F. Shape (82) | Flower Scent (53) | Shades on Spathe (23) | Dark Spadix (29) | Mosaic (3) | |
---|---|---|---|---|---|---|---|---|
High yield (10) | 4 | 4 | 2 | 8 | 6 | 2 | 3 | 0 |
Early fl. (34) | 12 | 8 | 19 | 14 | 7 | 1 | 0 | |
Large F. (43) | 1 | 26 | 22 | 7 | 6 | 0 | ||
Small F. (39) | 17 | 8 | 7 | 8 | 0 | |||
Desired F. shape (82) | 32 | 11 | 18 | 1 | ||||
Scent (53) | 5 | 14 | 0 | |||||
Shades on spathe (23) | 1 | 0 | ||||||
Dark spadix (29) | 0 |
Mutant Line | High Yield | Early Flowering | Pectobacterium Tolerance | Large Flowers | Desired Flower Shape | Scent in Flowers | Total Intersection Occurrences |
---|---|---|---|---|---|---|---|
CaX100 | + | + | + | + | + | + | 6 |
CaX215 | + | + | + | + | + | 5 | |
CaX189 | + | + | + | + | 4 | ||
CaX242 | + | + | + | + | 4 | ||
CaX138 | + | + | + | + | 4 | ||
CaX20 | + | + | + | + | 4 | ||
CaX67 | + | + | + | + | 4 | ||
CaX217 | + | + | + | + | 4 | ||
CaX21 | + | + | + | 3 | |||
CaX57 | + | + | + | 3 | |||
CaX43 | + | + | + | 3 | |||
CaX212 | + | + | 2 | ||||
CaX16 | + | + | 2 | ||||
CaX50 | + | + | 2 | ||||
CaX239 | + | + | 2 | ||||
CaX249 | + | + | 2 | ||||
CaX204 | + | 1 | |||||
CaX216 | + | 1 | |||||
CaX145 | + | 1 | |||||
CaX101 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reznik, N.; Subedi, B.S.; Weizman, S.; Friesem, G.; Carmi, N.; Yedidia, I.; Sharon-Cohen, M. Use of X-ray Mutagenesis to Increase Genetic Diversity of Zantedeschia aethiopica for Early Flowering, Improved Tolerance to Bacterial Soft Rot, and Higher Yield. Agronomy 2021, 11, 2537. https://doi.org/10.3390/agronomy11122537
Reznik N, Subedi BS, Weizman S, Friesem G, Carmi N, Yedidia I, Sharon-Cohen M. Use of X-ray Mutagenesis to Increase Genetic Diversity of Zantedeschia aethiopica for Early Flowering, Improved Tolerance to Bacterial Soft Rot, and Higher Yield. Agronomy. 2021; 11(12):2537. https://doi.org/10.3390/agronomy11122537
Chicago/Turabian StyleReznik, Noam, Bijaya Sharma Subedi, Shoshana Weizman, Gavriel Friesem, Nir Carmi, Iris Yedidia, and Michal Sharon-Cohen. 2021. "Use of X-ray Mutagenesis to Increase Genetic Diversity of Zantedeschia aethiopica for Early Flowering, Improved Tolerance to Bacterial Soft Rot, and Higher Yield" Agronomy 11, no. 12: 2537. https://doi.org/10.3390/agronomy11122537
APA StyleReznik, N., Subedi, B. S., Weizman, S., Friesem, G., Carmi, N., Yedidia, I., & Sharon-Cohen, M. (2021). Use of X-ray Mutagenesis to Increase Genetic Diversity of Zantedeschia aethiopica for Early Flowering, Improved Tolerance to Bacterial Soft Rot, and Higher Yield. Agronomy, 11(12), 2537. https://doi.org/10.3390/agronomy11122537