Optimal Nitrogen Fertilization to Reach the Maximum Grain and Stover Yields of Maize (Zea mays L.): Tendency Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Biological Material
2.3. Treatments and Crop Management
2.4. Evaluated Variables
2.5. Statistical Analysis
2.5.1. Experimental Design and Variance Analysis (ANOVA)
2.5.2. Means Comparison
2.5.3. Pearson’s Correlation, Trend Analysis, and Regression Models
2.5.4. Selection and Validity of the Models of the Categorical and Continuous Variables
3. Results
3.1. Inflorescences and Humid Base Yields
3.2. Dry Matter Yields
3.3. Linear, Quadratic, and Cubic Models
3.4. Pearson’s Correlations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Anim. Prod. Sci. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weiss, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [Green Version]
- Martins, M.R.; Jantalia, C.P.; Polidoro, J.C.; Batista, J.N.; Alves, B.J.R.; Boddey, R.M.; Urquiaga, S.U. Nitrogeus oxide and ammonia emissions from N fertilization of maize crop under no-till in a Cerrado soil. Soil Tillage Res. 2015, 151, 75–81. [Google Scholar] [CrossRef]
- Medina-Cuéllar, S.E.; Tirado-González, D.N.; Portillo-Vázquez, M.; Tirado-Estrada, G.; Medina-Flores, C.A.; Venegas-Venegas, J.A.; Ramos-Parra, M. Multifractal detrended fluctuation analysis to characterize honey bee production in semi-arid ecosystems. Interciencia 2018, 43, 498–504. [Google Scholar]
- Medina-Cuéllar, S.E.; Tirado-González, D.N.; Portillo-Vázquez, M.; López-Santiago, M.A.; Franco-Olivares, V.H. Environmental implications for the production of honey from mesquite (Prosopis laevigata) in semi-arid ecosystems. J. Apic. Res. 2018, 57, 1–9. [Google Scholar] [CrossRef]
- Ibarola-Rivas, M.J.; Nonhebel, S. Does Mexico have enough land to fulfill future needs for the consumption of animal products? Agriculture 2019, 9, 211. [Google Scholar] [CrossRef] [Green Version]
- FAO. FAOSTAT. Online Statistical Database: Food Balance. 2015. Available online: http://faostat3.fao.org/download/FB/*/E (accessed on 10 January 2021).
- Liang, M.; Wang, G.; Liang, W.; Shi, P.; Dang, J.; Sui, P.; Hu, C. Yield and quality of maize stover: Variation among cultivars and effects of N fertilization. J. Integr. Agric. 2015, 14, 1581–1587. [Google Scholar] [CrossRef] [Green Version]
- Khan, N.A.; Yu, P.; Ali, M.; Cone, J.W.; Hendricks, W.H. Nutritive value of maize silage in relation to dairy cow performance and milk quality. J. Sci. Food Agric. 2015, 95, 238–252. [Google Scholar] [CrossRef]
- Tirado-Estrada, G.; Mejía-Haro, I.; Cruz-Vázquez, C.R.; Mendoza-Martínez, G.D.; Tirado-González, D.N. Degradación in situ y patrones de fermentación del rastrojo de maíz (Zea Mays L.) tratado con enzimas exógenas en vacas Holstein. Interciencia 2018, 40, 716–721. [Google Scholar]
- Su, W.; Ahmad, S.; Ahmad, I.; Han, Q. Nitrogen fertilization affects maíz grain yield through regulatin nitrogen uptake, radiation and water use efficiency, photosynthesis, and root distribution. PeerJ 2020, 16, e10291. [Google Scholar] [CrossRef]
- Khan, N.W.; Ijaz, N.K.; Khan, A. Integration of Nitrogen fertilizer and herbicides for efficient weed management in maize crop. Sarhad J. Agric. 2012, 28, 457–463. [Google Scholar]
- Kandil, E.F.E. Response of some maize hybrids (Zea mays L.) to different levels of nitrogenous fertilization. J. App. Sci. Res. 2013, 9, 1902–1908. [Google Scholar]
- Staton, D.A.; Grombacher, W.; Pinnisch, R.; Mason, H.; Spaner, D. Hybrid and population density affect yield and quality of silage maize in central Alberta. Can. J. Plant Sci. 2007, 87, 867–871. [Google Scholar] [CrossRef]
- Oba, M.; Allen, M. Evaluation of the importance of the digestibility of NDF from forage: Effects on DMI and milk yield. J. Dairy Sci. 1999, 82, 589–596. [Google Scholar] [CrossRef]
- Oba, M.; Allen, M. Effects of Brown midrib 3 mutation in corn silage on productivity of dairy cows fed two concentrations of dietary neutral detergent fiber: 1. Feeding behavior and nutrient utilization. J. Dairy Sci. 2000, 83, 1333–1341. [Google Scholar] [CrossRef]
- Oba, M.; Allen, M. Effects of Brown midrib 3 mutation in corn silage on productivity of dairy cows fed two concentrations of dietary neutral detergent fiber: 2. Digestibility and microbial efficiency. J. Dairy Sci. 2000, 83, 1350–1358. [Google Scholar] [CrossRef]
- Tirado-Estrada, G.; Tirado-González, D.N.; Medina-Cuéllar, S.E.; Miranda-Romero, L.A.; González-Reyes, M.; Sánchez-Olmos, L.A.; Castillo-Zúñiga, I. Global effects of maximizing the forage in production and quality of bovine milk and meat. A meta-analysis. Interciencia 2020, 45, 261–268. [Google Scholar]
- Oktem, A.; Oktem, A.G.; Emeklier, H.Y. Effect of Nitrogen on yield and some quality parameters of sweet corn. Commun. Soil Sci. Plant Anal. 2010, 41, 832–847. [Google Scholar] [CrossRef]
- Wang, X.; Xing, Y. Effects of mulching and nitrogen on soil nitrate-N distribution, leaching and nitrogen use efficiency of maize (Zea mays L.). PLoS ONE 2016, 11, e0161612. [Google Scholar]
- Zhu, Q.; Schmidt, J.P.; Bryant, R.B. Maize (Zea Mays L.) yields response to nitrogen as influenced by spatio-temporal variations of soil-water-topography dynamics. Soil Tillage Res. 2014, 146, 174–183. [Google Scholar] [CrossRef]
- Portillo-Vázquez, M.; Pérez-Soto, F.; Figueroa-Hernández, E.; Godínez-Montoya, L.; Pérez-Soto, M.T.; Barrios Puente, G. La función de producción cúbica, su aplicación en la agricultura. Rev. Mex. Agronegocios 2014, 2014, 11–24. [Google Scholar]
- Wang, X.; Li, Z.; Xing, Y. Effects of mulching and nitrogen on soil temperature, water content, nitrate-N content, and maize yield in the Loess Plateau of China. Agric. Water Manag. 2015, 161, 53–64. [Google Scholar]
- Wang, X.; Wang, N.; Xing, Y.; Yun, J.; Zhang, H. Effects of plastic mulching and basal nitrogen application depth on nitrogen use efficiency and yield maize. Front. Plant Sci. 2018, 9, e1446. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.T.; Dalpasquale, V.A.; Scapim, C.A.; Braccini, A.L.; Krzyzanowski, F.A. Milk line as an indicator of the harvesting time of three hybrid seeds of corn (Zea mays L.). Braz. Arch. Biol. Technol. 2005, 48, 161–170. [Google Scholar] [CrossRef]
- SAS. Statistical Analysis System SAS/STAT User’s Guide. (Release 9.3); SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Software. Diseños Experimentales. Universidad Autónoma de Nuevo León: San Nicolás de los Garza, Mexico, 2011. Available online: http://reyesestadistica.blogspot.com/2011/07/software-para-analisis-estadistico-de.html (accessed on 10 November 2020).
- FAO. FAOSTAT. Online Statistical Database: Production. 2015. Available online: http://faostat3.fao.org/download/Q/QC/E (accessed on 10 January 2021).
- Vigouroux, Y.; McMullen, M.; Hittinger, C.T.; Houchins, K.; Schulz, L.; Kresovich, S.; Mtsuoka, Y.; Doebley, J. Indentifying genes of agronomic importance in maize by screening microsatellites for evidence of selection during domestication. Proc. Natl. Acad. Sci. USA 2002, 99, 9650–9655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Núñez-Hernández, G.; Faz-Contreras, R.; González-Castañeda, F.; Peña-Ramos, A. Madurez de híbridos de maíz a la cosecha para mejorar la producción y calidad del forraje. Téc. Pecu. Méx. 2005, 43, 69–78. [Google Scholar]
- Peña, R.; González, C.; Núñez, H.; Tovar, G.; Preciado, O.; Terrón, I.; Gómez, M.; Ortega, C. Stability of yield and forage quality of corn hybrids. Rev. Fitotec. Mex. 2006, 29, 109–114. [Google Scholar]
- Yang, Z.; Zhai, W. Identification and antioxidant activity of anthocyanins extracted from the seed and cob of purple corn (Zea mays L.). Innov. Food Sci. Emerg. Tech. 2010, 11, 169–176. [Google Scholar] [CrossRef]
- Yang, Z.; Zhai, W. Optimization of microwave-assisted extraction of anthocyanins from purple corn (Zea mays L.) cob and identification with HPLC-MS. Innov. Food Sci. Emerg. Tech. 2010, 11, 470–476. [Google Scholar] [CrossRef]
- Jiménez-Leyva, D.; Romo-Rubio, J.; Flores-Aguirre, L.; Ortiz-López, B.; Barajas-Cruz, R. Edad de corte en la composición química del ensilado de maíz blanco Asgrow 7573. Abanico Vet. 2016, 6, 13–23. [Google Scholar]
- Sánchez, H.M.A.; Aguilar, M.C.U.; Valenzuela, J.N.; Juaquín, T.B.M.; Sánchez, H.C.; Jiménez, R.M.C.; Villanueva, V.C. Rendimiento de maíces del trópico húmedo de México en respuesta a densidades de siembra. Rev. Mex. Cienc. Pecu. 2013, 4, 271–288. [Google Scholar]
- Peña-Ramos, A.; González-Castañeda, F.; Núñez-Hernández, G.; Preciado-Ortíz, R.; Terrón-Ibarra, A.; Luna-Flores, M. H-376, híbrido de maíz para producción de forraje y grano en el bajío y la región Norte-Centro de México. Rev. Fitotec. Mex. 2008, 31, 85–87. [Google Scholar]
- Sierra-Macías, M.; Becerra-Leor, E.N.; Palafox-Caballero, A.; Rodríguez-Montalvo, F.; Espinosa-Calderón, A.; Valdivia-Bernal, R. Genotipos de maíz (Zea mays L.) tropical con buen rendimiento y tolerancia a la enfermedad del “achaparramiento” en la región del golfo de México. Trop. Subtrop. Agroecosys. 2010, 12, 485–493. [Google Scholar]
- Dawadi, D.R.; Sah, S.K. Growth and yield of hybrid maize (Zea mays L.) in relation to planting density and Nitrogen levels during winter season in Nepal. Trop. Agric. Res. 2012, 23, 218–227. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Gul, S.; Ahmad, I. Effects of water stress on growth and photosynthetic pigments of corn (Zea mays L.) cultivars. Int. J. Agric. Biol. 2004, 6, 651–655. [Google Scholar]
- Zulfiqar, U.; Ishfaq, M.; Umar, Y.M.; Ali, N.; Ahmad, M.; Ullah, A.; Hameed, W. Performance of maize yield and quality under different irrigation regimes and nitrogen levels. J. Glob. Innov. Soc. Sci. 2017, 5, 159–164. [Google Scholar]
- Rivera-Hernández, B.; Carrillo-Ávila, E.; Obrador-Olán, J.J.; Juárez-López, J.F.; Aceves-Navarro, L.A.; García-López, E. Soil moisture tensión and phosphate fertilization on yield components of a A-7573 sweet corn (Zea mays L.) hybrid, in Campeche, Mexico. Agric. Water Manag. 2009, 96, 1285–1292. [Google Scholar] [CrossRef]
- Sánchez-Hernández, M.A.; Aguilar-Martínez, C.U.; Valenzuela-Jiménez, N.; Sánchez-Hernández, C.; Jiménez-Rojas, M.C.; Villanueva-Verduzco, C. Densidad de siembra y crecimiento de maíces forrajeros. Agron. Mesoam. 2011, 22, 281–295. [Google Scholar] [CrossRef] [Green Version]
- El-Murtada, M.; Amin, H. Effect of different nitrogen sources on growth, yield and quality of fodder maize (Zea mays L.). J. Saudi Soc. Agric. Sci. 2011, 10, 17–23. [Google Scholar]
- Khan, N.A.; Tewoldenbrhan, T.A.; Zom, R.L.G.; Hendriks, W.H. Effect of corn silage harvest maturity and concentrate type on milk fatty acid composition of dairy cows. J. Dairy Sci. 2012, 95, 1472–1483. [Google Scholar] [CrossRef] [PubMed]
- Hassant, F.; Gervais, R.; Julien, C.; Massé, D.I.; Lettat, A.; Chouinard, P.Y.; Petit, H.V.; Benchar, C. Replacing alfalfa silage with corn silage in dairy cow diets: Effects on enteric methane production, ruminal fermentation, digestion, N balance, and milk production. J. Dairy Sci. 2013, 96, 4553–4567. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.G.; Casler, M.D. Maize stem tissues: Cell wall concentration and composition during development. Crop Sci. 2006, 46, 1793–1800. [Google Scholar] [CrossRef]
- Jung, H.G.; Casler, M.D. Maize stem tissues: Impact of development on cell wall degradability. Crop Sci. 2006, 46, 1801–1809. [Google Scholar] [CrossRef]
N-Doses | N (kg/ha) | Urea (kg/ha) | Urea (g)/Plant |
---|---|---|---|
Control | 0 | 0 | 0 |
N-100 | 97 | 210 | 2.50 |
N-145 | 145 | 315 | 3.75 |
N-190 | 193 | 420 | 5.00 |
N-240 | 241 | 525 | 6.25 |
N-290 | 290 | 630 | 7.50 |
N-Doses | Masculine Inflorescences (d) | Feminine Inflorescences (d) |
---|---|---|
Control | 64.50 | 65.50 |
N-100 | 64.50 | 66.00 |
N-145 | 63.75 | 64.50 |
N-190 | 65.50 | 66.75 |
N-240 | 63.75 | 64.50 |
N-290 | 64.50 | 65.75 |
R2 | 0.67 | 0.71 |
VC (%) | 1.99 | 3.85 |
p-value | ||
N-Dose | 0.437 | 0.783 |
Trends | ||
Lineal | 0.841 | <0.0001 |
Quadratic | <0.0001 | <0.0001 |
Cubic | <0.0001 | <0.0001 |
N-Doses | C/Plant | SHB | FHB | CHB | GHB | C:F ratio | G:F Ratio | C:S Ratio |
---|---|---|---|---|---|---|---|---|
Control | 1.04 | 81.55ab | 112.28b | 30.78 | 22.51ab | 0.28ab | 0.20cd | 0.39ab |
N-100 | 1.07 | 79.37cd | 111.66e | 29.88 | 22.43ab | 0.27ab | 0.20bcd | 0.37ab |
N-145 | 1.01 | 84.31a | 115.47a | 29.46 | 21.61b | 0.27b | 0.19d | 0.36b |
N-190 | 1.04 | 81.29bc | 111.08c | 30.78 | 24.01a | 0.28ab | 0.22a | 0.39ab |
N-240 | 1.03 | 80.52c | 109.3d | 31.46 | 23.45a | 0.29a | 0.21abc | 0.40a |
N-290 | 1.00 | 77.45d | 108.13f | 31.11 | 23.79a | 0.29a | 0.21abc | 0.40a |
R2 | 0.45 | 0.96 | 0.99 | 0.64 | 0.63 | 0.37 | 0.42 | 0.35 |
VC (%) | 14.14 | 3.95 | 10.65 | 10.99 | 11.74 | 9.93 | 10.7 | 13.93 |
p-value | ||||||||
N-Doses | 0.59 | <0.0001 | <0.0001 | 0.261 | <0.0001 | 0.01 | 0.002 | 0.01 |
LSD (0.05) = | 0.11 | 2.01 | 1.98 | 2.01 | 0.86 | 0.017 | 0.014 | 0.033 |
Trends | ||||||||
Lineal | <0.0001 | 0.55 | 0.695 | <0.0001 | 0.012 | 0.013 | <0.0001 | <0.0001 |
Quadratic | 0.535 | <0.0001 | <0.0001 | <0.0001 | 0.609 | 0.244 | 0.05 | 0.384 |
Cubic | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.189 | 0.55 | 0.03 | 0.421 |
N-Doses | FDM | SDM | CDM | GDM | C:F Ratio | G:F Ratio | C:S Ratio |
---|---|---|---|---|---|---|---|
Control | 30.65b | 18.51ab | 12.31b | 9.00c | 0.40bc | 0.30b | 0.68bc |
N-100 | 31.04b | 18.85ab | 12.69ab | 9.56b | 0.40bc | 0.30b | 0.68bc |
N-145 | 30.24b | 18.78ab | 12.13b | 8.90c | 0.38c | 0.29b | 0.63c |
N-190 | 29.78b | 16.76c | 13.12a | 10.26a | 0.44a | 0.35a | 0.81a |
N-240 | 32.17a | 19.68a | 12.33b | 9.17bc | 0.39bc | 0.29b | 0.66bc |
N-290 | 29.86b | 17.54bc | 12.30b | 9.40bc | 0.42ab | 0.33ab | 0.74ab |
R2 | 0.76 | 0.62 | 0.77 | 0.7 | 0.3 | 0.29 | 0.29 |
VC (%) | 8.83 | 14.03 | 10.56 | 12.95 | 12.76 | 14.5 | 20.91 |
p-value | |||||||
N-Doses | 0.005 | 0.001 | 0.01 | 0.001 | 0.006 | 0.0001 | 0.003 |
LSD (0.05) = | 1.42 | 1.36 | 0.7 | 0.65 | 0.31 | 0.03 | 0.09 |
Trends | |||||||
Lineal | 0.589 | <0.0001 | 0.677 | 0.096 | 0.58 | 0.32 | 0.04 |
Quadratic | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Cubic | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Variable (Yi) | Trend | p-Value | R2 | |||
---|---|---|---|---|---|---|
Linear: Yi = β0 + β1Xi + εi | ||||||
β0 | β1 | |||||
C/plant | 1.13 | −0.0006 | 0.09 | 0.10 | ||
FHB | 113.47 | −0.012 | 0.004 | 0.26 | ||
CHB | 30.48 | 0.001 | 0.03 | 0.17 | ||
GHB | 22.38 | 0.004 | 0.74 | 0.05 | ||
SHB | 82.99 | −0.013 | 0.004 | 0.26 | ||
G:F ratio HB | 0.197 | 0.00007 | 0.05 | 0.20 | ||
C:S ratio HB | 0.37 | 0.0001 | 0.07 | 0.11 | ||
C:F ratio HB | 0.27 | 0.00005 | 0.07 | 0.12 | ||
CDM | 12.42 | 0.0007 | 0.0003 | 0.38 | ||
GDM | 9.13 | 0.002 | 0.007 | 0.24 | ||
SDM | 18.99 | −0.004 | 0.35 | 0.03 | ||
G:F ratio DM | 0.29 | 0.0001 | 0.01 | 0.22 | ||
C:F ratio DM | 0.4 | 0.00006 | 0.09 | 0.10 | ||
C:S ratio DM | 0.67 | 0.0002 | 0.08 | 0.11 | ||
Quadratic: Yi = β0 + β1Xi + β2Xi2 + εi | ||||||
β0 | β1 | β2 | ||||
C/plant | 1.19 | −0.002 | 0.000005 | 0.09 | 0.16 | |
FHB | 112.7 | 0.007 | 0.00006 | 0.006 | 0.31 | |
CHB | 30.87 | −0.008 | 0.00003 | 0.07 | 0.18 | |
GHB | 22.57 | −0.0008 | 0.00002 | 0.94 | 0.05 | |
SHB | 81.86 | 0.015 | −0.0001 | 0.003 | 0.35 | |
G:F ratio HB | 0.2 | −0.00005 | 0.0000004 | 0.0003 | 0.46 | |
C:S ratio HB | 0.38 | −0.0002 | 0.000001 | 0.001 | 0.39 | |
C:F ratio HB | 0.28 | −0.0001 | 0.0000005 | 0.001 | 0.40 | |
CDM | 12.39 | 0.001 | −0.000002 | 0.001 | 0.39 | |
GDM | 9.05 | 0.004 | −0.000006 | 0.03 | 0.24 | |
SDM | 18.76 | 0.002 | −0.00002 | 0.01 | 0.28 | |
G:F ratio DM | 0.29 | 0.00007 | 0.0000001 | 0.03 | 0.23 | |
C:F ratio DM | 0.4 | −0.00004 | 0.0000003 | 0.17 | 0.12 | |
C:S ratio DM | 0.67 | 0.0009 | 0.0000004 | 0.18 | 0.12 | |
Cubic: Y = β0 + β1Xi + β2Xi2 + β3Xi3 + εi | ||||||
β0 | β1 | β2 | β3 | |||
C/plant | 1.2 | −0.004 | 0.00002 | −0.00000003 | 0.17 | 0.17 |
FHB | 113.6 | −0.121 | 0.001 | −0.000003 | 0.02 | 0.31 |
CHB | 31 | −0.062 | 0.0006 | −0.000001 | 0.89 | 0.02 |
GHB | 22.86 | −0.42 | 0.0004 | −0.0000009 | 0.89 | 0.03 |
SHB | 82.38 | −0.06 | 0.0006 | −0.000002 | 0.009 | 0.35 |
G:F ratio HB | 0.2 | −0.0002 | 0.000002 | −0.000000003 | 0.02 | 0.44 |
C:S ratio HB | 0.38 | −0.0005 | 0.000004 | −0.000000006 | 0.003 | 0.42 |
C:F ratio HB | 0.28 | −0.0003 | 0.000002 | −0.000000004 | 0.003 | 0.41 |
CDM | 12.58 | −0.025 | 0.0003 | −0.0000006 | 0.0001 | 0.60 |
GDM | 9.2 | −0.017 | 0.0002 | −0.0000005 | 0.0001 | 0.61 |
SDM | 18.9 | −0.018 | 0.0002 | −0.0000004 | 0.03 | 0.30 |
G:F ratio DM | 0.29 | −0.00005 | 0.000001 | −0.000000003 | 0.0001 | 0.72 |
C:F ratio DM | 0.4 | −0.0003 | 0.000002 | −0.000000005 | 0.0002 | 0.64 |
C:S ratio DM | 0.29 | −0.00005 | 0.000001 | −0.000000003 | 0.0002 | 0.63 |
CHB | KHB | SHB | K:F HB | C:S HB | C:F HB | CDM | KDM | SDM | K:F DM | C:S DM | C:F DM | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
FHB | 0.74 *** | 0.70 *** | 0.98 *** | −0.41 *** | −0.41 *** | −0.42 *** | 0.62 *** | 0.57 *** | 0.72 *** | −0.14 | −0.17 | −0.14 |
CHB | 0.96 *** | 0.58 *** | 0.24 ** | 0.29 *** | 0.28 ** | 0.84 *** | 0.80 *** | 0.40 *** | 0.27 ** | 0.30 ** | 0.35 ** | |
KHB | 0.54 *** | 0.35 *** | 0.31 ** | 0.30 ** | 0.84 *** | 0.86 *** | 0.33 ** | 0.41 *** | 0.37 *** | 0.37 *** | ||
SHB | −0.58 *** | −0.59 *** | −0.61 *** | 0.48 *** | 0.44 *** | 0.74 *** | −0.26 ** | −0.30 ** | −0.27 ** | |||
Ratios: | ||||||||||||
K:F HB | 0.93 *** | 0.93 *** | 0.25 ** | 0.34 ** | −0.52 ** | 0.70 *** | 0.69 *** | 0.66 *** | ||||
C:S HB | 0.99 *** | 0.26 ** | 0.27 ** | −0.50 *** | 0.60 *** | 0.67 *** | 0.65 *** | |||||
C:F HB | 0.26 ** | 0.26 ** | −0.50 *** | 0.59 *** | 0.66 *** | 0.64 *** | ||||||
CDM | 0.97 *** | 0.29 ** | 0.51 *** | 0.53 *** | 0.55 *** | |||||||
KDM | 0.23 * | 0.61 *** | 0.58 *** | 0.58 *** | ||||||||
SDM | −0.61 *** | −0.62 *** | −0.63 *** | |||||||||
Ratios: | ||||||||||||
K:F DM | 0.96 *** | 0.96 *** | ||||||||||
C:S DM | 0.99 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina-Cuéllar, S.E.; Tirado-González, D.N.; Portillo-Vázquez, M.; Orozco-Cirilo, S.; López-Santiago, M.A.; Vargas-Canales, J.M.; Medina-Flores, C.A.; Salem, A.Z.M. Optimal Nitrogen Fertilization to Reach the Maximum Grain and Stover Yields of Maize (Zea mays L.): Tendency Modeling. Agronomy 2021, 11, 1354. https://doi.org/10.3390/agronomy11071354
Medina-Cuéllar SE, Tirado-González DN, Portillo-Vázquez M, Orozco-Cirilo S, López-Santiago MA, Vargas-Canales JM, Medina-Flores CA, Salem AZM. Optimal Nitrogen Fertilization to Reach the Maximum Grain and Stover Yields of Maize (Zea mays L.): Tendency Modeling. Agronomy. 2021; 11(7):1354. https://doi.org/10.3390/agronomy11071354
Chicago/Turabian StyleMedina-Cuéllar, Sergio E., Deli N. Tirado-González, Marcos Portillo-Vázquez, Sergio Orozco-Cirilo, Marco A. López-Santiago, Juan M. Vargas-Canales, Carlos A. Medina-Flores, and Abdelfattah Z. M. Salem. 2021. "Optimal Nitrogen Fertilization to Reach the Maximum Grain and Stover Yields of Maize (Zea mays L.): Tendency Modeling" Agronomy 11, no. 7: 1354. https://doi.org/10.3390/agronomy11071354
APA StyleMedina-Cuéllar, S. E., Tirado-González, D. N., Portillo-Vázquez, M., Orozco-Cirilo, S., López-Santiago, M. A., Vargas-Canales, J. M., Medina-Flores, C. A., & Salem, A. Z. M. (2021). Optimal Nitrogen Fertilization to Reach the Maximum Grain and Stover Yields of Maize (Zea mays L.): Tendency Modeling. Agronomy, 11(7), 1354. https://doi.org/10.3390/agronomy11071354