Dissecting the Genotype × Environment Interaction for Potato Tuber Yield and Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Genotypes
2.3. Design and Agronomic Management
2.4. Yield and Yield Components
2.5. Weather Description
- higher minimum and maximum temperatures in March (+1.4 and +0.9 °C in Acireale, +1.1 and +0.9 °C in Giarre, +1.1 and +0.9 °C in Mascali) in Season I;
- lower rainfall throughout the growing season (612 vs. 831 mm in Acireale, 732 vs. 1040 in Giarre, and 702 vs. 960 in Mascali) in Season II, but a high concentration in March when rainfall was 41%, 37%, and 34% of the total for the growing season in Acireale, Giarre, and Mascali, respectively;
- higher rainfall (1150 vs. 831 mm in Acireale, 1176 vs. 1040 mm in Giarre, and 1206 vs. 960 mm in Mascali) in Season III, mostly concentrated in December and March, as well as higher minimum and maximum temperatures in April and May, which led to a strong increase of accumulated GDD (+171 in Acireale, +193 in Giarre, and +194 in Mascali, respectively);
- lower minimum and maximum temperatures in March and lower rainfall (by about half) throughout the growing season across the three locations in Season IV.
2.6. Statistical Analysis
3. Results and Discussion
3.1. Combined ANOVA
3.2. Stability Analysis
3.2.1. AMMI Analysis
3.2.2. GGE Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO Statistical Database. Production. Crops. Rome, Italy. 2020. Available online: http://faostat.fao.org (accessed on 30 October 2021).
- Ierna, A.; Mauromicale, G. How irrigation water saving strategy can affect tuber growth and nutritional composition of potato. Sci. Hortic. 2022, 299, 111034. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G. The influence of growing environment on the antioxidant and mineral content of “early” crop potato. J. Food Compos. Anal. 2013, 32, 28–35. [Google Scholar] [CrossRef]
- Lombardo, S.; Scavo, A.; Abbate, C.; Pandino, G.; Parisi, B.; Mauromicale, G. Mycorrhizal inoculation improves mineral content of organic potatoes grown under calcareous soil. Agriculture 2021, 11, 333. [Google Scholar] [CrossRef]
- Ierna, A.; Parisi, B. Crop growth and tuber yield of “early” potato crop under organic and conventional farming. Sci. Hortic. 2014, 165, 260–265. [Google Scholar] [CrossRef]
- Foti, S.; Mauromicale, G.; Ierna, A. Influence of irrigation regimes on growth and yield of potato cv. Spunta. Potato Res. 1995, 38, 307–317. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. Sustainable and profitable nitrogen fertilization management of potato. Agronomy 2019, 9, 582. [Google Scholar] [CrossRef] [Green Version]
- Ierna, A.; Mauromicale, G. How moderate water stress can affect water use efficiency indices in potato. Agronomy 2020, 10, 1034. [Google Scholar] [CrossRef]
- Ierna, A.; Parisi, B.; Melilli, M.G. Overall quality of “early” potato tubers as affected by organic cultivation. Agronomy 2022, 12, 296. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicae, G. The mineral profile in organically and conventionally grown “early” crop potato tubers. Sci. Hortic. 2014, 167, 169–173. [Google Scholar] [CrossRef]
- Samaniego, I.; Espin, S.; Cuesta, X.; Arias, V.; Rubio, A.; Llerena, W.; Angós, I.; Carrillo, W. Analysis of environmental conditions effect in the phytochemical composition of potato (Solanum tuberosum) cultivars. Plants 2020, 9, 815. [Google Scholar] [CrossRef]
- Pour-Aboughadareh, A.; Khalili, M.; Poczai, P.; Olivoto, T. Stability Indices to Deciphering the Genotype-by-Environment Interaction (GEI) Effect: An Applicable Review for Use in Plant Breeding Programs. Plants 2022, 11, 414. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, D.T.; Griffiths, A.J. An Introduction to Genetic Analysis, 7th ed.; WH Freeman and Company: New York, NY, USA, 2000. [Google Scholar]
- Gauch, H.G. Statistical analysis of yield trials by AMMI and GGE. Crop Sci. 2006, 46, 1488–1500. [Google Scholar] [CrossRef]
- Bradshaw, J.E. Genetics of Agrihorticultural Traits. In Handbook of Potato Production, Improvement and Postharvest Management; Gopal, J., Khurana, S.M.P., Eds.; Food Products Press: Binghampton, NY, USA, 2006; pp. 41–75. [Google Scholar]
- Yan, W.; Kang, M.S.; Ma, B.; Woods, S.; Cornelius, P.L. GGE biplot vs. AMMI analysis of genotype-by-genotype environment data. Crop Sci. 2007, 47, 643–655. [Google Scholar] [CrossRef] [Green Version]
- Flis, B.; Domański, L.; Zimnoch-Guzowska, E.; Polgar, Z.; Pousa, S.Á.; Pawlak, A. Stability Analysis of Agronomic Traits in Potato Cultivars of Different Origin. Am. J. Potato Res. 2014, 91, 404–413. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Hunt, L.A.; Sheng, Q.; Szlavnics, Z. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci. 2000, 40, 597–605. [Google Scholar] [CrossRef]
- Katsenios, N.; Sparangis, P.; Leonidakis, D.; Katsaros, G.; Kakabouki, I.; Vlachakis, D.; Efthimiadou, A. Effect of Genotype × Environment Interaction on Yield of Maize Hybrids in Greece Using AMMI Analysis. Agronomy 2021, 11, 479. [Google Scholar] [CrossRef]
- Senguttuvel, P.; Sravanraju, N.; Jaldhani, V.; Divya, B.; Beulah, P.; Nagaraju, P.; Manasa, Y.; Prasad, A.S.; Brajendra, P.; Gireesh, C.; et al. Evaluation of genotype by environment interaction and adaptability in lowland irrigated rice hybrids for grain yield under high temperature. Sci. Rep. 2021, 11, 15825. [Google Scholar] [CrossRef]
- Tena, E.; Goshu, F.; Mohamad, H.; Tesfa, M.; Tesfaye, D.; Seife, A. Genotype × environment interaction by AMMI and GGE-biplot analysis for sugar yield in three crop cycles of sugarcane (Saccharum officinirum L.) clones in Ethiopia. Cogent. Food. Agric. 2019, 5, 1651925. [Google Scholar] [CrossRef]
- Rakshit, S.; Ganapathy, K.N.; Gomashe, S.S.; Rathore, A.; Ghorade, R.B.; Kumar, M.V.; Ganesmurthy, K.; Jain, S.K.; Kamtar, M.Y.; Sachan, J.S.; et al. GGE biplot analysis to evaluate genotype, environment and their interactions in sorghum multi-location data. Euphytica 2012, 185, 465–479. [Google Scholar] [CrossRef]
- Khan, M.M.H.; Rafii, M.Y.; Ramlee, S.I.; Jusoh, M.; Al Mamun, M. AMMI and GGE biplot analysis for yield performance and stability assessment of selected Bambara groundnut (Vigna subterranea L. Verdc.) genotypes under the multi-environmental trials (METs). Sci. Rep. 2021, 11, 22791. [Google Scholar] [CrossRef]
- Tirado, R.M.; Tirado, R.L.; Mendoza, J.C. Genotype × environment interaction in potato (Solanum tuberosum L.) yield with pigmented flesh in Cutervo, Peru. Chilean J. Agric. Anim. Sci. 2018, 34, 191–198. [Google Scholar]
- Lenartowicz, T.; Piepho, H.P.; Przystalski, M. Stability analysis of tuber yield and starch yield in mid-late and late maturing starch cultivars of potato (Solanum tuberosum). Potato Res. 2020, 63, 179–197. [Google Scholar] [CrossRef]
- Affleck, I.; Sullivan, J.A.; Tarn, R.; Falk, D.E. Genotype by environment interaction effect on yield and quality of potatoes. Can. J. Plant Sci. 2008, 88, 1099–1107. [Google Scholar] [CrossRef]
- Gedif, M.; Yigzaw, D. Genotype by environment interaction analysis for tuber yield of potato (solanum tuberosum L.) using a GGE biplot method in Amhara Region, Ethiopia. Agric. Sci. 2014, 5, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Muthoni, J.; Shimelis, H.; Melis, R. Genotype x Environment Interaction and Stability of Potato Tuber Yield and Bacterial Wilt Resistance in Kenya. Am. J. Potato Res. 2015, 92, 367–378. [Google Scholar] [CrossRef]
- Cadersa, Y.; Santchurn, D.; Govinden Soulange, J.; Saumtally, S.; Parmessur, Y. Genotype- by-environment interaction for marketable tuber yield in advanced potato clones using AMMI and GGE methods. Afr. Crop Sci. J. 2022, 30, 331–346. [Google Scholar] [CrossRef]
- Sood, S.; Bhardwaj, V.; Kumar, V. BLUP and stability analysis of multi-environment trials of potato varieties in sub-tropical Indian conditions. Heliyon 2020, 6, e05525. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; U.S. Government Publishing Office: Washington, DC, USA, 1999.
- Italian Society of Soil Science. Metodi Normalizzati Di Analisi Del Suolo; Edagricole: Bologna, Italy, 1985. [Google Scholar]
- van Berloo, R.; Hutten, R.C.B.; van Eck, H.J.; Visser, R.G.F. An Online Potato Pedigree Database Resource. Potato Res. 2007, 50, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Schippers, P.A. The relationship between specific gravity and percentage dry matter in potato tubers. Am. Potato J. 1976, 53, 111–122. [Google Scholar] [CrossRef]
- Lombardo, S.; Abbate, C.; Pandino, G.; Parisi, B.; Scavo, A.; Mauromicale, G. Productive and physiological response of organic potato grown under highly calcareous soils to fertilization and mycorrhization management. Agronomy 2020, 10, 1200. [Google Scholar] [CrossRef]
- Zobel, R.W.; Wright, M.J.; Gauch Jr, H.G. Statistical analysis of a yield trial. Agron. J. 1988, 80, 388–393. [Google Scholar] [CrossRef]
- Yan, W.; Kang, M.S. GGE Biplot Analysis: A Graphical Tool for Breeders, Geneticists, and Agronomists; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Crossa, J.; Cornelius, P.L.; Yan, W. Biplots of linear-bilinear models for studying crossover genotype × environment interaction. Crop Sci. 2002, 42, 619–633. [Google Scholar] [CrossRef]
- Scavo, A.; Mauromicale, G.; Ierna, A. Genotype × environment interactions of potato tuber quality characteristics by AMMI and GGE biplot analysis. Sci. Hortic. 2023, 310, 111750. [Google Scholar] [CrossRef]
- Balakrishnan, D.; Subrahmanyam, D.; Badri, J.; Raju, A.K.; Rao, Y.V.; Beerelli, K.; Mesapogu, S.; Surapaneni, M.; Ponnuswamy, R.; Padmavathi, G.; et al. Genotype × environment interactions of yield traits in backcross introgression lines derived from Oryza sativa cv. Swarna/Oryza nivara. Front. Plant Sci. 2016, 7, 1530. [Google Scholar] [CrossRef] [Green Version]
- Movahedi, H.; Mostafavi, K.; Shams, M.; Golparvar, A.R. AMMI analysis of genotype × environment interaction on grain yield of sesame (Sesamum indicum L.) genotypes in Iran. Biotechnol. Biotechnol. Equip. 2020, 34, 1013–1018. [Google Scholar] [CrossRef]
- Lizana, C.X.; Sandaña, P.; Behn, A.; Ávila-Valdés, A.; Ramírez, D.A.; Soratto, R.P.; Campos, H. Potato. In Crop Physiology: Case Histories for Major Crops; Sadras, V.O., Calderini, D.F., Eds.; Academic Press: Cambridge, MA, USA, 2021; Volume 18, pp. 551–587. [Google Scholar] [CrossRef]
- Celis-Gamboa, C.; Struik, P.C.; Jacobsen, E.; Visser, R.G.F. Temporal dynamics of tuber formation and related processes in a crossing population of potato (Solanum tuberosum). Ann. Appl. Biol. 2003, 143, 175–186. [Google Scholar] [CrossRef]
- Thangavel, P.; Anandan, A.; Eswaran, R. AMMI analysis to comprehend genotype-by-environment (G × E) interactions in rainfed grown mungbean (Vigna radiata L.). Aust. J. Crop Sci. 2011, 5, 1767–1775. [Google Scholar]
- Yang, R.C.; Crossa, J.; Cornelius, P.L.; Burgueño, J. Biplot analysis of genotype × environment interaction: Proceed with caution. Crop Sci. 2009, 49, 1564–1576. [Google Scholar] [CrossRef] [Green Version]
- Piepho, H.P. Robustness of statistical tests for multiplicative terms in the additive main effects and multiplicative interaction model for cultivar trials. Theor. Appl. Genet. 1995, 90, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Shahriari, Z.; Heidari, B.; Dadkhodaie, A. Dissection of genotype × environment interactions for mucilage and seed yield in Plantago species: Application of AMMI and GGE biplot analyses. PLoS ONE 2018, 13, e0196095. [Google Scholar] [CrossRef] [Green Version]
- Koundinya, A.V.V.; Pandit, M.K.; Ramesh, D.; Mishra, P. Phenotypic stability of eggplant for yield and quality through AMMI, GGE and cluster analyses. Sci. Hortic. 2019, 247, 216–223. [Google Scholar] [CrossRef]
Soil Characteristic | Unit of Measurement | Acireale | Giarre | Mascali |
---|---|---|---|---|
Sand | % | 82 | 85 | 90 |
Silt | % | 14 | 11 | 7 |
Clay | % | 4 | 4 | 3 |
Organic matter | % | 4.9 | 2.5 | 2.4 |
C/N | / | 9.5 | 8.9 | 10.7 |
Total N | % | 0.30 | 0.16 | 0.13 |
P2O5 available | ppm | 428 | 236 | 149 |
K2O exchangeable | ppm | 1193 | 723 | 672 |
pH | / | 7.3 | 7.4 | 7.4 |
Electrical conductivity | mS cm−1 | 1.96 | 2.26 | 0.60 |
Cation exchange capacity | meq 100 g−1 | 20.2 | 12.5 | 11.9 |
Ca exchangeable | meq 100 g−1 | 13.0 | 7.2 | 8.0 |
Mg exchangeable | meq 100 g−1 | 3.8 | 1.9 | 2.2 |
Na exchangeable | meq 100 g−1 | 0.8 | 1.9 | 0.3 |
K exchangeable | meq 100 g−1 | 2.5 | 1.5 | 1.4 |
Zn | ppm | 57 | 8 | 6 |
Cu | ppm | 30 | 8 | 19 |
Fe | ppm | 103 | 110 | 78 |
Mn | ppm | 30 | 11 | 10 |
Source of Variation | MY | NMTP | AMTW | UT | TSG | CT < 40 mm | CT 40–60 mm | CT > 60 mm | |
---|---|---|---|---|---|---|---|---|---|
G | Arizona | 44.5 (2.0) b | 7.4 (0.5) a | 122.5 (5.1) c | 1.3 (0.3) b | 1048.2 (1.0) c | 9.3 (1.5) bc | 70.9 (2.2) bc | 19.8 (1.9) bc |
Generosa | 46.5 (2.4) a | 6.9 (0.4) bc | 137.9 (6.7) a | 1.034 (0.2) b | 1055.7 (1.1) b | 9.8 (1.5) b | 72.6 (2.4) b | 17.6 (2.5) c | |
Levante | 35.7 (1.6) d | 7.3 (0.5) ab | 99.5 (3.9) e | 2.3 (0.84) a | 1062.2 (1.1) a | 18.2 (1.7) a | 76.1 (1.7) a | 5.7 (1.3) d | |
Paradiso | 41.5 (1.8) c | 6.5 (0.4) c | 128.4 (5.5) b | 1.5 (0.3) b | 1049.3 (1.2) c | 6.3 (0.9) d | 69.8 (1.9) c | 23.9 (1.9) a | |
Vogue | 40.0 (2.1) c | 6.8 (0.4) bc | 115.9 (5.7) d | 2.9 (0.7) a | 1049.4 (1.1) c | 8.5 (1.1) cd | 71.1 (2.6) bc | 20.4 (2.8) b | |
E | E1 | 43.4 (1.7) c | 11.0 (0.4) a | 77.8 (4.0) f | 2.2 (0.6) bc | 1057.6 (1.5) ab | 24.8 (3.2) a | 57.6 (3.1) f | 17.5 (2.5) cd |
E2 | 23.7 (1.3) g | 3.9 (0.2) hi | 123.6 (7.4) d | 2.3 (0.6) ab | 1054.4 (2.1) cde | 5.2 (1.5) e | 72.4 (2.7) cd | 22.4 (3.7) bc | |
E3 | 39.8 (2.9) de | 7.3 (0.6) ef | 101.5 (3.3) e | 4.6 (1.6) a | 1050.4 (0.9) f | 9.6 (1.1) d | 75.2 (1.1) bc | 15.1 (1.5) d | |
E4 | 54.7 (2.8) a | 8.1 (0.2) cd | 127.5 (5.9) cd | 1.1 (0.3) ef | 1051.7 (1.8) ef | 13.3 (1.6) b | 61.8 (3.5) f | 24.9 (3.5) b | |
E5 | 49.2 (2.7) b | 6.9 (0.4) ef | 134.3 (3.1) bc | 0.6 (0.21) fg | 1059.8 (1.3) a | 3.6 (0.9) e | 59.7 (2.9) f | 36.6 (3.1) a | |
E6 | 33.3 (1.7) f | 4.5 (0.2) h | 139.8 (6.7) b | 2.5 (0.6) ab | 1056.1 (1.9) bc | 2.6 (1.1) f | 87.3 (1.5) a | 10.1 (2.1) e | |
E7 | 38.8 (1.5) e | 6.2 (0.5) g | 123.1 (5.8) d | 1.4 (0.3) cde | 1050.5 (2.3) f | 11.9 (1.7) bcd | 84.8 (1.3) a | 3.2 (1.2) f | |
E8 | 47.1 (2.9) b | 8.8 (0.4) bc | 101.6 (43) e | 2.0 (0.5) bcd | 1052.8 (2.0) def | 11.3 (1.1) cd | 66.6 (3.5) e | 22.1 (3.9) bc | |
E9 | 47.1 (2.2) b | 9.1 (0.3) b | 98.0 (3.5) e | 0.6 (0.2) fg | 1054.7 (2.1) cd | 14.6 (2.5) b | 73.5 (1.6) cd | 11.9 (2.8) e | |
E10 | 34.0 (1.4) f | 3.6 (0.2) i | 185.2 (8.0) a | 0.5 (0.2) g | 1052.9 (2.8) def | 3.3 (1.6) f | 77.9 (2.5) b | 18.8 (2.7) bc | |
E11 | 47.1 (4.1) b | 7.5 (0.4) de | 118.6 (8.0) d | 1.2 (0.3) def | 1043.3 (2.1) g | 13.0 (1.7) bc | 78.1 (1.4) b | 8.9 (2.0) e | |
E12 | 42.0 (3.8) cd | 6.7 (0.3) fg | 119.1 (10.2) d | 1.7 (0.5) cde | 1051.2 (2.5) f | 11.9 (2.1) bcd | 69.8 (3.5) de | 18.2 (5.1) cd | |
ANOVA | G a | 41.1 *** | 5.1 *** | 49.4 *** | 10.0 *** | 85.1 *** | 57.5 *** | 5.9 *** | 70.3 *** |
E b | 70.0 *** | 71.87 *** | 70.6 *** | 10.2 *** | 17.7 *** | 56.4 *** | 35.5 *** | 34.3 *** | |
G × E c | 18.2 *** | 4.1 *** | 7.5 *** | 5.5 *** | 4.7 *** | 6.3 *** | 6.5 *** | 8.4 *** | |
Blocks d | 1.0 ns | 2.6 ns | 1.1 ns | 1.0 ns | 1.8 ns | 1.1 ns | 2.7 ns | 2.7 ns |
Marketable Yield | N. of Marketable Tubers Plant−1 | Average Marketable Tuber Weight | Unmarketable Tubers | |||||||||
SS | MS | SS% of GEI | SS | MS | SS% of GEI | SS | MS | SS% of GEI | SS | MS | SS% of GEI | |
AMMI analysis | ||||||||||||
IPC1 a | 3414.4 | 243.9 *** | 42.0 | 69.1 | 4.9 *** | 57.8 | 14471.7 | 1033.6 ** | 43.4 | 769.1 | 54.9 ** | 62.0 |
IPC2 b | 2294.3 | 191.1 *** | 28.2 | 27.1 | 2.1 *** | 22.6 | 9612.1 | 801.0 ** | 28.8 | 252.7 | 21.1 * | 20.4 |
IPC3 c | 1806.4 | 180.6 *** | 22.2 | 18.1 | 1.7 *** | 15.1 | 7052.6 | 705.3 * | 21.2 | 135.6 | 13.6 ns | 10.9 |
GGE analysis | ||||||||||||
PC1 a | 4177.4 | 298.4 *** | 42.7 | 70.9 | 5.1 *** | 53.1 | 27903.2 | 1993.1 ** | 52.3 | 798.7 | 57.0 ** | 55.3 |
PC2 b | 2429.3 | 202.5 *** | 24.8 | 32.8 | 2.6 *** | 24.6 | 14039.1 | 1169.9 ** | 26.3 | 310.6 | 25.9 * | 21.5 |
PC3 c | 2186.0 | 218.5 *** | 22.3 | 24.1 | 2.3 *** | 18.0 | 8337.3 | 833.6 * | 15.6 | 215.5 | 21.5 ns | 14.9 |
Tuber specific gravity | Caliber tubers < 40 mm | Caliber tubers 40–60 mm | Caliber tubers > 60 mm | |||||||||
SS | MS | SS% of GEI | SS | MS | SS% of GEI | SS | MS | SS% of GEI | SS | MS | SS% of GEI | |
AMMI analysis | ||||||||||||
IPC1 a | 973.4 | 69.5 *** | 47.0 | 1284.2 | 91.6 ns | 51.1 | 1435.0 | 102.4 *** | 47.6 | 3606.6 | 257.5 ns | 52.4 |
IPC2 b | 581.2 | 48.4 *** | 28.1 | 623.9 | 52.0 ns | 24.8 | 785.7 | 65.5 *** | 26.1 | 1416.4 | 118.0 ns | 20.6 |
IPC3 c | 337.4 | 33.6 *** | 16.3 | 481.9 | 48.2 ns | 19.2 | 620.6 | 62.1 *** | 20.6 | 971.0 | 97.0 ns | 14.1 |
GGE analysis | ||||||||||||
PC1 a | 3820.4 | 272.9 *** | 69.9 | 2948.4 | 210.6 ns | 63.9 | 1490.2 | 106.4 *** | 45.6 | 6388.5 | 456.2 ns | 53.0 |
PC2 b | 947.0 | 78.8 *** | 17.3 | 975.6 | 81.3 ns | 21.2 | 794.2 | 66.2 *** | 24.3 | 3353.7 | 279.5 ns | 27.8 |
PC3 c | 443.5 | 44.4 *** | 8.1 | 541.1 | 54.0 ns | 11.7 | 661.1 | 66.1 *** | 20.2 | 1415.5 | 141.5 ns | 11.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scavo, A.; Mauromicale, G.; Ierna, A. Dissecting the Genotype × Environment Interaction for Potato Tuber Yield and Components. Agronomy 2023, 13, 101. https://doi.org/10.3390/agronomy13010101
Scavo A, Mauromicale G, Ierna A. Dissecting the Genotype × Environment Interaction for Potato Tuber Yield and Components. Agronomy. 2023; 13(1):101. https://doi.org/10.3390/agronomy13010101
Chicago/Turabian StyleScavo, Aurelio, Giovanni Mauromicale, and Anita Ierna. 2023. "Dissecting the Genotype × Environment Interaction for Potato Tuber Yield and Components" Agronomy 13, no. 1: 101. https://doi.org/10.3390/agronomy13010101
APA StyleScavo, A., Mauromicale, G., & Ierna, A. (2023). Dissecting the Genotype × Environment Interaction for Potato Tuber Yield and Components. Agronomy, 13(1), 101. https://doi.org/10.3390/agronomy13010101