Molecular Detection and Analysis of Blast Resistance Genes in Rice Main Varieties in Jiangsu Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Rice Main Varieties
2.2. Plant Infection Assays
2.3. Disease Assessments
2.4. Molecular Screening for Rice Blast R Genes
2.5. Data Analysis
3. Results
3.1. Genotypic Assays for 14 R Genes in the Rice Main Varieties
3.2. Phenotyping of Rice Blast Disease
3.3. The Resistance Level Is Positively Correlated with the Resistance Genes
3.4. Cluster Analysis of the 119 Rice Main Varieties
3.5. Analysis of R Genes Contribution Rate and R Gene Combination Patterns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wilson, R.; Talbot, N. Under pressure, investigating the biology of plant infection by Magnaporthe oryzae. Nat. Rev. Microbiol. 2009, 7, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Fahad, S.; Nie, L.; Khan, F.; Chen, Y.; Hussain, S.; Wu, C.; Xiong, D.; Jing, W.; Saud, S.; Khan, F.; et al. Disease resistance in rice and the role of molecular breeding in protecting rice crops against diseases. Biotechnol. Lett. 2014, 36, 1407–1420. [Google Scholar] [CrossRef] [PubMed]
- Couch, B.; Kohn, L. A multilocus gene geneology concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from Magnaporthe grisea. Mycologia 2002, 94, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Liu, M.; Zhang, A.; Dai, Y.; Chen, W.; Chen, F.; Wang, W.; Shen, D.; Telebanco-Yanoria, M.; Ren, B.; et al. Co-evolved plant and blast fungus ascorbate oxidases orchestrate the redox state of host apoplast to modulate rice immunity. Mol. Plant 2022, 15, 1347–1366. [Google Scholar] [CrossRef] [PubMed]
- Singh, W.; Kapila, R.; Sharma, T.; Rathour, R. Genetic and physical mapping of a new allele of Pik locus from japonica rice ‘Lijiangxintuanheigu’. Euphytica 2015, 205, 889–901. [Google Scholar] [CrossRef]
- Qi, Z.; Yu, J.; Zhang, R.; Yu, M.; Du, Y.; Cao, H.; Song, T.; Pan, X.; Liang, D.; Liu, Y. Identification and evaluation of resistance of new rice cultivars(lines) and main cultivars to rice blast in Jiangsu province from 2016 to 2020. Jiangsu Agric. Sci. 2022, 50, 91–96, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhai, C.; Zhang, Y.; Yao, N.; Lin, F.; Liu, Z.; Dong, Z.; Wang, L.; Pan, Q. Function and interaction of the coupled genes responsible for Pik-h encoded rice blast resistance. PLoS ONE 2014, 9, e98067. [Google Scholar] [CrossRef]
- Khang, C.; Park, S.; Lee, Y.; Valent, B.; Kang, S. Genome organization and evolution of the AVR-Pita avirulence gene family in the Magnaporthe grisea species complex. Mol. Plant-Microbe Interact. 2008, 21, 658–670. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Si, W.; Deng, Q.; Li, P.; Yang, S. Rapid evolution of avirulence genes in rice blast fungus Magnaporthe oryzae. BMC Genet. 2014, 15, 45. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Deng, Y.; Han, D.; Yang, Y.; He, J.; Deng, Q. Analysis of genetic diversity among populations for the rice blast fungus Magnaporthe grisea in southwest China. J. Plant Prot. 2016, 43, 537–543, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Flor, H. Current status of the gene for gene concept. Annu. Rev. Phytopathol. 1971, 9, 275–296. [Google Scholar] [CrossRef]
- Silue, D.; Notteghem, J.; Tharreau, D. Evidence for a gene-for-gene relationship in the Oryza sativa-Magnaporthe grisea pathosystem. Phytopathology 1992, 82, 569–578. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Mitchell, T.; Hu, Y.; Liu, X.; Dai, L.; Wang, G. Recent progress and understanding of the molecular mechanisms of the rice-Magnaporthe oryzae interaction. Mol. Plant Pathol. 2010, 11, 419–427. [Google Scholar] [CrossRef] [PubMed]
- Cesari, S.; Thilliez, G.; Ribot, C.; Chalvon, V.; Michel, C.; Jauneau, A.; Rivas, S.; Alaux, L.; Kanzaki, H.; Okuyama, Y.; et al. The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding. Plant Cell 2013, 25, 1463–1481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuyama, Y.; Kanzaki, H.; Abe, A.; Yoshida, K.; Tamiru, M.; Saitoh, H.; Fujibe, T.; Matsumura, H.; Shenton, M.; Galam, D.; et al. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes. Plant J. 2011, 66, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Rai, A.; Kumar, S.; Gupta, S.; Gautam, N.; Singh, N.; Sharma, T. Functional complementation of rice blast resistance gene Pi-kh (Pi54) conferring resistance to diverse strains of Magnaporthe oryzae. J. Plant Biochem. Biotechnol. 2011, 20, 55–65. [Google Scholar] [CrossRef]
- Hua, L.; Wu, J.; Chen, C.; Wu, W.; He, X.; Liu, F.; Wang, L.; Ashikawa, I.; Matsumoto, T.; Wang, L.; et al. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast. Theor. Appl. Genet. 2012, 125, 1047–1055. [Google Scholar] [CrossRef]
- Fukuoka, S.; Saka, N.; Koga, H.; Ono, K.; Shimizu, T.; Ebana, K.; Hayashi, N.; Takahashi, A.; Hirochika, H.; Okuno, K.; et al. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 2009, 325, 998–1001. [Google Scholar] [CrossRef]
- Hayashi, N.; Inoue, H.; Kato, T.; Funao, T.; Shirota, M.; Shimizu, T.; Kanamori, H.; Yamane, H.; Hayano-Saito, Y.; Matsumoto, T.; et al. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication. Plant J. 2010, 64, 498–510. [Google Scholar] [CrossRef]
- van der Biezen, E.; Jones, J. The NB-ARC domain: A novel signalling motif shared by plant resistance gene products and regulators of cell death in animals. Curr. Biol. 1998, 8, R226–R227. [Google Scholar] [CrossRef]
- Bryan, G.; Wu, K.; Farrall, L.; Jia, Y.; Hershey, H.; Mc Adams, S.; Faulk, K.; Donaldson, G.; Tarchini, R.; Valent, B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta. Plant Cell 2000, 12, 2033–2046. [Google Scholar] [CrossRef]
- De la Concepcion, J.; Franceschetti, M.; Maqbool, A.; Saitoh, H.; Terauchi, R.; Kamoun, S.; Banfield, M. Polymorphic residues in rice NLRs expand binding and response to effectors of the blast pathogen. Nat. Plants 2018, 4, 576–585. [Google Scholar] [CrossRef] [Green Version]
- Deng, Y.; Zhai, K.; Xie, Z.; Yang, D.; Zhu, X.; Liu, J.; Wang, X.; Qin, P.; Yang, Y.; Zhang, G.; et al. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance. Science 2017, 355, 962–965. [Google Scholar] [CrossRef]
- Andersen, J.; Lubberstedt, T. Functional markers in plants. Trends Plant Sci. 2003, 8, 554–560. [Google Scholar] [CrossRef]
- Xing, X.; Liu, X.; Chen, H.; Yang, F.; Li, Y.; Liao, H.; You, L.; Liu, J.; Dai, L.; Wang, G. Improving blast resistance of rice restorer R288 by molecular marker-assisted selection of Pi9 gene. Crop Res. 2016, 30, 487–491, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Liang, Y.; Yang, T.; Tan, L.; Wen, T.; Wu, J.; Jiang, N.; Li, Z.; Dai, L.; Wang, G.; Liu, X. Development of the molecular marker tightly-linked with the broad-spectrum blast resistance Pigm and its breeding practice in rice. Hybrid Rice 2013, 28, 63–74, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Yang, F.; Li, Y.; Liu, X.; Liu, J.; Chen, H.; Liao, H.; Huang, J.; Liang, Y. Improving blast resistance of the early indica rice 1701 by molecular marker-assisted selection. Mol. Plant Breed. 2017, 15, 2212–2217, (In Chinese with English Abstract). [Google Scholar]
- Fjellstrom, R.; Conaway-Bormans, C.; McClung, A.; Marchetti, M.; Shank, A.; Park, W. Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes. Crop Sci. 2004, 44, 1790–1798. [Google Scholar] [CrossRef] [Green Version]
- Gouda, P.; Saikumar, S.; Varma, C.; Nagesh, K.; Thippeswamy, S.; Shenoy, V.; Ramesha, M.; Shashidhar, H.; Ahn, S. Marker-assisted breeding of Pi-1 and Piz-5 genes imparting resistance to rice blast in PRR78, restorer line of Pusa RH-10 basmati rice hybrid. Plant Breed. 2013, 132, 61–69. [Google Scholar] [CrossRef]
- Scheuermann, K.; Jia, Y. Identification of a Pi9 containing rice germplasm with a newly developed robust marker. Phytopathology 2016, 106, 871–876. [Google Scholar] [CrossRef] [Green Version]
- Hittalmani, S.; Parco, A.; Mew, T.; Zeigler, R.; Huang, N. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor. Appl. Genet. 2000, 100, 1121–1128. [Google Scholar] [CrossRef]
- Liu, B.; Bi, Z.; He, P.; Han, G.; Dong, L.; Yang, Q.; Wang, Y. Genotype identification of blast resistance in major rice varieties in Yunnan Province. Mol. Plant Breed. 2018, 16, 7362–7371. [Google Scholar] [CrossRef]
- Wu, Y.; Xiao, N.; Yu, L.; Pan, C.; Li, Y.; Zhang, X.; Liu, G.; Dai, Z.; Pan, X.; Li, A. Combination patterns of major R genes determine the level of resistance to the M. oryzae in rice (Oryza sativa L.). PLoS ONE 2015, 10, e0126130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirithunya, P.; Tragoonrung, S.; Vanavichit, A.; Pa-In, N.; Vongsaprom, C.; Toojinda, T. Quantitative trait loci associated with leaf and neck blast resistance in recombinant inbred line population of rice (Oryza sativa). DNA Res. 2002, 9, 79–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, J.; Ma, W.; Wu, J.; Chai, R.; Lu, J.; Fan, Y.; Jin, M.; Leung, H.; Zheng, K. Mapping of leaf and neck blast resistance genes with resistance gene analog, RAPD and RFLP in rice. Euphytica 2002, 128, 363–370. [Google Scholar] [CrossRef]
- Yadav, M.K.; Ngangkham, U.; Subudhi, H.; Bag, M.; Adak, T.; Munda, S.; Samantaray, S.; Jena, M. Use of molecular markers in identification and characterization of resistance to rice blast in India. PLoS ONE 2017, 12, e0179467. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K.; Yasuda, N.; Fujita, Y.; Koizumi, S.; Yoshida, H. Identification of the blast resistance gene Pit in rice cultivars using functional markers. Theor. Appl. Genet. 2010, 121, 1357–1367. [Google Scholar] [CrossRef]
- Koide, Y.; Kawasaki, A.; Telebanco-Yanoria, M.; Hairmansis, A.; Nguyet, N.; Bigirimana, J.; Fujita, D.; Kobayashi, N.; Fukuta, Y. Development of pyramided lines with two resistance genes, Pish and Pib, for blast disease (Magnaporthe oryzae B Couch) in rice (Oryza sativa L.). Plant Breed. 2010, 129, 670–675. [Google Scholar] [CrossRef]
- Jiang, H.; Feng, Y.; Bao, L.; Li, X.; Gao, G.; Zhang, Q.; Xiao, J.; Xu, C.; He, Y. Improving blast resistance of Jin 23B and its hybrid rice by marker-assisted gene pyramiding. Mol. Breed. 2012, 30, 1679–1688. [Google Scholar] [CrossRef]
- Zeng, X.; Yang, X.; Zhao, Z.; Lin, F.; Wang, L.; Pan, Q. Resistance analysis and fine mapping of rice blast resistance gene Pia. Zhongguo Kexue Shengming Kexue 2011, 41, 70–77, (In Chinese with English Abstract). [Google Scholar] [CrossRef] [Green Version]
- Ramkumar, G.; Srinivasarao, K.; Mohan, K.; Sudarshan, I.; Sivaranjani, K.; Gopalakrishna, K.; Neeraja, C.; Balachandran, S.; Sundaram, R.; Prasad, M.; et al. Development and validation of functional marker targeting an InDel in the major rice blast disease resistance gene Pi54(Pikh). Mol. Breed. 2011, 27, 29–135. [Google Scholar] [CrossRef]
- Jia, Y.; Redus, M.; Wang, Z.; Rutger, J. Development of a SNLP marker from the pi-ta blast resistance gene by tri-primer PCR. Euphytica 2004, 138, 97–105. [Google Scholar] [CrossRef]
- Tacconi, G.; Baldassarre, V.; Lanzanova, C.; Faivre-Rampant, O.; Cavigiolo, S.; Urso, S.; Lupotto, E.; Vale, G. Polymorphism analysis of genomic regions associated with broad-spectrum effective blast resistance genes for marker development in rice. Mol. Breed. 2010, 26, 595–617. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, H.; Wang, L.; Jia, C.; Zhao, B.; Tong, X.; Zhao, F.; Pei, Z. Molecular detection and analysis of blast resistance genes and restorer genes in 107 japonica Rice. Mol. Plant Breed. 2021, 8, 2644–2659, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zeng, S.; Li, C.; Du, C.; Sun, L.; Jing, D.; Lin, T.; Yu, B.; Qian, H.; Yao, W.; Zhou, Y.; et al. Development of specific markers for Pigm in marker-assisted breeding of panicle blast resistant janonica rice. Chin. J. Rice Sci. 2018, 32, 453–461, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Jeon, J.; Chen, D.; Yi, G.; Wang, G.; Ronald, P. Genetic and physical mapping of Pi5(t), a locus associated with broad-spectrum resistance to rice blast. Mol. Gen. Genom. 2003, 269, 280–289. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Lin, T.; Jing, D.; Yu, B.; Qian, H.; Zeng, S.; Li, C.; Yao, W.; Du, C.; Hu, Q.; et al. Effects of multiple genes polymerization on rice blast resistance in Jiangsu province and the development of functional markers of Pb1 gene. J. South. Agric. 2019, 50, 913–923, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- He, H.; Qiu, H.; Chai, R.; Mao, X.; Wang, Y.; Sun, G. Distribution and evaluation of 6 blast resistance genes in major cultivated varieties in Zhejiang. Fujian J. Agric. Sci. 2019, 34, 214–222, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Chen, X.; Laborda, P.; Dong, Y.; Liu, F. Evaluation of suitable reference genes for normalization of quantitative real-time PCR analysis in rice plants under Xanthomonas oryzae pv. oryzae--infection and melatonin supplementation. Food Prod. Process. Nutr. 2020, 2, 21. [Google Scholar] [CrossRef]
- Qi, Z.; Pan, X.; Du, Y.; Shen, L.; Yu, M.; Cao, H.; Song, T.; Yu, J.; Zhang, R.; Yong, M.; et al. Pathogenicity and population structure analysis of Pyricularia oryzae in different districts of Jiangsu province, China. Plant Pathol. 2020, 70, 449–458. [Google Scholar] [CrossRef]
- Qi, Z.; Yu, J.; Shen, L.; Yu, Z.; Yu, M.; Du, Y.; Zhang, R.; Song, T.; Yin, X.; Zhou, Y.; et al. Enhanced resistance to rice blast and sheath blight in rice (Oryza sativa L.) by expressing the oxalate decarboxylase protein Bacisubin from Bacillus subtilis. Plant Sci. 2017, 265, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Qi, Z.; Yu, J.; Yu, M.; Cao, H.; Zhang, R.; Yong, M.; Yin, X.; Pan, X.; Song, T.; et al. Effects of panicle development stage and temperature on rice panicle blast infection by Magnaporthe oryzae and visualization of its infection process. Plant Pathol. 2021, 70, 1436. [Google Scholar] [CrossRef]
- Li, X.; Xiang, X.; Shen, C.; Yang, L.; Chen, K.; Wang, X.; Qiu, X.; Zhu, X.; Xing, D.; Xu, J. Identification and evaluation of blast resistance for resequenced rice core collections. Acta Agron. Sin. 2017, 43, 795–810, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zeng, F.; Xiang, L.; Yang, L.; Yang, X.; Yang, J.; Yu, D. Diversity analysis for resistance of 251 rice (Oryza sativa L.) varieties (lines) to rice blast disease. Acta Phytopathol. Sin. 2011, 41, 399–410, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Xu, M. Application status, problems and development strategies of high quality rice varieties in Jiangsu Province. Chin. Rice 2020, 26, 57–60, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Hao, Z.; Mao, X.; Chai, R.; Wang, Y.; Sun, G. Analysis of resistance to rice blast in indica rice varieties from rice regional trials in the middle and lower reaches of the Yangtze River in China. Chin. J. Rice Sci. 2019, 33, 152–157, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Li, W.; Chern, M.; Yin, J.; Wang, J.; Chen, X. Recent advances in broad-spectrum resistance to the rice blast disease. Curr. Opin. Plant Biol. 2019, 50, 114–120. [Google Scholar] [CrossRef]
- RoyChowdhury, M.; Jia, Y.; Jackson, A.; Jia, M.; Fjellstrom, R.; Cartwright, R. Analysis of rice blast resistance gene Pi-z in rice germplasm using pathogenicity assays and DNA markers. Euphytica 2012, 184, 35–46. [Google Scholar] [CrossRef]
- Liu, S.; Li, X.; Wang, C.; Li, X.; He, Y. Gene pyramiding to increase the blast resistance in rice. Mol. Plant Breed. 2003, 1, 22–26, (In Chinese with English Abstract). [Google Scholar]
Rice-Growing Regions | Northern Jiangsu | Central Jiangsu | Southern Jiangsu | ||||
---|---|---|---|---|---|---|---|
Number of Varieties | Distribution Frequency (%) | Number of Varieties | Distribution Frequency (%) | Number of Varieties | Distribution Frequency (%) | ||
Resistance composite index | 1 (R) | 4 | 5.41% | 1 | 4.76% | 3 | 12.50% |
3 (MR) | 29 | 39.19% | 5 | 23.81% | 9 | 37.50% | |
5 (MS) | 29 | 39.19% | 12 | 57.14% | 11 | 45.83% | |
7 (S) | 12 | 16.22% | 3 | 14.29% | 0 | 0.00% | |
9 (HS) | 0 | 0.00% | 0 | 0.00% | 1 | 4.17% | |
Total | 74 | 100.00% | 21 | 100.00% | 24 | 100.00% |
Resistance Genes | Pit a | Pish a | Pib a | Pi54 | Pita b | Pi9 | Pi2 b | Pi1 a | Pikm b | Pigm b | Pia a | Pi5 b | Pb1 | Piz-t b | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Number of varieties | 114 | 119 | 84 | 44 | 53 | 56 | 18 | 84 | 36 | 2 | 96 | 29 | 52 | 29 | |
Distribution frequency (%) | 95.80 | 100 | 70.59 | 36.97 | 44.54 | 47.06 | 15.13 | 70.59 | 30.25 | 1.68 | 80.67 | 24.37 | 43.70 | 24.37 | |
Resistance composite index | 1 I | 7 | 8 | 4 | 0 | 5 | 1 | 2 | 4 | 4 | 1 | 6 | 2 | 1 | 6 |
3 (MR) | 39 | 43 | 24 | 11 | 26 | 14 | 9 | 26 | 17 | 1 | 30 | 17 | 13 | 9 | |
5 (MS) | 52 | 52 | 42 | 24 | 18 | 29 | 6 | 42 | 13 | 0 | 46 | 7 | 27 | 12 | |
7 (S) | 15 | 15 | 13 | 8 | 4 | 11 | 1 | 11 | 2 | 0 | 14 | 3 | 11 | 2 | |
9 (HS) | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | |
Resistance contribution rate (%) | 40.35 | 42.86 | 33.33 | 25.00 | 58.49 | 26.79 | 61.11 | 35.71 | 58.33 | 100 | 37.50 | 65.52 | 26.92 | 51.72 |
Variables Entered/Removed | |||
---|---|---|---|
Model | Variables Entered | Variables Removed | Method |
1 | Pi9 | . | Stepwise (Criteria: Probability of F-to-enter ≤ 0.050, Probability of F-to-remove ≥ 0.100) |
2 | Pib | . | Stepwise (Criteria: Probability of F-to-enter ≤ 0.050, Probability of F-to-remove ≥ 0.100) |
3 | Pit | . | Stepwise (Criteria: Probability of F-to-enter ≤ 0.050, Probability of F-to-remove ≥ 0.100) |
4 | Pita | . | Stepwise (Criteria: Probability of F-to-enter ≤ 0.050, Probability of F-to-remove ≥ 0.100) |
5 | Pi5 | . | Stepwise (Criteria: Probability of F-to-enter ≤ 0.050, Probability of F-to-remove ≥ 0.100) |
6 | Pigm | . | Stepwise (Criteria: Probability of F-to-enter ≤ 0.050, Probability of F-to-remove ≥ 0.100) |
7 | Pb1 | . | Stepwise (Criteria: Probability of F-to-enter ≤ 0.050, Probability of F-to-remove ≥ 0.100) |
Model Summary | ||||
---|---|---|---|---|
Model | R | R Square | Adjusted R Square | Std. Error of the Estimate |
1 | 0.340 a | 0.116 | 0.108 | 1.40538 |
2 | 0.453 b | 0.206 | 0.192 | 1.33772 |
3 | 0.512 c | 0.263 | 0.243 | 1.29445 |
4 | 0.561 d | 0.314 | 0.29 | 1.25364 |
5 | 0.606 e | 0.367 | 0.339 | 1.20997 |
6 | 0.636 f | 0.405 | 0.373 | 1.1781 |
7 | 0.659 g | 0.434 | 0.398 | 1.15441 |
Polymerization Model | Number of Varieties | Distribution Frequency (%) | Variety Number whose Composite Resistance Index ≤3 | Variety Number Whose Composite Resistance Index >3 | Resistance Contribution Rate (%) |
---|---|---|---|---|---|
Pita + Pi5 + Pi9 | 6 | 5.04 | 4 | 2 | 66.67 |
Pita + Pi5 + Pib | 4 | 3.36 | 2 | 2 | 50.00 |
Pita + Pi5 + Pb1 | 5 | 4.20 | 3 | 2 | 60.00 |
Pita + Pi9 + Pib | 18 | 15.13 | 8 | 10 | 44.44 |
Pita + Pi9 + Pib | 14 | 11.76 | 5 | 9 | 35.71 |
Pita + Pib + Pb1 | 15 | 12.61 | 6 | 9 | 40.00 |
Pi5 + Pi9 + Pib | 8 | 6.72 | 3 | 5 | 37.50 |
Pi5 + Pi9 + Pb1 | 11 | 9.24 | 2 | 9 | 18.18 |
Pi5 + Pib + Pb1 | 6 | 5.04 | 1 | 5 | 16.67 |
Pi9 + Pib + Pb1 | 20 | 16.81 | 4 | 16 | 20.00 |
Pita + Pikm + Pi5 | 5 | 4.20 | 4 | 1 | 80.00 |
Pita + Pikm + Piz-t | 2 | 1.68 | 2 | 0 | 100.00 |
Pita + Pikm + Pi2 | 2 | 1.68 | 2 | 0 | 100.00 |
Pita + Pi5 + Piz-t | 2 | 1.68 | 2 | 0 | 100.00 |
Pita + Piz-t + Pi2 | 4 | 3.36 | 2 | 2 | 50.00 |
Pikm + Piz-t + Pi2 | 5 | 4.20 | 5 | 0 | 100.00 |
Pita + Pi5 + Pi9 + Pib | 4 | 3.36 | 2 | 2 | 50.00 |
Pita + Pi5 + Pi9 + Pb1 | 4 | 3.36 | 2 | 2 | 50.00 |
Pita + Pi5 + Pib + Pb1 | 3 | 2.52 | 1 | 2 | 33.33 |
Pib + Pi5 + Pi9 + Pb1 | 6 | 5.04 | 1 | 5 | 16.67 |
Pita + Pikm + Pi5 + Piz-t | 1 | 0.84 | 1 | 0 | 100.00 |
Pita + Pikm + Pi2 + Piz-t | 1 | 0.84 | 1 | 0 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Z.; Du, Y.; Yu, J.; Zhang, R.; Yu, M.; Cao, H.; Song, T.; Pan, X.; Liang, D.; Liu, Y. Molecular Detection and Analysis of Blast Resistance Genes in Rice Main Varieties in Jiangsu Province, China. Agronomy 2023, 13, 157. https://doi.org/10.3390/agronomy13010157
Qi Z, Du Y, Yu J, Zhang R, Yu M, Cao H, Song T, Pan X, Liang D, Liu Y. Molecular Detection and Analysis of Blast Resistance Genes in Rice Main Varieties in Jiangsu Province, China. Agronomy. 2023; 13(1):157. https://doi.org/10.3390/agronomy13010157
Chicago/Turabian StyleQi, Zhongqiang, Yan Du, Junjie Yu, Rongsheng Zhang, Mina Yu, Huijuan Cao, Tianqiao Song, Xiayan Pan, Dong Liang, and Yongfeng Liu. 2023. "Molecular Detection and Analysis of Blast Resistance Genes in Rice Main Varieties in Jiangsu Province, China" Agronomy 13, no. 1: 157. https://doi.org/10.3390/agronomy13010157
APA StyleQi, Z., Du, Y., Yu, J., Zhang, R., Yu, M., Cao, H., Song, T., Pan, X., Liang, D., & Liu, Y. (2023). Molecular Detection and Analysis of Blast Resistance Genes in Rice Main Varieties in Jiangsu Province, China. Agronomy, 13(1), 157. https://doi.org/10.3390/agronomy13010157