Water Evaporation Reduction Using Sunlight Splitting Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Materials
2.3. Sunlight Splitting Technology
2.4. Experimental Design and Procedures
2.5. Experimental Data Analysis
2.6. Statistical Analysis
3. Results
3.1. Cumulative Evaporation of Water from the Soil Surface
3.2. Cumulative Evaporation of Pan Surface
4. Discussion
4.1. The Soil Surface Evaporation and the Mechanism of Evaporation Reduction under the GMF
4.2. Cumulative Evaporation of Water from the Soil Surface
4.3. Cumulative Evaporation of Pan Surface
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Awan, K.S. Effect of Mulch on Soil Physical Properties and N, P, K Concentration in Maize (Zea mays) Shoots under Two Tillage Systems. Int. J. Agric. Biol. 2009, 11, 119–124. [Google Scholar]
- Khorsandi, F. Soil Water Conservation by Course Textured Volcanic Rock Mulch. Soc. Appl. Sci. 2011, 2, 762–765. [Google Scholar]
- Pereira, L.S.; Oweis, T.; Zairi, A. Irrigation management under water scarcity. Agric. Water Manag. 2002, 57, 175–206. [Google Scholar] [CrossRef]
- Pérez-Blanco, C.D.; Hrast-Essenfelder, A.; Perry, C. Irrigation Technology and Water Conservation: A Review of the Theory and Evidence. Rev. Environ. Econ. Policy 2020, 14, 216–239. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Williams, J.; Jiang, Q. Possible pathways and tensions in the food and water nexus. Earth’s Future 2017, 5, 449–462. [Google Scholar] [CrossRef] [Green Version]
- Grafton, R.Q.; Williams, J.; Perry, C.J.; Molle, F.; Ringler, C.; Steduto, P.; Udall, B.; Wheeler, S.A.; Wang, Y.; Garrick, D.; et al. The paradox of irrigation efficiency. Science 2018, 361, 748–750. [Google Scholar] [CrossRef] [Green Version]
- Greve, P.; Kahil, T.; Mochizuki, J.; Schinko, T.; Satoh, Y.; Burek, P.; Fischer, G.; Tramberend, S.; Burtscher, R.; Langan, S.; et al. Global assessment of water challenges under uncertainty in water scarcity projections. Nat. Sustain. 2018, 1, 486–494. [Google Scholar] [CrossRef]
- AbdAllah, A. Impacts of Kaolin and Pinoline foliar application on growth, yield and water use efficiency of tomato (Solanum lycopersicum L.) grown under water deficit: A comparative study. J. Saudi Soc. Agric. Sci. 2019, 18, 256–268. [Google Scholar] [CrossRef]
- AbdAllah, A.M.; Mashaheet, A.M.; Zobel, R.; Burkey, K.O. Physiological basis for controlling water consumption by two snap beans genotypes using different anti-transpirants. Agric. Water Manag. 2019, 214, 17–27. [Google Scholar] [CrossRef]
- Morsy, S.M.; Elbasyoni, I.S.; Abdallah, A.M.; Baenziger, P.S. Imposing water deficit on modern and wild wheat collections to identify drought-resilient genotypes. J. Agron. Crop Sci. 2021, 1–14. [Google Scholar] [CrossRef]
- Shalaby, M.M.; Nassar, I.N.; Abdallah, A.M. Evaporation suppression from open water surface using various floating covers with consideration of water ecology. J. Hydrol. 2021, 598, 126482. [Google Scholar] [CrossRef]
- Nguyen, T.B.T.; Nguyen, T.H.N.; Pham, Q.T. Water loss due to evaporation from open reservoirs under weather conditions in Vietnam. Asia-Pac. J. Chem. Eng. 2020, 15, e2488. [Google Scholar] [CrossRef]
- Meziani, A.; Remini, B.; Boutoutaou, D. Estimating evaporation from dam-reservoirs in arid and semi-arid regions case of Algeria. J. Eng. Appl. Sci. 2020, 15, 2097–2107. [Google Scholar]
- Lemon, E.R. The Potentialities for Decreasing Soil Moisture Evaporation Loss. Soil Sci. Soc. Am. J. 1956, 20, 120–125. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, Y.; Jiang, W.; Wei, X. Evaporation and evapotranspiration in a watermelon field mulched with gravel of different sizes in northwest China. Agric. Water Manag. 2006, 81, 173–184. [Google Scholar] [CrossRef]
- Mitchell, J.P.; Singh, P.; Wallender, W.W.; Munk, D.S.; Wroble, J.F.; Horwath, W.R.; Hogan, P.; Roy, R.; Hanson, B.R. No-tillage and high-residue practices reduce soil water evaporation. Calif. Agric. 2012, 66, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Youssef, Y.; Khodzinskaya, A. A Review of Evaporation Reduction Methods from Water Surfaces. E3S Web Conf. 2019, 97, 05044. [Google Scholar] [CrossRef]
- Knowles, J.F.; Blanken, P.D.; Williams, M.W.; Chowanski, K.M. Energy and surface moisture seasonally limit evaporation and sublimation from snow-free alpine tundra. Agric. For. Meteorol. 2012, 157, 106–115. [Google Scholar] [CrossRef]
- Kasirajan, S.; Ngouajio, M. Polyethylene and biodegradable mulches for agricultural applications: A review. Agron. Sustain. Dev. 2012, 32, 501–529. [Google Scholar] [CrossRef]
- Iqbal, R.; Raza, M.A.S.; Valipour, M.; Saleem, M.F.; Zaheer, M.S.; Ahmad, S.; Toleikiene, M.; Haider, I.; Aslam, M.U.; Nazar, M.A. Potential agricultural and environmental benefits of mulches—A review. Bull. Natl. Res. Cent. 2020, 44, 75. [Google Scholar] [CrossRef]
- McKuin, B.; Zumkehr, A.; Ta, J.; Bales, R.; Viers, J.H.; Pathak, T.; Campbell, J.E. Energy and water co-benefits from covering canals with solar panels. Nat. Sustain. 2021, 4, 609–617. [Google Scholar] [CrossRef]
- Barron-Gafford, G.A.; Pavao-Zuckerman, M.A.; Minor, R.L.; Sutter, L.F.; Barnett-Moreno, I.; Blackett, D.T.; Thompson, M.; Dimond, K.; Gerlak, A.K.; Nabhan, G.P.; et al. Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nat. Sustain. 2019, 2, 848–855. [Google Scholar] [CrossRef]
- Elamri, Y.; Cheviron, B.; Lopez, J.-M.; Dejean, C.; Belaud, G. Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces. Agric. Water Manag. 2018, 208, 440–453. [Google Scholar] [CrossRef]
- Awodoyin, R.; Ogbeide, F.; Oluwole, O. Effects of Three Mulch Types on the Growth and Yield of Tomato (Lycopersicon esculentum Mill.) and Weed Suppression in Ibadan, Rainforest-savanna Transition Zone of Nigeria. Trop. Agric. Res. Ext. 2010, 10, 53. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.E. Influence of Mulches on Runoff, Erosion, and Soil Moisture Depletion. Soil Sci. Soc. Am. J. 1966, 30, 110–114. [Google Scholar] [CrossRef]
- Yuan, C.; Lei, T.; Mao, L.; Liu, H.; Wu, Y. Soil surface evaporation processes under mulches of different sized gravel. Catena 2009, 78, 117–121. [Google Scholar] [CrossRef]
- McMillen, M. The Effect of Mulch Type and Thickness on the Soil Surface Evaporation Rate. Digit. Commons 2013. Available online: https://digitalcommons.calpoly.edu/cgi/viewcontent.cgi?article=1026&context=hcssp (accessed on 16 March 2022).
- Zribi, W.; Aragüés, R.; Medina, E.; Faci, J. Efficiency of inorganic and organic mulching materials for soil evaporation control. Soil Tillage Res. 2015, 148, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Liao, Y.; Cao, H.-X.; Liu, X.; Li, H.-T.; Hu, Q.-Y.; Xue, W.-K. By increasing infiltration and reducing evaporation, mulching can improve the soil water environment and apple yield of orchards in semiarid areas. Agric. Water Manag. 2021, 253, 106936. [Google Scholar] [CrossRef]
- Wu, Y.; Du, T.; Ding, R.; Yuan, Y.; Li, S.; Tong, L. An isotope method to quantify soil evaporation and evaluate water vapor movement under plastic film mulch. Agric. Water Manag. 2017, 184, 59–66. [Google Scholar] [CrossRef]
- Alvarez, V.M.; Baille, A.; Martínez, J.M.; González-Real, M.M. Efficiency of shading materials in reducing evaporation from free water surfaces. Agric. Water Manag. 2006, 84, 229–239. [Google Scholar] [CrossRef]
- Tesfuhuney, W.A.; Van Rensburg, L.D.; Walker, S.; Allemann, J. Quantifying and predicting soil water evaporation as influenced by runoff strip lengths and mulch cover. Agric. Water Manag. 2015, 152, 7–16. [Google Scholar] [CrossRef]
- Loz, B. What Are the Disadvantages of Mulching? Available online: https://takeayard.com/mulching-disadvantages/ (accessed on 17 November 2020).
- Nyamoti, M. State Four Disadvantages of Organic Mulches. Available online: https://www.atikaschool.org/agriculturetopicalquestions/state-four-disadvantages-of-organic-mulches (accessed on 16 June 2020).
- Weber, M.F.; Stover, C.A.; Gilbert, L.R.; Nevitt, T.J.; Ouderkirk, A.J. Giant Birefringent Optics in Multilayer Polymer Mirrors. Science 2000, 287, 2451–2456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, K.D.; Kazmierczak, T.; Lott, J.; Song, H.; Wu, Y.; Andrews, J.; Baer, E.; Hiltner, A.; Weder, C. Melt-processed all-polymer distributed Bragg reflector laser. Opt. Express 2008, 16, 10358–10363. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.H.; Crescimanno, M.; Dawson, N.J.; Mao, G.; Petrus, J.B.; Singer, K.D.; Baer, E.; Song, H. Folding flexible co-extruded all-polymer multilayer distributed feedback films to control lasing. Opt. Express 2012, 20, 15580–15588. [Google Scholar] [CrossRef]
- Li, M.; Liu, W.; Zhang, F.; Zhang, X.; Omer, A.A.A.; Zhang, Z.; Liu, Y.; Zhao, S. Polymer multilayer film with excellent UV-resistance & high transmittance and its application for glass-free photovoltaic modules. Sol. Energy Mater. Sol. Cells 2021, 229, 111103. [Google Scholar] [CrossRef]
- Liu, H.-J.; Kang, Y. Sprinkler irrigation scheduling of winter wheat in the North China Plain using a 20 cm standard pan. Irrig. Sci. 2006, 25, 149–159. [Google Scholar] [CrossRef]
- Liu, W.; Liu, L.; Guan, C.; Zhang, F.; Li, M.; Lv, H.; Yao, P.; Ingenhoff, J. A novel agricultural photovoltaic system based on solar spectrum separation. Sol. Energy 2018, 162, 84–94. [Google Scholar] [CrossRef]
- Li, M.; Liu, Y.; Zhang, F.; Zhang, X.; Zhang, Z.; Omer, A.A.A.; Zhao, S.; Liu, W. Design of multi-passband polymer multilayer film and its application in photovoltaic agriculture. Chin. Opt. Lett. 2021, 19, 112201. [Google Scholar] [CrossRef]
- Bilskie, J.; Scientific, C. Soil Water Status: Content and Potential; Campbell Scientific, Inc.: Logan, UT, USA, 2001; Volume 435, pp. 753–2342. [Google Scholar]
- Loftus, S.C. Chapter 19—Simple linear regression. In Basic Statistics; Loftus, R.S.C., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 227–247. [Google Scholar]
Soil Properties | Value | Units |
---|---|---|
pH | 8.21 | |
Organic matter | 4.37 | |
Total nitrogen | 0.034 | % |
Hydrolyzable nitrogen | 28.4 | |
Available phosphorus | 2.3 | |
Quick-acting potassium | 163 | |
Bulk density (ρbulk) | 0.995 | |
Porosity (ε) | 0.617 | % |
0 to 2 μm (Clay) | 8.49 | % |
2 to 50 μm (Powder) | 79.79 | % |
50 to 2000 μm (Sand grain) | 11.69 | % |
Mode | R | R2 | Adjusted R2 | Standard Error of the Estimate |
---|---|---|---|---|
Theopen-air | ||||
1 | 0.962 a | 0.925 | 0.923 | 5.38838 |
Glass shed | ||||
1 | 0.957 a | 0.915 | 0.913 | 4.83042 |
Glass-shed covered with multilayer film | ||||
1 | 0.962 a | 0.925 | 0.924 | 3.86032 |
Mode | Sum of Squares | df | Mean Square | F | Significant | |
---|---|---|---|---|---|---|
Theopen-air | ||||||
1 | Regression | 15,299.080 | 1 | 15,299.080 | 526.925 | 0.000 b |
Residual | 1248.489 | 43 | 29.035 | |||
Total | 16,547.569 | 44 | ||||
Glass shed | ||||||
1 | Regression | 10,851.165 | 1 | 10,851.165 | 465.058 | 0.000 b |
Residual | 1003.316 | 43 | 23.333 | |||
Total | 11,854.481 | 44 | ||||
Glass-shed covered with multilayer interferenc film | ||||||
1 | Regression | 7936.507 | 1 | 7936.507 | 532.577 | 0.000 b |
Residual | 640.790 | 43 | 14.902 | |||
Total | 8577.297 | 44 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Significant | ||
---|---|---|---|---|---|---|
B | Standard Error | Beta | ||||
Theopen-air | ||||||
1 | (Constant) | 23.049 | 1.464 | 14.109 | 0.000 | |
Evaporation time (d) | 1.420 | 0.055 | 0.962 | 22.955 | 0.000 | |
Glass shed | ||||||
(Constant) | 20.245 | 1.464 | 13.824 | 0.000 | ||
1 | Evaporation time (d) | 1.196 | 0.055 | 0.957 | 21.565 | 0.000 |
Glass-shed covered with multilayer film | ||||||
1 | (Constant) | 15.758 | 1.170 | 13.464 | 0.000 | |
Evaporation time (d) | 1.023 | 0.044 | 0.962 | 23.078 | 0.000 |
Mode | R | R2 | Adjusted R2 | Standard Error of the Estimate |
---|---|---|---|---|
Theopen-air | ||||
1 | 0.996 a | 0.991 | 0.991 | 8.06559 |
Glass shed | ||||
1 | 0.995 a | 0.989 | 0.989 | 8.45129 |
Glass-shed covered with multilayer film | ||||
1 | 0.993 a | 0.986 | 0.985 | 7.75029 |
Mode | Sum of Squares | df | Mean Square | F | Significant | |
---|---|---|---|---|---|---|
Theopen-air | ||||||
1 | Regression | 311,340.197 | 1 | 311,340.197 | 4785.890 | 0.000 b |
Residual | 2797.312 | 43 | 65.054 | |||
Total | 314,137.510 | 44 | ||||
Glass shed | ||||||
1 | Regression | 280,374.615 | 1 | 280,374.615 | 3925.477 | 0.000 b |
Residual | 3071.247 | 43 | 71.424 | |||
Total | 283,445.862 | 44 | ||||
Glass-shed covered with multilayer film | ||||||
1 | Regression | 176,910.569 | 1 | 176,910.569 | 2945.219 | 0.000 b |
Residual | 2582.882 | 43 | 60.067 | |||
Total | 179,493.452 | 44 |
Model | Unstandardized Coefficients | Standardized Coefficients | t | Significant | ||
---|---|---|---|---|---|---|
B | Standard Error | Beta | ||||
Theopen-air | ||||||
1 | (Constant) | −10.969 | 2.445 | −4.486 | 0.000 | |
Evaporation time (d) | 6.405 | 0.093 | 0.996 | 69.180 | 0.000 | |
Glass shed | ||||||
(Constant) | −13.106 | 2.562 | −5.115 | 0.000 | ||
1 | Evaporation time (d) | 6.078 | 0.097 | 0.995 | 62.654 | 0.000 |
Glass-shed covered with multilayer film | ||||||
1 | (Constant) | −12.265 | 2.350 | −5.220 | 0.000 | |
Evaporation time (d) | 4.828 | 0.089 | 0.993 | 54.270 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali Abaker Omer, A.; Li, M.; Liu, W.; Liu, X.; Zheng, J.; Zhang, F.; Zhang, X.; Osman Hamid Mohammed, S.; Liu, Y.; Ingenhoff, J.; et al. Water Evaporation Reduction Using Sunlight Splitting Technology. Agronomy 2022, 12, 1067. https://doi.org/10.3390/agronomy12051067
Ali Abaker Omer A, Li M, Liu W, Liu X, Zheng J, Zhang F, Zhang X, Osman Hamid Mohammed S, Liu Y, Ingenhoff J, et al. Water Evaporation Reduction Using Sunlight Splitting Technology. Agronomy. 2022; 12(5):1067. https://doi.org/10.3390/agronomy12051067
Chicago/Turabian StyleAli Abaker Omer, Altyeb, Ming Li, Wen Liu, Xinliang Liu, Jianan Zheng, Fangxin Zhang, Xinyu Zhang, Samia Osman Hamid Mohammed, Yang Liu, Jan Ingenhoff, and et al. 2022. "Water Evaporation Reduction Using Sunlight Splitting Technology" Agronomy 12, no. 5: 1067. https://doi.org/10.3390/agronomy12051067
APA StyleAli Abaker Omer, A., Li, M., Liu, W., Liu, X., Zheng, J., Zhang, F., Zhang, X., Osman Hamid Mohammed, S., Liu, Y., Ingenhoff, J., & Kumar, R. (2022). Water Evaporation Reduction Using Sunlight Splitting Technology. Agronomy, 12(5), 1067. https://doi.org/10.3390/agronomy12051067