Effect of Irrigation with Activated Water on Root Morphology of Hydroponic Rice and Wheat Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Preparation of Activated Water
2.4. Sampling and Measurements
2.5. Statistical Analysis
3. Results
3.1. Plant Height
3.2. Growth Characteristics
3.3. Rice and Wheat Root System
3.3.1. Maximum Root Length
3.3.2. Root System Morphology
3.3.3. Percentage of Root Length with Various Diameters to Total Root Length
4. Discussion
4.1. Effects of Irrigation with Activated Water on the Growth Characteristics of Crop
4.2. Effect of Activated Water on Root Characteristics of Wheat and Rice
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Najafi, E.; Devineni, N.; Khanbilvardi, R.M.; Kogan, F. Understanding the changes in global crop yields through changes in climate and technology. Earth’s Future 2018, 6, 410–427. [Google Scholar] [CrossRef]
- Bailey-Serres, J.; Parker, J.E.; Ainsworth, E.A.; Oldroyd, G.E.D.; Schroeder, J.I. Genetic strategies for improving crop yields. Nature 2019, 575, 109–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pingali, P.L. Green revolution: Impacts, limits, and the path ahead. Proc. Natl. Acad. Sci. USA 2012, 109, 12302–12308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matson, P.A.; Parton, W.J.; Power, A.G.; Swift, M.J. Agricultural intensification and ecosystem properties. Science 1997, 277, 504–509. [Google Scholar] [CrossRef] [Green Version]
- United Nations Population Division. World Population Prospects the 2000 Revision Highlights; Population Division, Department of Economic and Social Affairs, United Nations: New York, NY, USA, 2000. [Google Scholar]
- Smith, P.; Gregory, P.J. Climate change and sustainable food production. Proc. Nutr. Soc. 2013, 72, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, K.; Thomassin, P.J.; Zhang, J.Y. Food security in China at 2050: A global CGE exercise. Econ. Struct. 2018, 7, 1. [Google Scholar] [CrossRef]
- Zheng, L.Z. Agricultural modernization and agricultural production efficiency. Soc. Sci. China 1981, 2, 3–16, (In Chinese with English Abstract). [Google Scholar]
- Wang, Q.J.; Sun, Y.; Ning, S.R.; Zhang, J.H.; Zhou, B.B.; Su, L.J.; Shan, Y.Y. Effects of activated irrigation water on soil physicochemical properties and crop growth and analysis of the probable pathway. Adv. Earth Sci. 2019, 34, 660–670, (In Chinese with English Abstract). [Google Scholar]
- Li, Y.; Niu, W.Q.; Wang, J.W.; Xu, J.; Zhang, M.Z.; Li, K.Y. Review on advances of airjection irrigation. Int. J. Agric. Biol. Eng. 2016, 9, 1–10. [Google Scholar] [CrossRef]
- Chibowski, E.; Szcześ, A. Magnetic water treatment—A review of the latest approaches. Chemosphere 2018, 203, 54–67. [Google Scholar] [CrossRef]
- Mu, Y.; Zhao, G.Q.; Zhao, Q.Q.; Liu, H.; Wang, Q.J. Advances in the application of activated water irrigation. J. Agric. Resour. Environ. 2019, 36, 403–411, (In Chinese with English Abstract). [Google Scholar]
- Ghanati, F.; Mohamadalikhani, S.; Soleimani, M.; Afzalzadeh, R.; Hajnorouzi, A. Change of growth pattern, metabolism, and quality and quantity of maize plants after irrigation with magnetically treated water. Electromagn. Biol. Med. 2015, 34, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.X.; Zhou, Y.P.; Wang, T.Z.; Pan, J.C.; Zhou, B.; Muhammad, T.; Zhou, C.F.; Li, Y.K. Micro-nano bubble water oxygation: Synergistically improving irrigation water use efficiency, crop yield and quality. J. Clean. Prod. 2019, 222, 835–843. [Google Scholar] [CrossRef]
- Ouyang, Z.; Tian, J.C.; Yan, X.F.; Shen, H. Effects of different concentrations of dissolved oxygen or temperatures on the growth, photosynthesis, yield and quality of lettuce. Agric. Water Manag. 2020, 228, 105896. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Mu, Y.; Wang, Y.H.; Wang, L. Response of winter-wheat grain yield and water-use efficiency to irrigation with activated water on Guanzhong plain in China. Irrig. Sci. 2021, 39, 263–276. [Google Scholar] [CrossRef]
- Sang, H.H.; Jiao, X.Y.; Wang, S.F.; Guo, W.H.; Salahou, M.K.; Liu, K.H. Effects of micro-nano bubble aerated irrigation and nitrogen fertilizer level on tillering, nitrogen uptake and utilization of early rice. Plant Soil Environ. 2018, 64, 297–302. [Google Scholar] [CrossRef] [Green Version]
- Esmaeilnezhad, E.; Choi, H.J.; Schaffie, M.; Gholizadeh, M.; Ranjbar, M. Characteristics and applications of magnetized water as a green technology. J. Clean. Prod. 2017, 161, 908–921. [Google Scholar] [CrossRef]
- Zhu, L.F.; Yu, S.M.; Jin, Q.Y. Effects of aerated irrigation on leaf senescence at late growth stage and grain yield of rice. Rice Sci. 2012, 19, 44–48. [Google Scholar] [CrossRef]
- Otsuka, I.; Ozeki, S. Does magnetic treatment of water change its properties? J. Phys. Chem. 2006, 110, 1509–1512. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Mu, Y.; Wang, Y.H.; Wang, L. Magnetization and oxidation of irrigation water to improve winter wheat (Triticum aestivum L.) production and water-use efficiency. Agric. Water Manag. 2022, 259, 107254. [Google Scholar] [CrossRef]
- Brzezińska, M.; Włodarczyk, T.; Stępniewski, W.; Przywara, G. Soil aeration status and catalase activity. Acta Agrophys. 2005, 5, 555–565. [Google Scholar]
- Mostafazadeh-Fard, B.; Khoshravesh, M.; Mousavi, S.-F.; Kiani, A.R. Effects of magnetized water on soil chemical components underneath trickle irrigation. J. Irrig. Drain. Eng. 2012, 138, 1075–1081. [Google Scholar] [CrossRef]
- Al-Ogaidi, A.A.M.; Wayayok, A.; Rowshon, M.K.; Abdullah, A.F. The influence of magnetized water on soil water dynamics under drip irrigation systems. Agric. Water Manag. 2017, 180, 70–77. [Google Scholar] [CrossRef]
- Seyfi, A.; Afzalzadeh, R.; Hajnorouzi, A. Increase in water evaporation rate with increase in static magnetic field perpendicular to water-air interface. Chem. Eng. Process. Process Intensif. 2017, 120, 195–200. [Google Scholar] [CrossRef]
- Grewal, H.S.; Maheshwari, B.L. Magnetic treatment of irrigation water and snow pea and chickpea seeds enhances early growth and nutrient contents of seedlings. Bioelectromagnetics 2011, 32, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, S.; Usman, M. Consequences of magnetized water application on maize seed emergence in sand culture. J. Agric. Sci. Technol. 2014, 16, 47–55. [Google Scholar] [CrossRef]
- Haq, Z.U.; Iqbal, M.; Jamil, Y.; Anwar, H.; Younis, A.; Arif, M.; Fareed, M.Z.; Hussain, F. Magnetically treated water irrigation effect on turnip seed germination, seedling growth and enzymatic activities. Inf. Process. Agric. 2016, 3, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, A.K.A.; Shi, X.N.; Hua, L.K.; Manzueta, L.; Qing, W.; Marhaba, T.; Zhang, W. Influences of air, oxygen, nitrogen, and carbon dioxide nanobubbles on seeds germination and plants growth. J. Agric. Food Chem. 2018, 66, 5117–5124. [Google Scholar] [CrossRef]
- Sadeghipour, O.; Aghaei, P. Improving the growth of cowpea (Vigna unguiculata L. Walp.) by magnetized water. J. Biodivers. Environ. Sci. 2013, 3, 37–43. [Google Scholar]
- Elhindi, K.M.; Al-Mana, F.A.; Algahtani, A.M.; Alotaibi, M.A. Effect of irrigation with saline magnetized water and different soil amendments on growth and flower production of Calendula officinalis L. plants. Saudi J. Biol. Sci. 2020, 27, 3072–3078. [Google Scholar] [CrossRef]
- Qiu, N.W.; Tan, T.H.; Dai, H.; Shen, X.; Han, R.; Lin, Y.; Ma, Z.Q. Biological effects of magnetized water on seed germination, seedling growth and physiological characteristics of wheat. Plant Physiol. J. 2011, 47, 803–810, (In Chinese with English abstract). [Google Scholar]
- Chen, X.M.; Dhungel, J.; Bhattarai, S.P.; Torabi, M.; Pendergast, L.; Midmore, D.J. Impact of oxygation on soil respiration, yield and water use efficiency of three crop species. J. Plant Ecol. 2011, 4, 236–248. [Google Scholar] [CrossRef]
- Ijaz, B.; Jatoi, S.A.; Ahmad, D.; Masood, M.S.; Siddiqui, S.U. Changes in germination behavior of wheat seeds exposed to magnetic field and magnetically structured water. Afr. J. Biotechnol. 2012, 11, 3575–3582. [Google Scholar] [CrossRef]
- Lu, J.; Li, X.N.; Yang, Y.L.; Jia, L.Y.; You, J.; Wang, W.R. Effect of hydrogen peroxide on seedling growth and antioxidants in two wheat cultivars. Biol. Plant 2013, 57, 487–494. [Google Scholar] [CrossRef]
- He, Y.; Luo, M.; Li, W.J.; Cao, H.; Guo, X.L. Effects of magnetized water on the growth and nitrogen fixation of rhizobial strain on alfalfa. Acta Agrestia Sin. 2014, 22, 1295–1300, (In Chinese with English Abstract). [Google Scholar]
- Almaghrabi, O.A.; Elbeshehy, E.K. Effect of weak electro magnetic field on grain germination and seedling growth of different wheat (Triticum aestivum L.) cultivars. Life Sci. J. 2012, 9, 1615–1622. [Google Scholar] [CrossRef]
- Maheshwari, B.L.; Grewal, H.S. Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity. Agric. Water Manag. 2009, 96, 1229–1236. [Google Scholar] [CrossRef]
- Liu, S.D.; Wang, C. Experimental study on the effect of direct oxygen supply on the growth of rice seedling root zone. Fresenius Environ. Bull. 2019, 28, 4745–4751. [Google Scholar]
- Ouyang, Z.; Tian, J.C.; Yan, X.F.; Shen, H. Effects of different concentrations of dissolved oxygen on the growth, photosynthesis, yield and quality of greenhouse tomatoes and changes in soil microorganisms. Agric. Water Manag. 2021, 245, 106579. [Google Scholar] [CrossRef]
- Zhou, Y.P.; Zhou, B.; Xu, F.P.; Muhammad, T.; Li, Y.K. Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation. Agric. Water Manag. 2019, 223, 105713. [Google Scholar] [CrossRef]
- Abuarab, M.; Mostafa, E.; Ibrahim, M. Effect of air injection under subsurface drip irrigation on yield and water use efficiency of corn in a sandy clay loam soil. J. Adv. Res. 2013, 4, 493–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pendergast, L.; Bhattarai, S.P.; Midmore, D.J. Benefits of oxygation of subsurface drip-irrigation water for cotton in a vertosol. Crop Pasture Sci. 2013, 64, 1171–1181. [Google Scholar] [CrossRef]
- Dhungel, J.; Bhattarai, S.P.; Midmore, D.J. Aerated water irrigation (oxygation) benefits to pineapple yield, water use efficiency and crop health. Adv. Hortic. Sci. 2012, 26, 3–16. [Google Scholar]
- Zhu, Y.; Cai, H.J.; Song, L.B.; Wang, X.W.; Shang, Z.H.; Sun, Y.N. Aerated irrigation of different irrigation levels and subsurface dripper depths affects fruit yield, quality and water use efficiency of greenhouse tomato. Sustainability 2020, 12, 2703. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Ng, W.J.; Liu, Y. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 2011, 84, 1175–1180. [Google Scholar] [CrossRef]
- Kirk, G.J.D. Rice root properties for internal aeration and efficient nutrient acquisition in submerged soil. New Phytol. 2003, 159, 185–194. [Google Scholar] [CrossRef]
- Zhu, M.J.; Wang, Q.J.; Sun, Y.; Zhang, J. Effects of oxygenated brackish water on germination and growth characteristics of wheat. Agric. Water Manag. 2021, 245, 106520. [Google Scholar] [CrossRef]
- Zhao, G.Q.; Zhou, B.B.; Mu, Y.; Wang, Y.H.; Liu, Y.Q.; Wang, L. Irrigation with activated water promotes root growth and improves water use of winter wheat. Agronomy 2021, 11, 2459. [Google Scholar] [CrossRef]
- Hozayn, M.; Abdallha, M.M.; Abd El-Monem, A.A.; El-Saady, A.A.; Darwish, M.A. Applications of magnetic technology in agriculture: A novel tool for improving crop productivity (1): Canola. Afr. J. Agric. 2016, 11, 441–449. [Google Scholar] [CrossRef] [Green Version]
- Yusuf, K.O.; Ogunlela, A.O. Impact of magnetic treatment of irrigation water on the growth and yield of tomato. Not. Sci. Biol. 2015, 7, 345–348. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.H.; Wei, K.; Wang, Q.J.; Sun, Y.; Mu, W.Y. Effects of magnetized fresh water on seed germination and seeding growth of cotton. Water Supply 2021, 21, 2863–2874. [Google Scholar] [CrossRef]
- Hodge, A.; Berta, G.; Doussan, C.; Merchan, F.; Crespi, M. Plant root growth, architecture and function. Plant Soil 2009, 321, 153–187. [Google Scholar] [CrossRef]
- Yang, J.C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Sci. Agric. Sin. 2011, 44, 36–46. [Google Scholar]
- Suralta, R.R.; Yamauchi, A. Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging. Environ. Exp. Bot. 2008, 64, 75–82. [Google Scholar] [CrossRef]
- Morita, S.; Abe, J. Development of root systems in wheat and rice. In Roots and Nitrogen in Cropping Systems of the Semi-Arid Tropics; Ito, O., Johansen, C., Adu-Gyamfi, J.J., Katayama, K., Kumar Rao, J.V.D.K., Rego, T.J., Eds.; Japan International Research Center for Agricultural Sciences: Tokyo, Japan, 1994; pp. 185–198. [Google Scholar]
- Ranathunge, K.; Lin, J.X.; Steudle, E.; Schreiber, L. Stagnant deoxygenated growth enhances root suberization and lignifications, but differentially affects water and NaCl permeabilities in rice (Oryza sativa L.) roots. Plant Cell Environ. 2011, 34, 1223–1240. [Google Scholar] [CrossRef]
- Xu, C.M.; Chen, L.; Chen, S.; Chu, G.; Wang, D.Y.; Zhang, X.F. Effects of rhizosphere oxygen concentration on root physiological characteristics and anatomical structure at the tillering stage of rice. Ann. Appl. Biol. 2020, 177, 61–73. [Google Scholar] [CrossRef]
- Zhu, L.F.; Zhang, J.H.; Yu, S.M.; Hu, Z.H.; Jin, Q.Y. Magnetized water irrigation enhanced rice growth and development, improved yield and quality. Trans. Chin. Soc. Agric. Eng. 2014, 30, 107–114, (In Chinese with English abstract). [Google Scholar]
- Anand, A.; Nagarajan, S.; Verma, A.P.S.; Joshi, D.K.; Pathak, P.C.; Bhardwaj, J. Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). Indian J. Biochem. Biophys. 2012, 49, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.M.; Zhu, H.; Meng, S.Y.; Bi, S.S.; Zhang, Y.; Wang, H.T.; Song, C.D.; Ma, F.Y. The effects of magnetic treatment of irrigation water on seedling growth, photosynthetic capacity and nutrient contents of Populus × Euramericana ‘Neva’ under NaCl stress. Acta Physiol. Plant. 2019, 41, 13. [Google Scholar] [CrossRef]
- Surendran, U.; Sandeep, O.; Joseph, E.J. The impacts of magnetic treatment of irrigation water on plant, water and soil characteristics. Agric. Water Manag. 2016, 178, 21–29. [Google Scholar] [CrossRef]
- Khoshravesh, M.; Mostafazadeh-Fard, B.; Mousavi, S.F.; Kiani, A.R. Effects of magnetized water on the distribution pattern of soil water with respect to time in trickle irrigation. Soil Use Manag. 2011, 27, 515–522. [Google Scholar] [CrossRef]
- Zhou, B.B.; Yang, L.; Chen, X.P.; Ye, S.T.; Peng, Y.; Liang, C. Effect of magnetic water irrigation on the improvement of salinized soil and cotton growth in Xinjiang. Agric. Water Manag. 2021, 248, 106784. [Google Scholar] [CrossRef]
Treatments | Leaf Number | Tiller Number | Stem Diameter (mm) | Leaf Area (cm2 Plant−1) | Fresh Weight of Aboveground (g Plant−1) | Dry Weight of Aboveground (g Plant−1) | Fresh Weight of Root (g Plant−1) | Dry Weight of Root (g Plant−1) | Root-Shoot Ratio | |
---|---|---|---|---|---|---|---|---|---|---|
Rice | CK | 9.7 ± 0.5a | - | 0.84 ± 0.09a | 57.8 ± 8.6c | 1.50 ± 0.20b | 0.24 ± 0.04b | 0.66 ± 0.29a | 0.048 ± 0.010b | 0.20 ± 0.01ab |
MW | 9.9 ± 0.7a | - | 0.83 ± 0.09a | 66.8 ± 7.1ab | 1.74 ± 0.17a | 0.29 ± 0.03a | 0.74 ± 0.36a | 0.052 ± 0.007ab | 0.18 ± 0.01b | |
AW | 10.0 ± 0.0a | - | 0.88 ± 0.07a | 69.9 ± 8.3a | 1.74 ± 0.28a | 0.28 ± 0.05a | 0.81 ± 0.41a | 0.059 ± 0.010a | 0.21 ± 0.02a | |
MAW | 8.8 ± 0.7b | - | 0.61 ± 0.1b | 61.5 ± 11.9bc | 1.65 ± 0.30ab | 0.28 ± 0.05ab | 0.70 ± 0.37a | 0.050 ± 0.009b | 0.18 ± 0.02b | |
Wheat | CK | 12.5 ± 1.2a | 2.7 ± 0.7a | - | 144.4 ± 22.4a | 4.55 ± 0.56a | 0.65 ± 0.05b | 3.36 ± 0.59a | 0.130 ± 0.019a | 0.20 ± 0.03a |
MW | 12.8 ± 1.4a | 2.8 ± 0.7a | - | 152.8 ± 17.3a | 4.80 ± 0.52a | 0.74 ± 0.12a | 3.50 ± 0.57a | 0.134 ± 0.020a | 0.19 ± 0.03a | |
AW | 12.2 ± 1.6a | 2.7 ± 0.7a | - | 137.7 ± 14.6a | 4.27 ± 0.60a | 0.61 ± 0.09b | 3.40 ± 0.56a | 0.125 ± 0.021a | 0.21 ± 0.03a | |
MAW | 12.6 ± 1.6a | 3.1 ± 0.7a | - | 141.3 ± 21.4a | 4.29 ± 0.81a | 0.63 ± 0.10b | 3.32 ± 0.76a | 0.124 ± 0.018a | 0.19 ± 0.02a | |
F-value | Activated water | 0.10 | - | - | 0.76 | 1.70 | 4.86 ** | 0.32 | 0.64 | 3.04 * |
Crop type | 2.53 | - | - | 46.69 ** | 763.15 ** | 685.07 ** | 615.72 ** | 540.77 ** | 0.64 | |
Activated water × Crop type | 0.60 | - | - | 1.90 | 1.82 | 3.40 * | 0.14 | 1.32 | 0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Fan, J.; Ge, J.; Luo, Z. Effect of Irrigation with Activated Water on Root Morphology of Hydroponic Rice and Wheat Seedlings. Agronomy 2022, 12, 1068. https://doi.org/10.3390/agronomy12051068
Yang X, Fan J, Ge J, Luo Z. Effect of Irrigation with Activated Water on Root Morphology of Hydroponic Rice and Wheat Seedlings. Agronomy. 2022; 12(5):1068. https://doi.org/10.3390/agronomy12051068
Chicago/Turabian StyleYang, Xueting, Jun Fan, Jiamin Ge, and Zhanbin Luo. 2022. "Effect of Irrigation with Activated Water on Root Morphology of Hydroponic Rice and Wheat Seedlings" Agronomy 12, no. 5: 1068. https://doi.org/10.3390/agronomy12051068
APA StyleYang, X., Fan, J., Ge, J., & Luo, Z. (2022). Effect of Irrigation with Activated Water on Root Morphology of Hydroponic Rice and Wheat Seedlings. Agronomy, 12(5), 1068. https://doi.org/10.3390/agronomy12051068