LEGU-MED: Developing Biodiversity-Based Agriculture with Legume Cropping Systems in the Mediterranean Basin
Abstract
:1. Background/Rationale
1.1. Biodiversity-Based Agriculture
1.2. The Importance of Legumes for BBA Applications
1.3. Lentil and Chickpea: An Overview of Improved Varieties and Landraces Cultivation
1.4. Varietal Mixture and Composite Cross Population
1.5. Market Trends of BBA Approach
2. Collaborative Research Project LEGU-MED: Legumes in Biodiversity-Based Farming Systems in Mediterranean Basin
2.1. Goals
- (1)
- Deeply characterize the biodiversity of key legume species in the Mediterranean basin
- (2)
- Enhance use and management of agro-biodiversity to improve the provision of legume-based ecosystem services and farming system sustainability in the Mediterranean basin
- (3)
- Evaluate trade-offs of proposed measures, with cost/benefit analysis performed by stakeholders.
2.2. Research Project Structure
2.3. Expected Results
2.4. Impacts
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mace, G.M.; Norris, K.; Fitter, A.H. Biodiversity and ecosystem services: A multilayered relationship. Trends Ecol. Evol. 2012, 27, 19–26. [Google Scholar] [CrossRef]
- Kazemi, H.; Klug, H.; Kamkar, B. New services and roles of biodiversity in modern agroecosystems: A review. Ecol. Indic. 2018, 93, 1126–1135. [Google Scholar] [CrossRef]
- Díaz, S.; Demissew, S.; Carabias, J.; Joly, C.; Lonsdale, M.; Ash, N.; Larigauderie, A.; Adhikari, J.R.; Arico, S.; Báldi, A.; et al. The IPBES Conceptual Framework—Connecting nature and people. Curr. Opin. Environ. Sustain. 2015, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Duncan, C.; Thompson, J.R.; Pettorelli, N. The quest for a mechanistic understanding of biodiversity–ecosystem services relationships. Proc. R. Soc. B Biol. Sci. 2015, 282, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maes, J.; Liquete, C.; Teller, A.; Erhard, M.; Paracchini, M.L.; Barredo, J.I.; Grizzetti, B.; Cardoso, A.; Somma, F.; Petersen, J.E.; et al. An indicator framework for assessing ecosystem services in support of the EU Biodiversity Strategy to 2020. Ecosyst. Serv. 2016, 17, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Reid, W.V.; Mooney, H.A.; Cropper, A.; Capistrano, D.; Carpenter, S.R.; Chopra, K.; Dasgupta, P.; Dietz, T.; Duraiappah, A.K.; Hassan, R.; et al. Ecosystems and Human Well-Being-Synthesis: A Report of the Millennium Ecosystem Assessment; Island Press: Washington, DC, USA, 2005; [M626]. [Google Scholar]
- Ellis, E.C.; Goldewijk, K.K.; Siebert, S.; Lightman, D.; Ramankutty, N. Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecol. Biogeogr. 2010, 19, 589–606. [Google Scholar] [CrossRef]
- Summary for Policymakers—Special Report on Climate Change and Land. Available online: https://www.ipcc.ch/srccl/chapter/summary-for-policymakers/ (accessed on 22 October 2021).
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; De Vries, W.; De Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347. [Google Scholar] [CrossRef] [Green Version]
- Bongaarts, J. IPBES, 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Popul. Dev. Rev. 2019, 45, 680–681. [Google Scholar] [CrossRef] [Green Version]
- Dudley, N.; Alexander, S. Agriculture and biodiversity: A review. Biodiversity 2017, 18, 45–49. [Google Scholar] [CrossRef]
- Tilman, D.; Fargione, J.; Wolff, B.; D’Antonio, C.; Dobson, A.; Howarth, R.; Schindler, D.; Schlesinger, W.H.; Simberloff, D.; Swackhamer, D. Forecasting Agriculturally Driven Global Environmental Change. Science 2001, 292, 281–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tscharntke, T.; Clough, Y.; Wanger, T.C.; Jackson, L.; Motzke, I.; Perfecto, I.; Vandermeer, J.; Whitbread, A. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 2012, 151, 53–59. [Google Scholar] [CrossRef]
- Pretty, J.; Benton, T.G.; Bharucha, Z.P.; Dicks, L.V.; Flora, C.B.; Godfray, H.C.J.; Goulson, D.; Hartley, S.; Lampkin, N.; Morris, C.; et al. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 2018, 1, 441–446. [Google Scholar] [CrossRef]
- Scherr, S.J.; McNeely, J.A. Biodiversity conservation and agricultural sustainability: Towards a new paradigm of ecoagriculture landscapes. Philos. Trans. R. Soc. B Biol. Sci. 2007, 363, 477–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frison, E.A. From Uniformity to Diversity: A Paradigm Shift from Industrial Agriculture to Diversified Agroecological Systems; International Panel of Experts on Sustainable Food Systems: Brussels, Belgium, 2016. [Google Scholar]
- Hill, S.B.; MacRae, R.J. Conceptual Framework for the Transition from Conventional to Sustainable Agriculture. J. Sustain. Agric. 1996, 7, 81–87. [Google Scholar] [CrossRef]
- Hediger, W. Weak and strong sustainability, environmental conservation and economic growth. Nat. Resour. Modeling 2006, 19, 359–394. [Google Scholar] [CrossRef]
- Ott, K. The case for strong sustainability. In Greifswald’s Environmental Ethics; Steinbecker Verlag Rose: Greifswald, Germany, 2003; pp. 59–64. [Google Scholar]
- Bàrberi, P.; Moonen, A.-C. Functional agrobiodiversity for the provision of agroecosystem services. In Reconciling Agricultural Production with Biodiversity Conservation; Burleigh Dodds Science Publishing: Cambridge, UK, 2020; pp. 101–146. [Google Scholar] [CrossRef]
- Wezel, A.; Soboksa, G.; McClelland, S.; Delespesse, F.; Boissau, A. The blurred boundaries of ecological, sustainable, and agroecological intensification: A review. Agron. Sustain. Dev. 2015, 35, 1283–1295. [Google Scholar] [CrossRef]
- Vanbergen, A.J.; Aizen, M.A.; Cordeau, S.; Garibaldi, L.A.; Garratt, M.P.D.; Kovács-Hostyánszki, A.; Lecuyer, L.; Ngo, H.T.; Potts, S.G.; Settele, J.; et al. Transformation of agricultural landscapes in the Anthropocene: Nature’s contributions to people, agriculture and food security. Adv. Ecol. Res. 2020, 63, 193–253. [Google Scholar] [CrossRef]
- Duru, M.; Therond, O.; Martin, G.; Martin-Clouaire, R.; Magne, M.A.; Justes, E.; Journet, E.P.; Aubertot, J.N.; Savary, S.; Bergez, J.E.; et al. How to implement biodiversity-based agriculture to enhance ecosystem services: A review. Agron. Sustain. Dev. 2015, 35, 1259–1281. [Google Scholar] [CrossRef]
- Therond, O.; Duru, M.; Roger-Estrade, J.; Richard, G. A new analytical framework of farming system and agriculture model diversities. A review. Agron. Sustain. Development 2017, 37, 1–24. [Google Scholar] [CrossRef]
- Petersen, B.; Snapp, S. What is sustainable intensification? Views from experts. Land Use Policy 2015, 46, 1–10. [Google Scholar] [CrossRef]
- IPBES. Assessment Report on Pollinators, Pollination and Food Production; IPBES: Bonn, Germany, 2016. [Google Scholar] [CrossRef]
- Kremen, C.; Iles, A.; Bacon, C. Diversified Farming Systems: An Agroecological, Systems-based Alternative to Modern Industrial Agriculture. Ecol. Soc. 2012, 17, 44. [Google Scholar] [CrossRef]
- Altieri, M.A. The ecological role of biodiversity in agroecosystems. Agric. Ecosyst. Environ. 1999, 74, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Bredemeier, B.; von Haaren, C.; Rüter, S.; Reich, M.; Meise, T. Evaluating the nature conservation value of field habitats: A model approach for targeting agri-environmental measures and projecting their effects. Ecol. Model. 2015, 295, 113–122. [Google Scholar] [CrossRef]
- Landis, D.A. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic Appl. Ecol. 2017, 18, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Sirami, C.; Gross, N.; Baillod, A.B.; Bertrand, C.; Carrié, R.; Hass, A.; Henckel, L.; Miguet, P.; Vuillot, C.; Alignier, A.; et al. Increasing crop heterogeneity enhances multitrophic diversity across agricultural regions. Proc. Natl. Acad. Sci. USA 2019, 116, 16442–16447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tscharntke, T.; Tylianakis, J.M.; Rand, T.A.; Didham, R.K.; Fahrig, L.; Batáry, P.; Bengtsson, J.; Clough, Y.; Crist, T.O.; Dormann, C.F.; et al. Landscape moderation of biodiversity patterns and processes—Eight hypotheses. Biol. Rev. 2012, 87, 661–685. [Google Scholar] [CrossRef]
- Gaba, S.; Lescourret, F.; Boudsocq, S.; Enjalbert, J.; Hinsinger, P.; Journet, E.P.; Navas, M.L.; Wery, J.; Louarn, G.; Malézieux, E.; et al. Multiple cropping systems as drivers for providing multiple ecosystem services: From concepts to design. Agron. Sustain. Dev. 2015, 35, 607–623. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, C.I.; Altieri, M.A. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sustain. Dev. 2013, 33, 257–274. [Google Scholar] [CrossRef] [Green Version]
- Wezel, A.; Casagrande, M.; Celette, F.; Vian, J.-F.; Ferrer, A.; Peigné, J. Agroecological practices for sustainable agriculture. A review. Agron. Sustain. Dev. 2014, 34, 1–20. [Google Scholar] [CrossRef] [Green Version]
- HLPE. Agroecological and Other Innovative Approaches for Sustainable Agriculture and Food Systems That Enhance Food Security and Nutrition—Climate-ADAPT. Available online: https://climate-adapt.eea.europa.eu/metadata/publications/agroecological-and-other-innovative-approaches-for-sustainable-agriculture-and-food-systems-that-enhance-food-security-and-nutrition (accessed on 25 October 2021).
- Wezel, A.; Bellon, S.; Doré, T.; Francis, C.; Vallod, D.; David, C. Agroecology as a science, a movement and a practice. A review. Agron. Sustain. Dev. 2009, 29, 503–515. [Google Scholar] [CrossRef] [Green Version]
- FAO. The 10 Elements of Agroecology. Available online: https://www.fao.org/3/i9037en/i9037en.pdf (accessed on 12 November 2021).
- Gaba, S.; Bretagnolle, F.; Rigaud, T.; Philippot, L. Managing biotic interactions for ecological intensification of agroecosystems. Front. Ecol. Evol. 2014, 2, 29. [Google Scholar] [CrossRef] [Green Version]
- IFOAM. Position Paper on Agroecology. Organic and Agroecology: Working to Transform Our Food System; IFOAM—Organics International: Bonn, Germany, 2019. [Google Scholar]
- Migliorini, P.; Wezel, A. Converging and diverging principles and practices of organic agriculture regulations and agroecology. A review. Agron. Sustain. Dev. 2017, 37, 63. [Google Scholar] [CrossRef] [Green Version]
- FAO. Glossary on Organic Agriculture. FAO: Rome, Italy. Available online: https://www.fao.org/organicag/oag-glossary/en/ (accessed on 12 November 2012).
- Garbach, K.; Milder, J.C.; DeClerck, F.A.J.; Montenegro de Wit, M.; Driscoll, L.; Gemmill-Herren, B. Examining multi-functionality for crop yield and ecosystem services in five systems of agroecological intensification. Int. J. Agric. Sustain. 2017, 15, 11–28. [Google Scholar] [CrossRef]
- Lee, H.; Lautenbach, S.; Nieto, A.P.G.; Bondeau, A.; Cramer, W.; Geijzendorffer, I.R. The impact of conservation farming practices on Mediterranean agro-ecosystem services provisioning—A meta-analysis. Reg. Environ. Chang. 2019, 19, 2187–2202. [Google Scholar] [CrossRef]
- Palomo-Campesino, S.; González, J.A.; García-Llorente, M. Exploring the Connections between Agroecological Practices and Ecosystem Services: A Systematic Literature Review. Sustainability 2018, 10, 4339. [Google Scholar] [CrossRef] [Green Version]
- Stavi, I.; Bel, G.; Zaady, E. Soil functions and ecosystem services in conventional, conservation, and integrated agricultural systems. A review. Agron. Sustain. Dev. 2016, 36, 32. [Google Scholar] [CrossRef] [Green Version]
- Albert, C.; Galler, C.; Hermes, J.; Neuendorf, F.; Von Haaren, C.; Lovett, A. Applying ecosystem services indicators in landscape planning and management: The ES-in-Planning framework. Ecol. Indic. 2016, 61, 100–113. [Google Scholar] [CrossRef]
- Westerink, J.; Jongeneel, R.; Polman, N.; Prager, K.; Franks, J.; Dupraz, P.; Mettepenningen, E. Collaborative governance arrangements to deliver spatially coordinated agri-environmental management. Land Use Policy 2017, 69, 176–192. [Google Scholar] [CrossRef] [Green Version]
- Bredemeier, B.; Rüter, S.; Von Haaren, C.; Reich, M.; Schaarschmidt, F. Spatial congruence between organic farming and biodiversity related landscape features in Germany. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2015, 11, 330–340. [Google Scholar] [CrossRef] [Green Version]
- Delzeit, R.; Lewandowski, I.; Arslan, A.; Cadisch, G.; Erisman, J.W.; Ewert, F.; Klein, A.M.; Von Haaren, C.; Lotze-Campen, H.; Mauser, W.; et al. How the Sustainable Intensification of Agriculture Can Contribute to the Sustainable Development Goals. The Need for Specific Socio-Ecological Solutions at All Spatial Levels; Working paper No 18/1; Germant Committee Future Earth: Stuttgart, Germany, 2018. [Google Scholar]
- Clergue, B.; Amiaud, B.; Pervanchon, F.; Lasserre-Joulin, F.; Plantureux, S. Biodiversity: Function and Assessment in Agricultural Areas: A Review. Sustain. Agric. 2009, 309–327. [Google Scholar] [CrossRef]
- Kleijn, D.; Bommarco, R.; Fijen, T.P.M.; Garibaldi, L.A.; Potts, S.G.; van der Putten, W.H. Ecological Intensification: Bridging the Gap between Science and Practice. Trends Ecol. Evol. 2019, 34, 154–166. [Google Scholar] [CrossRef] [Green Version]
- Swift, M.J.; Izac, A.M.N.; Van Noordwijk, M. Biodiversity and ecosystem services in agricultural landscapes—are we asking the right questions? Agric. Ecosyst. Environ. 2004, 104, 113–134. [Google Scholar] [CrossRef]
- Labeyrie, V.; Antona, M.; Baudry, J.; Bazile, D.; Bodin, Ö.; Caillon, S.; Leclerc, C.; Le Page, C.; Louafi, S.; Mariel, J.; et al. Networking agrobiodiversity management to foster biodiversity-based agriculture. A review. Agron. Sustain. Dev. 2021, 41, 1–15. [Google Scholar] [CrossRef]
- Wezel, A.; Herren, B.G.; Kerr, R.B.; Barrios, E.; Gonçalves, A.L.R.; Sinclair, F. Agroecological principles and elements and their implications for transitioning to sustainable food systems. A review. Agron. Sustain. Dev. 2020, 40, 1–13. [Google Scholar] [CrossRef]
- Noss, R.F. Indicators for Monitoring Biodiversity: A Hierarchical Approach. Conserv. Biol. 1990, 4, 355–364. [Google Scholar] [CrossRef]
- Pereira, H.M.; Ferrier, S.; Walters, M.; Geller, G.N.; Jongman, R.H.G.; Scholes, R.J.; Bruford, M.W.; Brummitt, N.; Butchart, S.H.M.; Cardoso, A.C.; et al. Essential Biodiversity Variables. Science 2013, 339, 277–278. [Google Scholar] [CrossRef] [Green Version]
- Eliazer Nelson, A.R.L.; Ravichandran, K.; Antony, U. The impact of the Green Revolution on indigenous crops of India. J. Ethn. Foods 2019, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Everwand, G.; Cass, S.; Dauber, J.; Williams, M.; Stout, J. Legume crops and biodiversity. In Legumes in Cropping Systems; CABI Publishing: Wallingford, UK, 2017; pp. 55–69. [Google Scholar]
- Foyer, C.H.; Lam, H.-M.; Nguyen, H.T.; Siddique, K.H.M.; Varshney, R.K.; Colmer, T.D.; Cowling, W.; Bramley, H.; Mori, T.A.; Hodgson, J.M.; et al. Neglecting legumes has compromised human health and sustainable food production. Nat. Plants 2016, 2, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bauchet, G.J.; Bett, K.E.; Cameron, C.T.; Campbell, J.D.; Cannon, E.K.S.; Cannon, S.B.; Carlson, J.W.; Chan, A.; Cleary, A.; Close, T.J.; et al. The future of legume genetic data resources: Challenges, opportunities, and priorities. Legume Sci. 2019, 1, e16. [Google Scholar] [CrossRef] [Green Version]
- Thiebeau, P.; Badenhausser, I.; Meiss, H.; Bretagnolle, V.; Carrère, P.; Chagué, P.; Decourtye, A.; Maleplate, T.; Mediene, S.; Lecompte, P.; et al. Contribution des légumineuses à la biodiversité des paysages ruraux. Innov. Agron. 2010, 11, 187–204. [Google Scholar]
- Troyo-Diéguez, E.; Cortés-Jiménez, J.M.; Nieto-Garibay, A.; Murillo-Amador, B.; Valdéz-Cepeda, R.D.; García-Hernández, J.L. Ecology and Adaptation of Legumes Crops. In Climate Change and Management of Cool Season Grain Legume Crops; Springer: Berlin, Germany, 2010; pp. 23–33. [Google Scholar]
- Anghinoni, G.; Anghinoni, F.B.G.; Tormena, C.A.; Braccini, A.L.; de Carvalho Mendes, I.; Zancanaro, L.; Lal, R. Conservation agriculture strengthen sustainability of Brazilian grain production and food security. Land Use Policy 2021, 108, 105591. [Google Scholar] [CrossRef]
- Siddique, I.; Vieira, I.C.G.; Schmidt, S.; Lamb, D.; Carvalho, C.J.R.; Figueiredo, R.d.O.; Blomberg, S.; Davidson, E.A. Nitrogen and phosphorus additions negatively affect tree species diversity in tropical forest regrowth trajectories. Ecology 2010, 91, 2121–2131. [Google Scholar] [CrossRef]
- Kremen, C. Ecological intensification and diversification approaches to maintain biodiversity, ecosystem services and food production in a changing world. Emerg. Top. Life Sci. 2020, 4, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Stagnari, F.; Maggio, A.; Galieni, A.; Pisante, M. Multiple benefits of legumes for agriculture sustainability: An overview. Chem. Biol. Technol. Agric. 2017, 4, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Gan, Y.; Liang, C.; Chai, Q.; Lemke, R.L.; Campbell, C.A.; Zentner, R.P. Improving farming practices reduces the carbon footprint of spring wheat production. Nat. Commun. 2014, 5, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, D.; Zhao, Y.; Guo, H.; Li, X.; Schoenau, J.; Si, B. Water Footprint for Pulse, Cereal, and Oilseed Crops in Saskatchewan, Canada. Water 2018, 10, 1609. [Google Scholar] [CrossRef] [Green Version]
- Watson, C.A.; Stoddard, F.L. Introduction—perspectives on legume production and use in European agriculture. In Legumes in Cropping Systems; CABI Publishing: Wallingford, UK, 2017; pp. 1–17. [Google Scholar]
- Yigezu, Y.A.; El-Shater, T.; Boughlala, M.; Bishaw, Z.; Niane, A.A.; Maalouf, F.; Degu, W.T.; Wery, J.; Boutfiras, M.; Aw-Hassan, A. Legume-based rotations have clear economic advantages over cereal monocropping in dry areas. Agron. Sustain. Dev. 2019, 39, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Gallardo, K.; Le Signor, C.; Duc, G.; Thompson, R.; Burstin, J. Quels leviers génétiques mobilisables afin d’améliorer l’équilibre en acides aminés des graines de légumineuses? Innov. Agron. 2017, 60, 43–57. [Google Scholar] [CrossRef]
- Schneider, A.; Huyghe, C. Les Légumineuses Pour des Systèmes Agricoles et Alimentaires Durables; Éditions Quae: Versailles, France, 2015. [Google Scholar]
- Smýkal, P.; Nelson, M.N.; Berger, J.D.; Wettberg, E.J.B. Von The Impact of Genetic Changes during Crop Domestication. Agronomy 2018, 8, 119. [Google Scholar] [CrossRef] [Green Version]
- Handberg, K.; Stougaard, J. Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J. 1992, 2, 487–496. [Google Scholar] [CrossRef]
- Cook, D.R. Medicago truncatula—A model in the making!: Commentary. Curr. Opin. Plant Biol. 1999, 2, 301–304. [Google Scholar] [CrossRef]
- Giovannetti, M.; Göschl, C.; Dietzen, C.; Andersen, S.U.; Kopriva, S.; Busch, W. Identification of novel genes involved in phosphate accumulation in Lotus japonicus through Genome Wide Association mapping of root system architecture and anion content. PLoS Genet. 2019, 15, e1008126. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Lancon-Verdier, V.; Le Signor, C.; She, Y.-M.; Kang, Y.; Verdier, J. Genome-wide association study identified candidate genes for seed size and seed composition improvement in M. truncatula. Sci. Rep. 2021, 11, 1–13. [Google Scholar] [CrossRef]
- Van der Maesen, L.J.G. Origin, history and taxonomy of Chickpea. In The Chickpea; C.A.B. International: Wallingford, UK, 1987; pp. 11–34. [Google Scholar]
- Muehlbauer, F.J.; Slinkard, A.E.; Wilson, V.E. Lentil. In Hybridization of Crop Plants; ASSA: Madison, WI, USA, 2015; pp. 417–426. [Google Scholar] [CrossRef]
- Zohary, D.; Hopf, M. Domestication of Pulses in the Old World. Science 1973, 182, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, K. Göbekli Tepe: A Neolithic Site in Southeastern Anatolia. In The Oxford Handbook of Ancient Anatolia: (10,000-323 BCE); Oxford University Press: Oxford, UK, 2011. [Google Scholar] [CrossRef]
- Casañas, F.; Simó, J.; Casals, J.; Prohens, J. Toward an Evolved Concept of Landrace. Front. Plant Sci. 2017, 8, 145. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Gupta, P.; Choukri, H.; Siddique, K.H.M. Efficient Breeding of Pulse Crops. In Accelerated Plant Breeding; Springer: Berlin, Germany, 2020; Volume 3, pp. 1–30. [Google Scholar] [CrossRef]
- Maxted, N.; Bennett, S.J. Conservation, Diversity and Use of Mediterranean Legumes. In Plant Genetic Resources of Legumes in the Mediterranean; Springer: Berlin, Germany, 2001; pp. 1–32. [Google Scholar] [CrossRef]
- Ladizinsky, G.; Adler, A. The origin of chickpea Cicer arietinum L. Euphytica 1976, 25, 211–217. [Google Scholar] [CrossRef]
- Piergiovanni, A.R. The evolution of lentil (Lens culinaris Medik.) cultivation in Italy and its effects on the survival of autochthonous populations. Genet. Resour. Crop. Evol. 2000, 47, 305–314. [Google Scholar] [CrossRef]
- Zaccardelli, M.; Sonnante, G.; Lupo, F.; Piergiovanni, A.R.; Laghetti, G.; Sparvoli, F.; Lioi, L. Characterization of Italian chickpea (Cicer arietinum L.) germplasm by multidisciplinary approach. Genet. Resour. Crop. Evol. 2013, 60, 865–877. [Google Scholar] [CrossRef]
- Lázaro, A.; Ruiz, M.; de la Rosa, L.; Martín, I. Relationships between agro/morphological characters and climatic parameters in Spanish landraces of lentil (Lens culinaris Medik.). Genet. Resour. Crop. Evol. 2001, 48, 239–249. [Google Scholar] [CrossRef]
- Cristóbal, M.D.; Pando, V.; Herrero, B. Morphological characterization of lentil (Lens culinaris Medik.) landraces from Castilla Y León, Spain. Pak. J. Bot. 2014, 46, 1373–1380. [Google Scholar]
- Toklu, F.; Biçer, B.; Karaköy, T. Agro-morphological characterization of the Turkish lentil landraces. Afr. J. Biotechnol. 2010, 8, 4121–4127. [Google Scholar] [CrossRef]
- Idrissi, O.; Udupa, S.M.; Houasli, C.; De Keyser, E.; Van Damme, P.; Riek, J. De Genetic diversity analysis of Moroccan lentil (Lens culinaris Medik.) landraces using Simple Sequence Repeat and Amplified Fragment Length Polymorphisms reveals functional adaptation towards agro-environmental origins. Plant Breed. 2015, 134, 322–332. [Google Scholar] [CrossRef]
- UNESCO. Mediterranean Diet—Intangible Heritage—Culture Sector. Available online: https://ich.unesco.org/en/RL/mediterranean-diet-00884 (accessed on 25 October 2021).
- IFOAM EU Group. Plant Reproductive Material in the New Organic Regulation (EU) 2018/848; IFOAM EU Position Paper; IFOAM EU Group: Brussels, Belgium, 2019. [Google Scholar]
- Murphy, K.; Lammer, D.; Lyon, S.; Carter, B.; Jones, S.S. Breeding for organic and low-input farming systems: An evolutionary–participatory breeding method for inbred cereal grains. Renew. Agric. Food Syst. 2005, 20, 48–55. [Google Scholar] [CrossRef]
- Brumlop, S.; Reichenbecher, W.; Tappeser, B.; Finckh, M.R. What is the SMARTest way to breed plants and increase agrobiodiversity? Euphytica 2013, 194, 53–66. [Google Scholar] [CrossRef]
- Lazzaro, M.; Costanzo, A.; Farag, D.H.; Barberi, P. Grain yield and competitive ability against weeds in modern and heritage common wheat cultivars are differently influenced by sowing density. Ital. J. Agron. 2017, 12, 343–349. [Google Scholar] [CrossRef] [Green Version]
- Berg, M.P.; Ellers, J. Trait plasticity in species interactions: A driving force of community dynamics. Evol. Ecol. 2010, 24, 617–629. [Google Scholar] [CrossRef] [Green Version]
- Finckh, M.R. Stripe Rust, Yield, and Plant Competition in Wheat Cultivar Mixtures. Phytopathology 1992, 82, 905. [Google Scholar] [CrossRef]
- Wolfe, M.S. The Current Status and Prospects of Multiline Cultivars and Variety Mixtures for Disease Resistance. Annu. Rev. Phytopathol. 1985, 23, 251–273. [Google Scholar] [CrossRef]
- Kiær, L.P.; Skovgaard, I.M.; Østergård, H. Effects of inter-varietal diversity, biotic stresses and environmental productivity on grain yield of spring barley variety mixtures. Euphytica 2012, 185, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Barot, S.; Allard, V.; Cantarel, A.; Enjalbert, J.; Gauffreteau, A.; Goldringer, I.; Lata, J.-C.; Le Roux, X.; Niboyet, A.; Porcher, E. Designing mixtures of varieties for multifunctional agriculture with the help of ecology. A review. Agron. Sustain. Dev. 2017, 37, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Döring, T.F.; Annicchiarico, P.; Clarke, S.; Haigh, Z.; Jones, H.E.; Pearce, H.; Snape, J.; Zhan, J.; Wolfe, M.S. Comparative analysis of performance and stability among composite cross populations, variety mixtures and pure lines of winter wheat in organic and conventional cropping systems. Field Crops Res. 2015, 183, 235–245. [Google Scholar] [CrossRef]
- Wolfe, M.S. Crop strength through diversity. Nature 2000, 406, 681–682. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Chen, H.; Fan, J.; Wang, Y.; Li, Y.; Chen, J.; Fan, J.; Yang, S.; Hu, L.; Leung, H.; et al. Genetic diversity and disease control in rice. Nature 2000, 406, 718–722. [Google Scholar] [CrossRef] [PubMed]
- Lannou, C.; Mundt, C.C. Evolution of a pathogen population in host mixtures: Simple race–complex race competition. Plant Pathol. 1996, 45, 440–453. [Google Scholar] [CrossRef]
- Soliman, K.M.; Allard, R.W. Grain Yield of Composite Cross Populations of Barley: Effects of Natural Selection. Crop Sci. 1991, 31, 705–708. [Google Scholar] [CrossRef]
- Newton, A.C.; Akar, T.; Baresel, J.P.; Bebeli, P.J.; Bettencourt, E.; Bladenopoulos, K.V.; Czembor, J.H.; Fasoula, D.A.; Katsiotis, A.; Koutis, K.; et al. Cereal landraces for sustainable agriculture. A review. Agron. Sustain. Dev. 2010, 30, 237–269. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- The World of Organic Agriculture 2019: PDF Version. Available online: https://www.organic-world.net/yearbook/yearbook-2019/pdf.html (accessed on 25 October 2021).
- Biostimulant Global Market Report—Dunham Trimmer. Available online: https://dunhamtrimmer.com/products/biostimulant-global-market-report/ (accessed on 25 October 2021).
- Biopesticides Market Worth $8.5 Billion by 2025. Available online: https://www.marketsandmarkets.com/PressReleases/biopesticide.asp (accessed on 25 October 2021).
- Global Fertilizer Market by Segments, Region, Company Analysis & Forecast. Available online: https://www.researchandmarkets.com/reports/5265136/global-fertilizer-market-by-segments-region (accessed on 25 October 2021).
- Pesticides Market Global Opportunities and Strategies to 2023. Available online: https://www.thebusinessresearchcompany.com/report-preview1.aspx?Rid=pesticidesmarket (accessed on 25 October 2021).
- Gupta, M.M.; Abbott, L.K. Exploring economic assessment of the arbuscular mycorrhizal symbiosis. Symbiosis 2020, 83, 143–152. [Google Scholar] [CrossRef]
- Liu, X.; Huang, M.; Fan, B.; Buckler, E.S.; Zhang, Z. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLOS Genet. 2016, 12, e1005767. [Google Scholar] [CrossRef]
- Howieson, J.G.; Robson, A.D.; Ewing, M.A. External phosphate and calcium concentrations, and Ph, but not the products of rhizobial nodulation genes, affect the attachment of rhizobium meliloti to roots of annual medics. Soil Biol. Biochem. 1993, 25, 567–573. [Google Scholar] [CrossRef]
- Lemaire, B.; Dlodlo, O.; Chimphango, S.; Stirton, C.; Schrire, B.; Boatwright, S.; Honnay, O.; Smets, E.; Sprent, J.; James, E.; et al. Symbiotic Diversity, Specificity and Distribution of Rhizobia in Native Legumes of the Core Cape Subregion (South Africa). FEMS Microbiol. Ecol. 2015, 91, 2–17. [Google Scholar] [CrossRef] [Green Version]
- Nazir, R.; Semenov, A.V.; Sarigul, N.; van Elsas, J.D. Bacterial community establishment in native and non-native soils and the effect of fungal colonization. Microbiol. Discov. 2013, 1, 8. [Google Scholar] [CrossRef] [Green Version]
- Muresu, R.; Polone, E.; Sulas, L.; Baldan, B.; Tondello, A.; Delogu, G.; Cappuccinelli, P.; Alberghini, S.; Benhizia, Y.; Benhizia, H.; et al. Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiol. Ecol. 2008, 63, 383–400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zero Draft of the Post-2020 Global Biodiversity Framework Published by the Secretariat. Available online: https://www.cbd.int/article/2020-01-10-19-02-38 (accessed on 25 October 2021).
Species | Landrace Name | Country of Origin | Type and Code of EU Mark |
---|---|---|---|
Lentil | Lenticchia di Castelluccio di Norcia | Italy | PGI-IT-1557 |
Lenticchia di Altamura | Italy | PGI-IT-02204 | |
Lenticchia di Onano | Italy | PGI-IT-02651 | |
Lenteja de La Armuña | Spain | PGI-ES-0102 | |
Lenteja de Tierra de Campos | Spain | PGI-ES-0313 | |
Chickpea | Garbanzo de Fuentesaúco | Spain | PGI-ES-0264 |
Garbanzo de Escacena | Spain | PGI-ES-0945 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinelli, F.; Vollheyde, A.-L.; Cebrián-Piqueras, M.A.; von Haaren, C.; Lorenzetti, E.; Barberi, P.; Loreto, F.; Piergiovanni, A.R.; Totev, V.V.; Bedini, A.; et al. LEGU-MED: Developing Biodiversity-Based Agriculture with Legume Cropping Systems in the Mediterranean Basin. Agronomy 2022, 12, 132. https://doi.org/10.3390/agronomy12010132
Martinelli F, Vollheyde A-L, Cebrián-Piqueras MA, von Haaren C, Lorenzetti E, Barberi P, Loreto F, Piergiovanni AR, Totev VV, Bedini A, et al. LEGU-MED: Developing Biodiversity-Based Agriculture with Legume Cropping Systems in the Mediterranean Basin. Agronomy. 2022; 12(1):132. https://doi.org/10.3390/agronomy12010132
Chicago/Turabian StyleMartinelli, Federico, Anna-Lena Vollheyde, Miguel A. Cebrián-Piqueras, Christina von Haaren, Elisa Lorenzetti, Paolo Barberi, Francesco Loreto, Angela Rosa Piergiovanni, Valkov Vladimir Totev, Alberico Bedini, and et al. 2022. "LEGU-MED: Developing Biodiversity-Based Agriculture with Legume Cropping Systems in the Mediterranean Basin" Agronomy 12, no. 1: 132. https://doi.org/10.3390/agronomy12010132
APA StyleMartinelli, F., Vollheyde, A. -L., Cebrián-Piqueras, M. A., von Haaren, C., Lorenzetti, E., Barberi, P., Loreto, F., Piergiovanni, A. R., Totev, V. V., Bedini, A., Kron Morelli, R., Yahia, N., Rezki, M. A., Ouslim, S., Fyad-Lameche, F. Z., Bekki, A., Sikora, S., Rodríguez-Navarro, D., Camacho, M., ... Yousefi, S. (2022). LEGU-MED: Developing Biodiversity-Based Agriculture with Legume Cropping Systems in the Mediterranean Basin. Agronomy, 12(1), 132. https://doi.org/10.3390/agronomy12010132