Livelihood Diversification Helps Herder Households on the Mongolian Plateau Reduce Emissions: A Case Study of a Typical Pastoral Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Data Acquisition
2.3. Methodology
2.3.1. Method
2.3.2. Impact of Livelihood Diversification on the Energy Consumption Structure of Herder Households
2.3.3. Environmental Effects of the Energy Consumption Structure Transition
3. Results
3.1. Livelihood Diversification of Herder Households Improves the Energy Consumption Structure
3.2. Livelihood Diversification of Herder Households Helps Reduce emissions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soytas, U.; Sari, R. Energy consumption and GDP: Causality relationship in G-7 countries and emerging markets. Energy Econ. 2003, 25, 33–37. [Google Scholar] [CrossRef]
- Li, F.; Dong, S.; Xue, L.; Liang, Q.; Yang, W. Energy consumption-economic growth relationship and carbon dioxide emissions in China. Energy Policy 2011, 39, 568–574. [Google Scholar] [CrossRef]
- Sherman, P.; Chen, X.; McElroy, M. Offshore wind: An opportunity for cost-competitive decarbonization of China’s energy economy. Sci. Adv. 2020, 6, eaax9571. [Google Scholar] [CrossRef] [Green Version]
- Eom, J.; Hyun, M.; Lee, J.; Lee, H. Increase in household energy consumption due to ambient air pollution. Nat. Energy 2020, 5, 976–984. [Google Scholar] [CrossRef]
- Carter, E.; Yan, L.; Fu, Y.; Robinson, B.; Kelly, F.; Elliott, P.; Wu, Y.; Zhao, L.; Ezzati, M.; Yang, X.; et al. Household transitions to clean energy in a multiprovincial cohort study in China. Nat. Sustain. 2019, 3, 42–50. [Google Scholar] [CrossRef]
- Niu, S.; Li, Z.; Qiu, X.; Dai, R.; Wang, X.; Qiang, W.; Hong, Z. Measurement of effective energy consumption in China’s rural household sector and policy implication. Energy Policy 2019, 128, 553–564. [Google Scholar] [CrossRef]
- Musti, S.; Kortum, K.; Kockelman, K.M. Household energy use and travel: Opportunities for behavioral change. Transp. Res. Part D Transp. Environ. 2011, 16, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; Liu, X.; Zhu, Z. A Bottom-Up Model for Household Load Profile Based on the Consumption Behavior of Residents. Energies 2018, 11, 2112. [Google Scholar] [CrossRef] [Green Version]
- Sheng, C.; Cao, Y.; Xue, B. Residential Energy Sustainability in China and Germany: The Impact of National Energy Policy System. Sustainability 2018, 10, 4535. [Google Scholar] [CrossRef] [Green Version]
- Hamamoto, M. Energy-saving behavior and marginal abatement cost for household CO2 emissions. Energy Policy 2013, 63, 809–813. [Google Scholar] [CrossRef]
- Ping, X.; Li, C.; Jiang, Z. Household energy consumption patterns in agricultural zone, pastoral zone and agro-pastoral transitional zone in eastern part of Qinghai-Tibet Plateau. Biomass Bioenergy 2013, 58, 1–9. [Google Scholar] [CrossRef]
- Ding, W.; He, L.; Zewudie, D.; Zhang, H.; Zafar, T.B.; Liu, X. Gender and renewable energy study in Tibetan pastoral areas of China. Renew. Energy 2019, 133, 901–913. [Google Scholar] [CrossRef]
- Jiang, L.; Chen, X.; Xue, B. Features, Driving Forces and Transition of the Household Energy Consumption in China: A Review. Sustainability 2019, 11, 1186. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Yu, L.; Xue, B.; Chen, X.; Mi, Z. Who is energy poor? Evidence from the least developed regions in China. Energy Policy 2020, 137, 111122. [Google Scholar] [CrossRef]
- Miah, M.D.; Kabir, R.R.M.S.; Koike, M.; Akther, S.; Yong Shin, M. Rural household energy consumption pattern in the disregarded villages of Bangladesh. Energy Policy 2010, 38, 997–1003. [Google Scholar] [CrossRef]
- Casillas, C.; Kammen, D. The Energy-Poverty-Climate Nexus. Science 2010, 330, 1181–1182. [Google Scholar] [CrossRef] [PubMed]
- Mirza, U.K.; Ahmad, N.; Majeed, T. An overview of biomass energy utilization in Pakistan. Renew. Sustain. Energy Rev. 2008, 12, 1988–1996. [Google Scholar] [CrossRef]
- Devi, R.; Singh, V.; Dahiya, R.P.; Kumar, A. Energy consumption pattern of a decentralized community in northern Haryana. Renew. Sustain. Energy Rev. 2009, 13, 194–200. [Google Scholar] [CrossRef]
- Joon, V.; Chandra, A.; Bhattacharya, M. Household energy consumption pattern and socio-cultural dimensions associated with it: A case study of rural Haryana, India. Biomass Bioenergy 2009, 33, 1509–1512. [Google Scholar] [CrossRef]
- Liu, G.; Lucas, M.; Shen, L. Rural household energy consumption and its impacts on eco-environment in Tibet: Taking Taktse county as an example. Renew. Sustain. Energy Rev. 2008, 12, 1890–1908. [Google Scholar] [CrossRef]
- Kulindwa, K.; Shechambo, F. The impact of rural energy use on the environment during the economic reforms period (1981-1992): Some evidence from Tanzania. Econ. Cond. 1995, 2, 110–131. [Google Scholar]
- Zhou, Z.; Wu, W.; Wang, X.; Chen, Q.; Wang, O. Analysis of changes in the structure of rural household energy consumption in northern China: A case study. Renew. Sustain. Energy Rev. 2009, 13, 187–193. [Google Scholar] [CrossRef]
- Armah, F.R.; Odoi, J.; Luginaah, I. Indoor Air Pollution and Health in Ghana: Self-Reported Exposure to Unprocessed Solid Fuel Smoke. Ecohealth 2015, 12, 227–243. [Google Scholar] [CrossRef]
- Chen, L.; Heerink, N.; van den Berg, M. Energy consumption in rural China: A household model for three villages in Jiangxi Province. Ecol. Econ. 2006, 58, 407–420. [Google Scholar] [CrossRef]
- Démurger, S.; Fournier, M. Poverty and Firewood Consumption: A Case Study of Rural Households in Northern China. China Econ. Rev. 2010, 22, 512–523. [Google Scholar] [CrossRef] [Green Version]
- Khandker, S.R.; Barnes, D.F.; Samad, H.A. Are the energy poor also income poor? Evidence from India. Energy Policy 2012, 47, 1–12. [Google Scholar] [CrossRef]
- Rahut, D.B.; Behera, B.; Ali, A. Household energy choice and consumption intensity: Empirical evidence from Bhutan. Renew. Sustain. Energy Rev. 2016, 53, 993–1009. [Google Scholar] [CrossRef]
- Pfeiffer, L.; López-Feldman, A.; Taylor, J.E. Is off-farm income reforming the farm? Evidence from Mexico. Agric. Econ. 2009, 40, 125–138. [Google Scholar] [CrossRef]
- Woldeyohanes, T.; Heckelei, T.; Surry, Y. Effect of off-farm income on smallholder commercialization: Panel evidence from rural households in Ethiopia. Agric. Econ. 2017, 48, 207–218. [Google Scholar] [CrossRef]
- Ma, W.; Abdulai, A.; Ma, C. The effects of off-farm work on fertilizer and pesticide expenditures in China. Rev. Dev. Econ. 2018, 22, 573–591. [Google Scholar] [CrossRef]
- Dedehouanou, S.F.A.; Araar, A.; Ousseini, A.; Harouna, A.L.; Jabir, M. Spillovers from off-farm self-employment opportunities in rural Niger. World Dev. 2018, 105, 428–442. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Zhou, X.; Renwick, A. Impact of off-farm income on household energy expenditures in China: Implications for rural energy transition. Energy Policy 2019, 127, 248–258. [Google Scholar] [CrossRef]
- Démurger, S.; Wang, X. Remittances and expenditure patterns of the left behinds in rural China. China Econ. Rev. 2016, 37, 177–190. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Tong, S.; Bao, Y.; Guo, E.; Bao, Y. Prediction of Droughts in the Mongolian Plateau Based on the CMIP5 Model. Water 2020, 12, 2774. [Google Scholar] [CrossRef]
- Wei, Y.; Zhen, L. The dynamics of livestock and its influencing factors on the Mongolian Plateau. Environ. Dev. 2020, 34, 100518. [Google Scholar] [CrossRef]
- Zhao, X.; Cheng, H.; Zhao, H.; Jiang, L.; Xue, B. Survey on the households’ energy-saving behaviors and influencing factors in the rural loess hilly region of China. J. Clean. Prod. 2019, 230, 547–556. [Google Scholar] [CrossRef]
- Sneath, D. State Policy and Pasture Degradation in Inner Asia. Science 1998, 281, 1147–1148. [Google Scholar] [CrossRef]
- Wang, J.; Brown, D.G.; Agrawal, A. Climate adaptation, local institutions, and rural livelihoods: A comparative study of herder communities in Mongolia and Inner Mongolia, China. Glob. Environ. Chang. 2013, 23, 1673–1683. [Google Scholar] [CrossRef]
- Gao, L.; Kinnucan, H.W.; Zhang, Y.; Qiao, G. The effects of a subsidy for grassland protection on livestock numbers, grazing intensity, and herders’ income in inner Mongolia. Land Use Policy 2016, 54, 302–312. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Hou, Y.; Langford, C.; Bai, H.; Hou, X. Herder stocking rate and household income under the Grassland Ecological Protection Award Policy in northern China. Land Use Policy 2019, 82, 120–129. [Google Scholar] [CrossRef]
- Zhang, J.; Brown, C.; Qiao, G.; Zhang, B. Effect of Eco-compensation Schemes on Household Income Structures and Herder Satisfaction: Lessons From the Grassland Ecosystem Subsidy and Award Scheme in Inner Mongolia. Ecol. Econ. 2019, 159, 46–53. [Google Scholar] [CrossRef]
- John, R.; Chen, J.; Ou-Yang, Z.-T.; Xiao, J.; Becker, R.; Samanta, A.; Ganguly, S.; Yuan, W.; Batkhishig, O. Vegetation response to extreme climate events on the Mongolian Plateau from 2000 to 2010. Environ. Res. Lett. 2013, 8, 035033. [Google Scholar] [CrossRef]
- Jiang, L.; Yao, Z.; Huang, H. Climate variability and change on the Mongolian Plateau: Historical variation and future predictions. Clim. Res. 2016, 67, 1–14. [Google Scholar] [CrossRef]
- General Principles of Comprehensive Energy Consumption Calculation. Available online: http://std.samr.gov.cn/gb/search/gbDetailed?id=B13990C15C2D5DDAE05397BE0A0A0D35 (accessed on 20 December 2021).
- Zhao, X. Thi impact of livelihood strategy on the famer’s living energy consumption pattern: A case of Gannan Plateau. Acta Ecol. Sin. 2015, 35, 1610–1619. [Google Scholar] [CrossRef]
- IPCC-EFDB Emission Factor Database. Available online: https://www.ipcc-nggip.iges.or.jp/EFDB/find_ef.php (accessed on 20 December 2021).
- Ministry of Housing and Urban-Rural Development on the Issuance of National Standards Announcement of “Building Carbon Emission Calculation Standards”. Available online: http://www.mohurd.gov.cn/gongkai/fdzdgknr/tzgg/201905/20190530_240723.html (accessed on 20 December 2021).
- Chen, H.; Tian, H.; Xiao, Y.; Chen, C. The Estimation and Analysis of Carbon Emissions in the Oil Refining Industry of China. Environ. Prot. Oil Gas Fields 2012, 22, 1–3. [Google Scholar] [CrossRef]
- Meng, X. The Estimation and Analysis of Carbon Dioxide Emissions in Refineries. Environ. Prot. Oil Gas Fields 2010, 18, 13–16. [Google Scholar]
- Li, J.; Liu, L. Research on energy and environment cost of household consumption in China. China Popul. Resour. Environ. 2017, 27, 31–39. [Google Scholar] [CrossRef]
- Announcement on the Issuance of 5 Technical Guidelines Including the “Technical Guidelines for the Preparation of Primary Source Emissions Inventory of Inhalable Particulate Matter (Trial)”. Available online: http://www.mee.gov.cn/gkml/hbb/bgg/201501/t20150107_293955.htm (accessed on 20 December 2021).
- Stec, D.; Drummond, H.A.; Vera, T. Role of carbon monoxide in blood pressure regulation. Hypertension 2008, 51, 597–604. [Google Scholar] [CrossRef] [Green Version]
- Neslihan, D.; Nurten, S. Effects of work place carbon monoxide exposure on blood viscosity. Arch. Environ. Occup. Health 2010, 65, 49–53. [Google Scholar] [CrossRef]
- Li, P.; Yan, R.; Yu, S.; Wang, S.; Liu, W.; Bao, H. Reinstate regional transport of PM2.5 as a major cause of severe haze in Beijing. Proc. Natl. Acad. Sci. USA 2015, 112, E2739–E2740. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Liu, M.; Min, Q.; He, S.; Jiao, W. Review of eco-environmental effect of farmers’ livelihood strategy transformation. Acta Ecol. Sin. 2019, 39, 8172–8182. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, Q.; Xie, H. Influence of the Farmer’s Livelihood Assets on Livelihood Strategies in the Western Mountainous Area, China. Sustainability 2018, 10, 875. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Yang, S.; Wang, X. The relationship between livelihood capital and livelihood strategy based on logistic regression model in Xinping County of Yuanjiang dry-hot valley. Resour. Sci. 2016, 38, 136–143. [Google Scholar] [CrossRef]
Indicator | Category | Sample Size | Proportion |
---|---|---|---|
Type of livelihood | PHHs | 149 | 73.4% |
LDHs | 54 | 26.6% | |
Household size | 1–3 people | 64 | 31.5% |
3–6 people | 131 | 64.6% | |
More than 6 people | 8 | 3.9% | |
Highest education level in the household | Primary school | 13 | 6.4% |
Junior high school | 76 | 37.4% | |
High school and above | 114 | 56.2% | |
Income level (yuan/a) | Less than 100,000 | 83 | 40.9% |
100,000–200,000 | 64 | 31.5% | |
200,000–300,000 | 35 | 17.2% | |
Above 300,000 | 21 | 10.3% |
Variable Type | Variable | Variable Description | Mean | Standard Deviation |
---|---|---|---|---|
Dependent variable | Livelihood diversification | 1 = Yes, 0 = No | 0.27 | 0.443 |
Independent variable | Livestock dung | 0 = Not used, 1 = 0–6 t/a, 2 = 6–18 t/a, 3 = 18–30 t/a, 4 = Over 30 t/a | 1.70 | 1.190 |
Coal | Continuous variable, t/a | 5.17 | 4.400 | |
Gasoline | Continuous variable, kg/a | 1225.29 | 1122.587 | |
Electricity | Continuous variable, kW·h/a | 2240.54 | 3365.212 | |
Liquefied gas | kg/a | 59.69 | 70.320 | |
Solar | 1 = Yes, 0 = No | 0.64 | 0.482 | |
Wind | 1 = Yes, 0 = No | 0.49 | 0.501 |
Variable Type | Variable | Regression Coefficients | Wald Test Statistic |
---|---|---|---|
Independent variable | Livestock dung | −0.13122 | 0.643 |
Coal | −0.01411 | 0.120 | |
Gasoline | −0.00035 * | 3.170 | |
Electricity | 0.00011 ** | 4.556 | |
Liquefied gas | 0.00077 | 0.095 | |
Solar | −1.08073 ** | 5.230 | |
Wind | 0.51106 | 1.282 | |
Constant | - | −0.29480 | 0.537 |
Energy Type | Coal | Gasoline | Livestock Dung | Liquefied Gas | Electricity |
---|---|---|---|---|---|
Conversion coefficient | 0.7143 | 1.4714 | 0.4710 | 1.7572 | 0.1229 |
Conversion unit | kgce/kg | kgce/kg | kgce/kg | kgce/kg | kgce/kW·h |
Stage | Electricity (tCO2/TJ) | Coal (tCO2/t) | Gasoline (tCO2/t) | Liquefied Gas (tCO2/t) | Livestock Dung (tCO2/t) |
---|---|---|---|---|---|
Production | 88.7 | 0.20 | 0.23 | 0.23 | - |
Consumption | - | 1.86 | 2.92 | 3.11 | 0.90 |
Energy | SO2 | NOx | CO | VOCs | PM10 | PM2.5 |
---|---|---|---|---|---|---|
Livestock dung | 0.28 | 0.58 | 19.8 | 3.13 | 8.84 | 8.22 |
Coal | 3.7 | 1.6 | 140.1 | 4 | 13.5 | 10.8 |
Gasoline | - | 0.44 | 9.38 | - | 0.04 | 0.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Liu, M. Livelihood Diversification Helps Herder Households on the Mongolian Plateau Reduce Emissions: A Case Study of a Typical Pastoral Area. Agronomy 2022, 12, 267. https://doi.org/10.3390/agronomy12020267
Li Z, Liu M. Livelihood Diversification Helps Herder Households on the Mongolian Plateau Reduce Emissions: A Case Study of a Typical Pastoral Area. Agronomy. 2022; 12(2):267. https://doi.org/10.3390/agronomy12020267
Chicago/Turabian StyleLi, Zhidong, and Moucheng Liu. 2022. "Livelihood Diversification Helps Herder Households on the Mongolian Plateau Reduce Emissions: A Case Study of a Typical Pastoral Area" Agronomy 12, no. 2: 267. https://doi.org/10.3390/agronomy12020267
APA StyleLi, Z., & Liu, M. (2022). Livelihood Diversification Helps Herder Households on the Mongolian Plateau Reduce Emissions: A Case Study of a Typical Pastoral Area. Agronomy, 12(2), 267. https://doi.org/10.3390/agronomy12020267