Pollination Parameter Optimization and Field Verification of UAV-Based Pollination of ‘Kuerle Xiangli’
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Materials
2.2. Test Methods
2.2.1. UAV-Pollinated Water-Sensitive Paper Sampling Site Design
2.2.2. Design of UAV Operational Parameters
2.2.3. Field Validation Parameters
2.2.4. Fruit Set Rate Survey, Pollination Costs, and Efficiency
- (1)
- The percentage inflorescence set was calculated by the number of inflorescences set/total number of inflorescences × 100%;
- (2)
- The flower set rate was calculated by the total number of fruit/total number of flowers × 100%;
- (3)
- The pollination cost per acre was calculated by the pollen unit price × pollen use + labor costs (UAV service fee).
2.3. Data Acquisition and Processing
3. Results
3.1. Comparison of Different Height Treatments on the Effect of Mist Droplets in Four Directions on the ‘Kullua Balsam Pear’ Canopy
3.2. Comparison of the Effect of Mist Droplets in the Four Directions of the ‘Kuerle Xiangli’ Canopy under Different Nozzle Atomization Particle Sizes
3.3. Comparison of Different Spraying Treatments and Their Effect on Mist Droplets in Four Directions on the ‘Kuerle Xiangli’ Canopy
3.4. Comparison of the Effect of Mist Droplets in the Four Directions of the ‘Kuerle Xiangli’ Canopy Pollinated Using Different Flight Routes
3.5. Effect of Different Pollination Methods on Fruit Set Rate
3.6. Comparison of the Cost and Efficiency of Different Pollination Methods
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, Q.M.; Hou, J.T.; Li, J. Production status and research progress of Kuerle Xiangli. China Agric. Sci. Bull. 2005, 21, 233–236. [Google Scholar] [CrossRef]
- Qi, K.J.; Tao, S.T.; Wu, J.Y.; Zhang, S.L. Labor-saving liquid pollination techniques for pear trees. South China Fruits 2017, 46, 168–169. [Google Scholar] [CrossRef]
- Yang, D.D. Effects of different pollination methods on fruit setting rate of golden Pear. Agric. Henan 2012, 15, 46. [Google Scholar] [CrossRef]
- Wang, Z.L.; Wang, Y.J.; Jiang, F.D.; Mou, H.M.; Xue, M.; Li, Y.J. Research progress on different pollination measures of pear. Yantai Fruits 2019, 2, 3–4. [Google Scholar] [CrossRef]
- Li, J.Y.; Lan, Y.B.; Wang, J.W.; Chen, S.D.; Huang, C.; Liu, Q.; Liang, Q.P. Distribution law of rice pollen in the wind field of small UAV. Int. J. Agric. Biol. Eng. 2017, 10, 32–40. [Google Scholar] [CrossRef]
- Wang, J.B.; Cheng, J.B.; Wang, N.J.; Yao, X.H. The fruit-xenia effects of interspecies pollination assisted by unmanned aerial vehicle (UAV) on Zhejiang pecan (Carya cathayensis). J. Fujian For. Sci. Technol. 2019, 46, 42–45. [Google Scholar] [CrossRef]
- Wang, B.F.; Huang, Y.P.; Fan, F.R.; Li, E.J.; Ye, D.Q.; Lin, F.M.; Shen, Q.T. Assisted pollination of chinese fir seed orchard UAV effect analysis. J. Fujian For. Sci. Technol. 2019, 46, 35–38. [Google Scholar] [CrossRef]
- Kong, D.S.; Zhao, Y.L.; Hui, X.H.; Xu, L.; Wang, X.H. Methods and exploration of improving maize yield by plant protection UAV assisted pollination. China Agric. Technol. Ext. 2019, 35, 32–33. [Google Scholar] [CrossRef]
- Wang, S.L.; Lei, X.H.; Tang, Y.X.; Chang, C.H.; Lv, X.L. Spray pollination technology of pear tree based on multi-totor UAV. Jiangsu Agric. Sci. 2020, 48, 210–214. [Google Scholar] [CrossRef]
- Yang, J.; Yang, H.P.; Xie, W.; Hao, H.T.; Feng, H.Z.; Wang, L. Parameter optimization and economic benefit analysis of UAV assisted liquid pollination of Kuerle Xiangli. J. Fruit Sci. 2021, 38, 1691–1698. [Google Scholar] [CrossRef]
- Wang, L.; Ji, G.P.; Song, W.; Niu, X.L.; Zhang, D.H.; Zhao, S.F. Effect of UAV spray parameters on the canopy deposition distribution of fog droplets in the fragrant pear flower period. Agric. Sci. Technol. Commun. 2022, 6, 175–179. [Google Scholar] [CrossRef]
- Zhang, P.; Deng, L.; Lv, Q.; He, S.L.; Yi, S.L.; Liu, Y.D.; Yu, Y.X.; Pan, H.Y. Effects of citrus tree-shape and spraying height of small unmanned aerial vehicle on droplet distribution. Int. J. Agric. Biol. Eng. 2016, 9, 45–52. [Google Scholar] [CrossRef]
- Wang, B.J.; Pan, B.; Jiang, L.; Liang, J.Q.; Lin, Y. Effects of operating parameters of quad- rotor UAV on droplets deposition distribution on litchi canopy. South China Fruits 2020, 49, 61–66. [Google Scholar] [CrossRef]
- Hu, H.Y.; Ren, X.L.; Jiang, W.L.; Ma, X.Y.; Ma, Y.J.; Wang, D.; Ma, Y. Effects of flight altitude and direction of an unmanned aerial vehicle on droplets depositionand distribution in cotton field. China Cotton 2017, 44, 16–19. [Google Scholar] [CrossRef]
- Wang, G.B.; Wang, S.Z.; Chen, P.C.; Han, X.Q.; Shan, C.F.; Chen, S.D.; Lan, Y.B. Effect of spraying droplet size with drones on deposition, penetration, and cotton harvest-aid efficacy. J. Plant Prot. 2021, 48, 493–500. [Google Scholar] [CrossRef]
- Meng, Y.H.; Wang, M.M.; Yao, W.X. Droplet distribution of two flight modes of unmanned aerial vehicle (UAV) on the orchard of Y-shaped pear trees. South China Fruits 2020, 49, 116–120. [Google Scholar] [CrossRef]
- Kuang, Y.J.; Yu, Q. This year Kuerle Xiangli sitting fruit situation investigation and enlightenment. Northwest Hortic. 2005, 10, 38–39. [Google Scholar] [CrossRef]
Main Performance Indexes | Numerical Value |
---|---|
Model | 3WWDZ-20A |
Whole machine size | 1380 × 1355 × 552 mm |
Battery capacity | 18,000 mAh |
Net weight of the whole machine | 26.6 kg |
Maximum take-off weight | 46.6 kg |
Rated capacity of the liquid tank | 20 L |
Operational flight speed | 0~12 m·s−1 |
Spraying width | 4.5 m |
Fogging particle size | 85~550 μm |
Number of centrifugal fogging nozzles | 4 |
Centrifugal atomizing nozzle models | SNZ-18000A |
Experimental Treatment | Flight Height (m) | Nozzle Size | Spraying Quantity L/667 m2 | Flight Line | Flight Speed (m·s−1) | Wind Speed (m·s−1) | Environment of the Wind | Environment Temperature (°C) |
---|---|---|---|---|---|---|---|---|
G1 | 1 | 120 | 2 | Top of the tree | 3 | 2.0 | South wind | 23 |
G2 | 2 | 120 | 2 | Top of the tree | 3 | 1.8 | South wind | 23 |
G3 | 3 | 120 | 2 | Top of the tree | 3 | 1.8 | South wind | 23 |
L1 | 1 | 110 | 2 | Top of the tree | 3 | 2.0 | North wind | 22 |
L2 | 1 | 120 | 2 | Top of the tree | 3 | 2.0 | North wind | 22.3 |
L3 | 1 | 135 | 2 | Top of the tree | 3 | 2.0 | North wind | 23 |
L4 | 1 | 150 | 2 | Top of the tree | 3 | 2.0 | North wind | 24 |
P1 | 1 | 120 | 1 | Top of the tree | 3 | 1.0 | North wind | 24.8 |
P2 | 1 | 120 | 1.5 | Top of the tree | 3 | 1.5 | North wind | 24.5 |
P3 | 1 | 120 | 2 | Top of the tree | 3 | 1.5 | North wind | 25 |
H1 | 1 | 120 | 2 | Top of the tree | 3 | 2.2 | North wind | 24.5 |
H2 | 1 | 120 | 2 | Between | 3 | 2.0 | North wind | 24.5 |
Dealing with Numbers | Pollination Method | Location | Date of Establishment | Test Area /667 m2 |
---|---|---|---|---|
1 | UAV pollination | 14 lian of 29 tuan | 2016 | 6 |
14 lian of 29 tuan | 2013 | 3.6 | ||
2 lian of 29 tuan | 2014 | 5.5 | ||
Lake village of 28 tuan | 2015 | 24 | ||
9 lian of 28 tuan | 2015 | 5.2 | ||
2 | Hand pollination | 14 lian of 29 tuan | 2016 | 2 |
14 lian of 29 tuan | 2013 | 2 | ||
2 lian of 29 tuan | 2014 | 2 | ||
Lake village of 28 tuan | 2015 | 2 | ||
9 lian of 28 tuan | 2015 | 2 | ||
3 | Liquid pollination | 14 lian of 29 tuan | 2016 | 2 |
14 lian of 29 tuan | 2013 | 2 | ||
2 lian of 29 tuan | 2014 | 2 | ||
Lake village of 28 tuan | 2015 | 2 | ||
9 lian of 28 tuan | 2015 | 2 | ||
4 | Natural pollination | 14 lian of 29 tuan | 2016 | 0.5 |
14 lian of 29 tuan | 2013 | 0.5 | ||
2 lian of 29 tuan | 2014 | 0.5 | ||
Lake village of 28 tuan | 2015 | 1 | ||
9 lian of 28 tuan | 2015 | 0.5 |
Treatment | Pollination Cost | Pollination Efficiency | |||||
---|---|---|---|---|---|---|---|
Pollen Unit Price USD/g | The Pollen Amount g/667 m2 | Cost of Pollen USD/667 m2 | Labor Cost USD/667 m2 | Total Cost USD/667 m2 | Work Efficiency hm2/Person (Table)·d | Timeliness hm2/Person (Table)·h | |
Hand pollination | 0.93 | 20 | 18.67 | 5.74 | 24.40 | 0.33 | 0.07 |
Liquid pollination | 0.93 | 10 | 9.33 | 5.74 | 15.01 | 0.66 | 0.13 |
UAV pollination | 0.93 | 8 | 7.46 | 4.31 | 11.77 | 13.33 | 2.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Bai, R.; Lu, X.; Quan, S.; Liu, Y.; Lin, C.; Wei, J.; Su, Y.; Yao, R. Pollination Parameter Optimization and Field Verification of UAV-Based Pollination of ‘Kuerle Xiangli’. Agronomy 2022, 12, 2561. https://doi.org/10.3390/agronomy12102561
Wang Y, Bai R, Lu X, Quan S, Liu Y, Lin C, Wei J, Su Y, Yao R. Pollination Parameter Optimization and Field Verification of UAV-Based Pollination of ‘Kuerle Xiangli’. Agronomy. 2022; 12(10):2561. https://doi.org/10.3390/agronomy12102561
Chicago/Turabian StyleWang, Yuqing, Ru Bai, Xiaoyan Lu, Shaowen Quan, Yan Liu, Caixia Lin, Jie Wei, Yongfeng Su, and Ruiyun Yao. 2022. "Pollination Parameter Optimization and Field Verification of UAV-Based Pollination of ‘Kuerle Xiangli’" Agronomy 12, no. 10: 2561. https://doi.org/10.3390/agronomy12102561
APA StyleWang, Y., Bai, R., Lu, X., Quan, S., Liu, Y., Lin, C., Wei, J., Su, Y., & Yao, R. (2022). Pollination Parameter Optimization and Field Verification of UAV-Based Pollination of ‘Kuerle Xiangli’. Agronomy, 12(10), 2561. https://doi.org/10.3390/agronomy12102561