Wood-Based Compost Affects Soil Fertility and the Content of Available Forms of Nutrients in Vineyard and Field-Scale Agroecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Setup
2.3. Compost Analyses
2.4. Soil Sampling and Analyses
2.5. Bacterial Community Analysis by 16S DNA Sequences Metabarcoding
2.6. Statistics
3. Results and Discussion
3.1. Compost Physical, Chemical, and Biological Characteristics
3.2. Bacterial Community Composition of the Compost
3.3. Soil Fertility, Macro and Micronutrients in Organically and Conventionally Managed Soils
3.4. Principal Component Analysis and Cluster Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wiesmeier, M.; Poeplau, C.; Sierra, C.A.; Maier, H.; Frühauf, C.; Hübner, R.; Kühnel, A.; Spörlein, P.; Geuß, U.; Hangen, E.; et al. Projected loss of soil organic carbon in temperate agricultural soils in the 21st century: Effects of climate change and carbon input trends. Sci. Rep. 2016, 6, 32525. [Google Scholar] [CrossRef] [Green Version]
- İmamoglu, A.; Dengiz, O. Evaluation of soil quality index to assess the influence of soil degradation and desertification process in sub-arid terrestrial ecosystem. Rend. Lincei 2019, 30, 723–734. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. long-term effects of organic amendments on soil fertility: A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- De Hita, D.; Fuentes, M.; García, A.C.; Olaetxea, M.; Baigorri, R.; Zamarreño, A.M.; Berbara, R.; Garcia-Mina, J.M. Humic substances: A valuable agronomic tool for improving crop adaptation to saline water irrigation. Water Supply 2019, 19, 1735–1740. [Google Scholar] [CrossRef]
- Gattinger, A.; Muller, A.; Haeni, M.; Skinner, C.; Fliessbach, A.; Buchmann, N.; Mäder, P.; Stolze, M.; Smith, P.; Scialabba, N.E.H.; et al. Enhanced top soil carbon stocks under organic farming. Proc. Natl. Acad. Sci. USA 2012, 109, 18226–18231. [Google Scholar] [CrossRef] [Green Version]
- Niggli, U.; Fließbach, A.; Hepperly, P.; Scialabba, P. Low Greenhouse Gas Agriculture: Mitigation and Adaptation Potential of Sustainable Farming Systems; Rev. 2; FAO: Rome, Italy, 2009. [Google Scholar]
- El-Hage Scialabba, N.; Müller-Lindenlauf, M. Organic agriculture and climate change. Renew. Agric. Food Syst. 2010, 25, 158–169. [Google Scholar] [CrossRef] [Green Version]
- Leifeld, J.; Reiser, R.; Oberholzer, H.R. Consequences of conventional versus organic farming on soil carbon: Results from a 27-year filed experiment. Agron. J. 2009, 101, 1204–1218. [Google Scholar] [CrossRef]
- Järvan, M.; Vettik, R.; Adamson, A. Assessment of plant nutrients’ dynamics in organically and conventionally managed soils by means of different extraction methods. Acta Agric. Scand. Sec. B 2016. [Google Scholar] [CrossRef]
- Drinkwater, L.E.; Letourneau, D.K.; Workneh, F.; van Bruggen, A.H.C.; Shennan, C. Fundamental differences between conventional and organic tomato agroecosystems in California. Ecol. Appl. 1995, 5, 1098–1112. [Google Scholar] [CrossRef]
- Werner, M.W. Soil quality characteristics during conversion to organic orchard management. Appl. Soil Ecol. 1997, 5, 151–167. [Google Scholar] [CrossRef]
- Debiase, G.; Traversa, A.; Montemurro, F.; Mastrangelo, M.; Fiore, A.; Ventrella, G.; Brunetti, G. Minimum tillage and organic fertilization for the sustainable management of Brassica carinata A. (Braun) in the Mediterranean environment. Environ. Sci. Poll. Res. 2018, 25, 33556–33565. [Google Scholar] [CrossRef] [PubMed]
- Beesley, L.; Dickinson, N. Carbon and trace element mobility in an urban soil amended with green waste compost. J. Soils Sed. 2010, 10, 215–222. [Google Scholar] [CrossRef]
- Bonanomi, G.; D’Ascoli, R.; Scotti, R.; Gaglione, S.A.; Gonzalez Caceres, M.; Sultana, S.; Scelza, R.; Rao, M.A.; Zoina, A. Soil quality recovery and crop yield enhancement by combined application of compost and wood to vegetables grown under plastic tunnels. Agric. Ecosyst. Environ. 2014, 192, 1–7. [Google Scholar] [CrossRef]
- Massa, D.; Malorgio, F.; Lazzareschi, S.; Carmassi, G.; Prisa, D.; Burchi, G. Evaluation of two green composts for peat substitution in geranium (Pelargonium zonale L.) cultivation: Effect on plant growth, quality, nutrition, and photosynthesis. Sci. Hortic. 2018, 228, 213–221. [Google Scholar] [CrossRef]
- Kumar, M.; Ou, Y.L.; Lin, J.G. Co-composting of green waste and food waste at low C/N ratio. Waste Manag. 2010, 30, 602–609. [Google Scholar] [CrossRef] [PubMed]
- Brito, L.M.; Reis, M.; Mourão, I.; Coutinho, J. Use of Acacia waste compost as an alternative component for horticultural substrates. Commun. Soil Sci. Plant Anal. 2015, 46, 1814–1826. [Google Scholar] [CrossRef]
- Mugnai, S.; Pasquini, T.; Azzarello, E.; Pandolfi, C.; Mancusa, S. Evaluation of composted green waste in ornamental container-grown plants: Effects on growth and plant water relations. Compost Sci. Util. 2007, 15, 283–287. [Google Scholar] [CrossRef]
- Raviv, M. Composts in growing media: What’s new and what’s next? Acta Hortic. 2013, 982, 39–52. [Google Scholar] [CrossRef]
- World Reference Base for Soil Resources. International Soil Classification System for Naming Soil sand Creating Legends for Soil Maps; World Soil Resources Reports No. 106, Update 2015; FAO: Rome, Italy, 2014. [Google Scholar]
- Decreto Legislativo n. 75. In Riordino e Revisione Della Disciplina in Materia di Fertilizzanti, a Norma Dell’articolo 13 Della Legge 7 Luglio 2009, n. 88; Gazzetta Ufficiale n. 121, 26 maggio; Gazzetta Ufficiale: Rome, Italy, 2010.
- Viel, A.; Stellin, F.; Carlot, M.; Nadal, C.; Concheri, G.; Stevanato, P.; Suqartini, A.; Corich, V.; Giacomini, A. Characteristics of compost obtained from winemaking byproducts. Waste Biomass Valorization 2018, 9, 2021–2029. [Google Scholar] [CrossRef] [Green Version]
- Sweeney, R.A. Generic combustion method for determination of crude protein in feeds: Collaborative study. J. Assoc. Off. Anal. Chem. 1989, 72, 770–774. [Google Scholar] [CrossRef]
- Metodi di Analisi del Compost. In Manuali e Linee Guida; ANPA: Roma, Italy, 2001; ISBN 88–448-0258-9.
- Zucconi, F.; Pera, A.; Forte, M.; De Bertoldi, M. Evaluating toxicity in immature compost. Biocycle 1981, 22, 54–57. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods, Agronomy Monograph, 2nd ed.; Klute, A., Ed.; American Society of Agronomy/Soil Science Society of America: Madison, WI, USA, 1986; Volume 9, pp. 383–411. [Google Scholar]
- Olsen, S.L.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 403–427. [Google Scholar]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of DTPA soil test for Zn, Fe, Mn and Cu. Soil Sci. Soc. Am. J. 1978, 42, 421–442. [Google Scholar] [CrossRef]
- Treu, L.; Kougias, P.G.; de Diego-Díaz, B.; Campanaro, S.; Bassani, I.; Fernández-Rodríguez, J.; Angelidaki, I. Two-year microbial adaptation during hydrogen-mediated biogas upgrading process in a serial reactor configuration. Bioresour. Technol. 2018, 264, 140–147. [Google Scholar] [CrossRef]
- Morales-Corts, M.R.; Gómez-Sánchez, M.Á.; Pérez-Sánchez, R. Evaluation of green/pruning wastes compost and vermicompost, slumgum compost and their mixes as growing media for horticultural production. Sci. Hortic. 2014, 172, 155–160. [Google Scholar] [CrossRef]
- Wierzbowska, J.; Kovačik, P.; Sienkiewicz, S.; Krzebietke, S.; Bowszys, T. Determination of heavy metals and their availability to plants in soil fertilized with different waste substances. Environ. Monit. Assess. 2018, 190, 567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quilty, J.R.; Cattle, S.R. Use and understanding of organic amendments in Australian agriculture: A review. Soil Res. 2011, 49, 1–26. [Google Scholar] [CrossRef]
- Azim, K.; Soudi, B.; Boukhari, S.; Perissol, C.; Roussos, S.; Thami Alami, I. Composting parameters and compost quality: A literature review. Org. Agric. 2018, 8, 141–158. [Google Scholar] [CrossRef]
- Sæbø, A.; Ferrini, F. The use of compost in urban green areas—A review for practical application. Urban For. Urban Green. 2006, 4, 159–169. [Google Scholar] [CrossRef]
- Huang, G.; Wu, Q.; Wong, J.; Nagar, B. Transformation of organic matter during co-composting of pig manure with sawdust. Bioresour. Technol. 2006, 97, 1834–1842. [Google Scholar] [CrossRef] [PubMed]
- Ortega, M.C.; Moreno, M.T.; Ordovás, J.; Aguado, M.T. Behaviour of different horticultural species in phytotoxicity bioassays of bark substrates. Sci. Hortic. 1996, 66, 125–132. [Google Scholar] [CrossRef]
- Stackebrandt, E.; Rainey, F.A.; Ward-Rainey, N.L. Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int. J. Syst. Bacteriol. 1997, 47, 479–491. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Xu, X.; Zhu, L. Structure and function of the microbial consortia of activated sludge in typical municipal wastewater treatment plants in winter. Sci. Rep. 2017, 7, 17930. [Google Scholar] [CrossRef] [Green Version]
- McBride, M.J.; Liu, W.; Lu, X.; Zhu, Y.; Zhang, W. The Family Cytophagaceae. In The Prokaryotes—Other Major Lineages of Bacteria and the Archaea; Rosenberg, E., DeLong, E.F., Lory, S., Stackebrandt, E., Thompson, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 978-3-642-38953-5. [Google Scholar] [CrossRef]
- Tourna, M.; Stieglmeier, M.; Spang, A.; Könneke, M.; Schintlmeister, A.; Urich, T.; Engel, M.; Schloter, M.; Wagner, M.; Richter, A.; et al. Nitrososphaera viennensis, an ammonia oxidizing archaeon from soil. Proc. Natl. Acad. Sci. USA 2011, 108, 8420–8425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, J.; LaPara, T.; Behrens, S. Composition and dynamics of the activated sludge microbiome during seasonal nitrification failure. Sci. Rep. 2019, 9, 4565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, V.; Squartini, A.; Masi, A.; Sarkar, A.; Singh, R.P. Metabarcoding analysis of the bacterial succession during vermicomposting of municipal solid waste employing the earthworm Eisenia fetida. Sci. Total Environ. 2021, 766, 144389. [Google Scholar] [CrossRef]
- Scotti, R.; D’Ascoli, R.; Gonzalez Carceres, M.; Bonanomi, G.; Sultana, S.; Cozzolino, L.; Scelza, R.; Zoina, A.; Rao, M.A. Combined use of compost and wood scraps to increase carbon stock and improve soil quality in intensive farming systems. Eur. J. Soil Sci. 2015, 66, 463–475. [Google Scholar] [CrossRef]
- Beesley, L. Respiration (CO2 flux) from urban and peri-urban soils amended with green waste compost. Geoderma 2014, 223–225, 68–72. [Google Scholar] [CrossRef]
- Berg, B.; McClaugherty, C. Plant Litter: Decomposition, Humus Formation and Carbon Sequestration, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Clough, A.; Skjemstad, J.O. Physical and chemical protection of soil organic carbon in three agricultural soils with different contents of calcium carbonate. Aust. J. Soil Res. 2000, 38, 1005–1016. [Google Scholar] [CrossRef]
- Chien, S.H.; Prochnow, L.I.; Tu, S.; Snyder, C.S. Agronomic and environmental aspects of phosphate fertilizers varying in source and solubility: An update review. Nutr. Cycl. Agroecosyst. 2011, 89, 229–255. [Google Scholar] [CrossRef]
- Delgado, A.; Madrid, A.; Kassem, S.; Andreu, L.; del Campillo, M.C. Phosphorus fertilizer recovery from calcareous soils amended with humic and fulvic acids. Plant Soil 2002, 245, 277–286. [Google Scholar] [CrossRef]
- Riggle, J.; von Wandruszka, R. Binding of inorganic phosphate to dissolved metal humates. Talanta 2005, 66, 372–375. [Google Scholar] [CrossRef] [PubMed]
- Pizzeghello, D.; Berti, A.; Nardi, S.; Morari, F. Relationship between soil test phosphorus and phosphorus release to solution in three soils after long-term mineral and manure application. Agric. Ecosyst. Environ. 2016, 233, 214–223. [Google Scholar] [CrossRef]
- Pizzeghello, D.; Schiavon, M.; Francioso, O.; Dalla Vecchia, F.; Ertani, A.; Nardi, S. Bioactivity of size-fractionated and unfractionated humic substances from two forest soils and comparative effects on N and S metabolism, nutrition, and root anatomy of Allium sativum L. Front. Plant Sci. 2020, 11, 1203. [Google Scholar] [CrossRef]
- Regulation EC 834/2007. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32007R0834 (accessed on 8 March 2021).
- Regulation EC 889/2008. Available online: https://eur-lex.europa.eu/eli/reg/2008/889/oj (accessed on 8 March 2021).
- Micó, C.; Peris, M.; Recatalá, L.; Sánchez, J. Baseline values for heavy metals in agricultural soils in an European Mediterranean region. Sci. Total Environ. 2007, 378, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Maqueda, C.; Herencia, J.F.; Ruiz, J.C.; Hidalgo, M.F. Organic and inorganic fertilization effects on DTPA-extractable Fe, Cu, Mn and Zn, and their concentration in the edible portion of crops. J. Agric. Sci. 2011, 149, 461–472. [Google Scholar] [CrossRef] [Green Version]
- Nardi, S.; Tosoni, M.; Pizzeghello, D.; Provenzano, M.R.; Cilenti, A.; Sturaro, A.; Rella, R.; Vianello, A. Chemical characteristics and biological activity of organic substances extracted from soils by root exudates. Soil Sci. Soc. Am. J. 2005, 69, 2012–2019. [Google Scholar] [CrossRef] [Green Version]
- Melero, S.; Porras, J.C.R.; Herencia, J.F.; Medejon, E. Chemical and biochemical properties in a silty loam soil under conventional and organic management. Soil Tillage Res. 2006, 90, 162–170. [Google Scholar] [CrossRef]
Parameter | Unit | Value | Limit |
---|---|---|---|
Moisture * | g kg−1 DM | 444 ± 11 | ≤500 |
Reaction * | pH | 6.7 ± 0.1 | 6–8.5 |
Electric conductibility (EC) | mS cm−1 | 0.89 ± 0.04 | |
Salinity *** | meq 100 g−1 DM | 5.09 ± 0.5 | |
Organic carbon (OC) * | g kg−1 DM | 340 ± 31 | ≥200 |
Carbonates | g kg−1 DM | 143 ± 12 | |
Total nitrogen (TN) *** | g kg−1 DM | 31 ± 0.5 | |
Organic N * | %TN | 98 ± 2.0 | >80 |
C:N | 10.96 | ≤50 * | |
Humic carbon (HC) | g kg−1 DM | 180 ± 3.6 | >25 * |
HA:FA | 6.5 | ||
Phosphorous (P) *** | mg kg−1 DM | 3100 ± 55 | |
Potassium (K) *** | mg kg−1 DM | 13,000 ± 100 | |
Calcium (Ca) | mg kg−1 DM | 26,700 ± 1400 | |
Magnesium (Mg) | mg kg−1 DM | 9800 ± 300 | |
Sulfur (S) | mg kg−1 DM | 4600 ± 100 | |
Iron (Fe) | mg kg−1 DM | 13,370 ± 1250 | |
Sodium (Na) ** | mg kg−1 DM | 3600 ± 100 | |
Cupper (Cu) * | mg kg−1 DM | 45 ± 2 | ≤230 |
Zinc (Zn) * | mg kg−1 DM | 104.5 ± 7.5 | ≤500 |
Boron (B) | mg kg−1 DM | 54.1 ± 2.3 | |
Manganese (Mn) | mg kg−1 DM | 832 ± 10 | |
Molybdenum (Mo) | mg kg−1 DM | 1.71 ± 0.11 | <2 † |
Cadmium (Cd) * | mg kg−1 DM | 0.80 ± 0.01 | ≤1.5 |
Chromium | mg kg−1 DM | 13 | |
Chromium VI+ * | mg kg−1 DM | 0.053 ± 0.03 | ≤0.5 |
Nichel (Ni) * | mg kg−1 DM | 5.8 ± 0.7 | ≤100 |
Lead (Pb) * | mg kg−1 DM | 12 ± 0.3 | ≤140 |
Cobalt (Co) | mg kg−1 DM | 4.82 ± 0.10 | |
Salmonella | Mpn | Absent | Absent |
Escherichia coli | UFC g−1 | Absent | <1000 |
Germination index (GI) * | % | 130 | >60 |
Plastic glass materials * | g kg−1 DM | 0.1Absent | <5 |
Inert lithoids * | g kg−1 DM | 0.1 | <50 |
Parameter | Vineyard | Untreated | Anova | |
---|---|---|---|---|
Organic | Conventional | |||
pH | 8.0 ± 0.1 | 7.7 ± 0.1 | 7.7 ± 0.2 | n.s. |
EC (mS cm−1) | 0.6 ± 0.1 a | 0.4 ± 0.1 b | 0.2 ± 0.1 c | * |
Sand (g kg−1) | 352 ± 67 | 304 ± 68 | 280 ± 52 | n.s. |
Silt (g kg−1) | 160 ± 14 | 188 ± 10 | 206 ± 11 | n.s. |
Clay (g kg−1) | 488 ± 76 | 508 ± 75 | 513 ± 41 | n.s. |
Total C (g kg−1) | 55.7 ± 22.4 | 56.7 ± 28.6 | 48.4 ± 28.4 | n.s. |
Organic C (g kg−1) | 32.8 ± 9.4 a | 13.6 ± 2.7 b | 10.9 ± 0.6 b | *** |
NTOT (g kg−1) | 3.4 ± 0.9 a | 3.1 ± 0.1 a | 1.7 ± 0.3 b | ** |
C:N | 16.3 b | 18.3 b | 28.4 a | ** |
POlsen (mg kg−1) | 164.7 ± 45.5 a | 27.5 ± 13.6 b | 51.2 ± 13.1 b | *** |
S (mg kg−1) | 571 ± 15 a | 299 ± 35 c | 438 ± 12 b | ** |
CaDTPA (mg kg−1) | 21.81 ± 2.6 a | 5.63 ± 0.3 b | 1.53 ± 0.4 c | *** |
MgDTPA (mg kg−1) | 1.11 ± 0.22 a | 0.90 ± 0.1 b | 0.16 ± 0.04 b | *** |
KDTPA (mg kg−1) | 1.92 ± 0.05 a | 0.56 ± 0.2 b | 0.48 ± 0.08 b | *** |
NaDTPA (mg kg−1) | 0.45 ± 0.05 a | 0.27 ± 0.06 b | 0.21 ± 0.03 b | *** |
FeDTPA (mg kg−1) | 22.7 ± 0.6 a | 10.7 ± 2.2 b | 10.6 ± 2.5 b | *** |
MnDTPA (mg kg−1) | 10.5 ± 3.0 a | 5.0 ± 0.9 b | 4.1 ± 2.6 a | ** |
CuDTPA (mg kg−1) | 36.4 ± 14.6 a | 4.6 ± 1.5 c | 2.7 ± 0.5 b | ** |
ZnDTPA (mg kg−1) | 11.0 ± 1.4 a | 6.1 ± 0.8 b | 2.1 ± 0.5 b | * |
BDTPA (mg kg−1) | 2.9 ± 0.5 a | 1.2 ± 0.5 b | 0.7 ± 0.2 b | *** |
NiDTPA (mg kg−1) | 0.4 ± 0.1 | 0.3 ± 0.1 | 0.6 ± 0.2 | n.s. |
PbDTPA (mg kg−1) | 2.8 ± 0.4 b | 2.9 ± 1.4 b | 1.2 ± 0.8 a | *** |
CoDTPA (mg kg−1) | <0.1 | <0.1 | <0.1 | |
CrDTPA (mg kg−1) | <0.1 | <0.1 | <0.1 |
Parameter | Field-Scale | Untreated | Anova | |
---|---|---|---|---|
Organic | Conventional | |||
pH | 8.0 ± 0.1 | 7.7 ± 0.1 | 7.7 ± 0.2 | n.s. |
EC (mS cm−1) | 1.5 ± 0.2 a | 1.1 ± 0.1 b | 0.2 ± 0.1 c | * |
Sand (g kg−1) | 360 ± 69 | 350 ± 67 | 280 ± 52 | n.s. |
Silt (g kg−1) | 176 ± 32 | 200 ± 28 | 206 ± 11 | n.s. |
Clay (g kg−1) | 464 ± 51 | 450 ± 42 | 513 ± 41 | n.s. |
Total C (g kg−1) | 54.0 ± 19.6 | 66.2 ± 3.2 | 48.4 ± 28.4 | n.s. |
Organic C (g kg−1) | 35.1 ± 2.3 a | 14.0 ± 0.6 b | 10.9 ± 0.6c | *** |
NTOT (g kg−1) | 3.1 ± 0.5 | 3.4 ± 0.1 | 1.7 ± 0.3 | ** |
C:N | 17.4b | 19.4b | 28.4a | * |
POlsen (mg kg−1) | 121.6 ± 9.8a | 62.7 ± 13.4b | 51.2 ± 13.1b | *** |
S (mg kg−1) | 560 ± 16a | 418 ± 22b | 438 ± 22b | ** |
CaDTPA (mg kg−1) | 18.51 ± 2.11 a | 10.14 ± 0.6 b | 1.53 ± 0.4 c | ** |
MgDTPA (mg kg−1) | 0.86 ± 0.15 a | 0.19 ± 0.15 b | 0.16 ± 0.04 b | ** |
KDTPA (mg kg−1) | 0.82 ± 0.12 a | 0.25 ± 0.04 c | 0.48 ± 0.08 b | *** |
NaDTPA (mg kg−1) | 0.63 ± 0.14 a | 0.37 ± 0.06 b | 0.21 ± 0.03 b | ** |
FeDTPA (mg kg−1) | 22.5 ± 0.5 a | 7.5 ± 1.5 c | 10.6 ± 2.5 b | *** |
MnDTPA (mg kg−1) | 19.8 ± 1.6 a | 5.5 ± 4.4 b | 4.1 ± 2.6 b | ** |
CuDTPA (mg kg−1) | 15.5 ± 1.6 b | 5.1 ± 1.8 b | 2.7 ± 0.5 a | ** |
ZnDTPA (mg kg−1) | 6.9 ± 3.0 a | 3.7 ± 1.2 b | 2.1 ± 0.5 a | ** |
BDTPA (mg kg−1) | 3.4 ± 0.6 a | 2 ± 0.8 a | 0.7 ± 0.2 b | ** |
NiDTPA (mg kg−1) | 1.2 ± 0.5 | 1.1 ± 0.5 | 0.6 ± 0.2 | n.s. |
PbDTPA (mg kg−1) | 3.6 ± 0.8 b | 6.4 ± 0.6 a | 1.2 ± 0.8 a | * |
CoDTPA (mg kg−1) | <0.1 | <0.1 | <0.1 | |
CrDTPA (mg kg−1) | <0.1 | <0.1 | <0.1 |
Principal Components | PC1 | PC2 | PC3 |
---|---|---|---|
Eigenvalue | 9.2 | 3.7 | 2.9 |
Variance (%) | 46 | 18 | 15 |
Cumulative variance (%) | 46 | 64 | 79 |
Eigenvectors | |||
CaDTPA | 0.97 | 0.01 | 0.17 |
BDTPA | 0.96 | −0.12 | 0.08 |
OC | 0.96 | 0.06 | 0.15 |
MgDTPA | 0.95 | 0.06 | 0.23 |
FeDTPA | −0.95 | −0.04 | −0.05 |
POlsen | 0.92 | 0.19 | 0.17 |
NaDTPA | 0.89 | 0.14 | −0.05 |
KDTPA | 0.88 | −0.10 | 0.18 |
MoDTPA | −0.82 | 0.44 | −0.07 |
EC | −0.73 | 0.24 | 0.38 |
PbDTPA | −0.69 | 0.19 | 0.57 |
ZnDTPA | 0.63 | 0.38 | 0.23 |
CT | −0.03 | 0.80 | −0.26 |
Sand | 0.22 | 0.80 | −0.29 |
Clay | −0.10 | −0.79 | 0.30 |
NTOT | −0.06 | 0.75 | 0.34 |
MnDTPA | −0.36 | 0.68 | 0.01 |
NiDTPA | 0.26 | 0.51 | 0.45 |
CuDTPA | −0.11 | 0.03 | 0.79 |
pH | 0.48 | 0.18 | −0.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pizzeghello, D.; Bellin, L.; Nardi, S.; Francioso, O.; Squartini, A.; Concheri, G. Wood-Based Compost Affects Soil Fertility and the Content of Available Forms of Nutrients in Vineyard and Field-Scale Agroecosystems. Agronomy 2021, 11, 518. https://doi.org/10.3390/agronomy11030518
Pizzeghello D, Bellin L, Nardi S, Francioso O, Squartini A, Concheri G. Wood-Based Compost Affects Soil Fertility and the Content of Available Forms of Nutrients in Vineyard and Field-Scale Agroecosystems. Agronomy. 2021; 11(3):518. https://doi.org/10.3390/agronomy11030518
Chicago/Turabian StylePizzeghello, Diego, Livio Bellin, Serenella Nardi, Ornella Francioso, Andrea Squartini, and Giuseppe Concheri. 2021. "Wood-Based Compost Affects Soil Fertility and the Content of Available Forms of Nutrients in Vineyard and Field-Scale Agroecosystems" Agronomy 11, no. 3: 518. https://doi.org/10.3390/agronomy11030518
APA StylePizzeghello, D., Bellin, L., Nardi, S., Francioso, O., Squartini, A., & Concheri, G. (2021). Wood-Based Compost Affects Soil Fertility and the Content of Available Forms of Nutrients in Vineyard and Field-Scale Agroecosystems. Agronomy, 11(3), 518. https://doi.org/10.3390/agronomy11030518