Influence of Regulated Deficit Irrigation on Arbequina’s Crop Yield and EVOOs Quality and Sensory Profile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plots and Irrigation Description
2.2. Field Measurements
2.3. Extra Virgin Olive Oil Elaboration and Analysis
2.3.1. Regulated Physicochemical Parameters
2.3.2. Oil Oxidative Stability
2.3.3. Pigment Content and Color
2.3.4. Sensory Analysis
2.3.5. Phenolic Profile
2.3.6. Sterol and Triterpene Dialcohol Compositions
2.3.7. Fatty Acid Composition
2.4. Statistical Analysis
3. Results and Discussion
3.1. Irrigation and Plant Water Status
3.2. Fruit and Oil Yield
3.3. Maturity Index and Olive Oil Quality and Sensory Profile
3.4. Phenolic Profile
3.5. Sterol and Triterpene Dialcohol Composition
3.6. Fatty Acids
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vossen, P. Growing olives for oil. In Handbook of Olive Oil, 2nd ed.; Aparicio, R., Harwood, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 19–56. [Google Scholar]
- Connor, D.J.; Gomez-del-Campo, M.; Rousseaux, M.C.; Searles, P.S. Structure, management and productivity of hedgerow olive orchards: A review. Sci. Hortic. 2014, 169, 71–93. [Google Scholar] [CrossRef]
- MAPAMA. Encuesta de Superficies y Rendimientos de Cultivos (ESYRCE). Análisis de las Plantaciones de Olivar en España [Survey about Extensions and Yields in Crops (ESYRCE). Analysis of Olive Groves in Spain]; Secretaría General Técnica, Subdirección General de Estadística del Ministerio de Agricultura, Alimentación y Medio Ambiente: Madrid, Spain, 2019; p. 30. [Google Scholar]
- Rallo, L.; Diez, C.M.; Morales-Sillero, A.; Miho, H.; Priego-Capote, F.; Rallo, P. Quality of olives: A focus on agricultural preharvest factors. Sci. Hortic. 2018, 233, 491–509. [Google Scholar] [CrossRef]
- Grattan, S.R.; Berenquer, M.J.; Connell, J.H.; Polito, V.S.; Vossen, P.M. Olive oil production as influenced by different quantities of applied water. Agric. Water Manag. 2006, 85, 133–140. [Google Scholar] [CrossRef]
- Martinez-Gimeno, M.A.; Zahaf, A.; Badal, E.; Paz, S.; Bonet, L.; Perez-Perez, J.G. Effect of progressive irrigation water reductions on super-high-density olive orchards according to different scarcity scenarios. Agric. Water Manag. 2022, 262, 107399. [Google Scholar] [CrossRef]
- Fereres, E. Yield response to water of fruit trees and vines: Guidelines. In Crop Yield Response to Water. FAO Irrigation and Drainage Paper nº66; Steduto, P., Hsiao, T.C., Fereres, E., Raes, D., Eds.; FAO: Rome, Italy, 2012; pp. 298–497. [Google Scholar]
- Sebastiani, L.; Gucci, R.; Kerem, Z.; Enrique Fernandez, J. Physiological Responses to Abiotic Stresses. In The olive tree genome; Springer: Cham, Switzerland, 2016; pp. 99–122. [Google Scholar]
- Berenguer, M.J.; Vossen, P.M.; Grattan, S.R.; Connell, J.H.; Polito, V.S. Tree irrigation levels for optimum chemical and sensory properties of olive oil. HortScience 2006, 41, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Ben-Gal, A.; Ron, Y.; Yermiyahu, U.; Zipori, I.; Naoum, S.; Dag, A. Evaluation of regulated deficit irrigation strategies for oil olives: A case study for two modern Israeli cultivars. Agric. Water Manag. 2021, 245, 106577. [Google Scholar] [CrossRef]
- Rosecrance, R.C.; Krueger, W.H.; Milliron, L.; Bloese, J.; Garcia, C.; Mori, B. Moderate regulated deficit irrigation can increase olive oil yields and decrease tree growth in super high density ‘Arbequina’ olive orchards. Sci. Hortic. 2015, 190, 75–82. [Google Scholar] [CrossRef]
- Rufat, J.; Villar, J.M.; Pascual, M.; Falguera, V.; Arbones, A. Productive and vegetative response to different irrigation and fertilization strategies of an Arbequina olive orchard grown under super-intensive conditions. Agric. Water Manag. 2014, 144, 33–41. [Google Scholar] [CrossRef]
- Moriana, A.; Pérez-López, D.; Prieto, M.H.; Ramírez-Santa-Pau, M.; Pérez-Rodriguez, J.M. Midday stem water potential as a useful tool for estimating irrigation requirements in olive trees. Agric. Water Manag. 2012, 112, 43–54. [Google Scholar] [CrossRef]
- Fernandez, J.E. Understanding olive adaptation to abiotic stresses as a tool to increase crop performance. Environ. Exp. Bot. 2014, 103, 158–179. [Google Scholar] [CrossRef]
- Sibbett, G.S.; Ferguson, L. Olive Production Manual, 2nd ed.; UCANR Publications: Richmond, CA, USA, 2005. [Google Scholar]
- Marino, G.; Caruso, T.; Ferguson, L.; Marra, F.P. Gas Exchanges and Stem Water Potential Define Stress Thresholds for Efficient Irrigation Management in Olive (Olea europea L.). Water 2018, 10, 342. [Google Scholar] [CrossRef] [Green Version]
- Marra, F.; Marino, G.; Marchese, A.; Caruso, T. Effects of different irrigation regimes on a super-high-density olive grove cv.“Arbequina”: Vegetative growth, productivity and polyphenol content of the oil. Irrig. Sci. 2016, 34, 313–325. [Google Scholar] [CrossRef]
- Ahumada-Orellana, L.E.; Ortega-Farías, S.; Searles, P.S.; Retamales, J.B. Yield and water productivity responses to irrigation cut-off strategies after fruit set using stem water potential thresholds in a super-high density olive orchard. Front. Plant Sci. 2017, 8, 1280. [Google Scholar] [CrossRef] [Green Version]
- Gomez-del-Campo, M. Summer deficit irrigation in a hedgerow olive orchard cv. Arbequina: Relationship between soil and tree water status, and growth and yield components. Span. J. Agric. Res. 2013, 11, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Hueso, A.; Trentacoste, E.R.; Junquera, P.; Gómez-Miguel, V.; Gómez-del-Campo, M. Differences in stem water potential during oil synthesis determine fruit characteristics and production but not vegetative growth or return bloom in an olive hedgerow orchard (cv. Arbequina). Agric. Water Manag. 2019, 223, 105589. [Google Scholar] [CrossRef]
- Gucci, R.; Caruso, G.; Gennai, C.; Esposto, S.; Urbani, S.; Servili, M. Fruit growth, yield and oil quality changes induced by deficit irrigation at different stages of olive fruit development. Agric. Water Manag. 2019, 212, 88–98. [Google Scholar] [CrossRef]
- Ahumada-Orellana, L.E.; Ortega-Farías, S.; Searles, P.S. Olive oil quality response to irrigation cut-off strategies in a super-high density orchard. Agric. Water Manag. 2018, 202, 81–88. [Google Scholar] [CrossRef]
- Hernandez, M.L.; Velazquez-Palmero, D.; Sicardo, M.D.; Fernandez, J.E.; Diaz-Espejo, A.; Martinez-Rivas, J.M. Effect of a regulated deficit irrigation strategy in a hedgerow ‘Arbequina’ olive orchard on the mesocarp fatty acid composition and desaturase gene expression with respect to olive oil quality. Agric. Water Manag. 2018, 204, 100–106. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements. Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Orgaz, F.; Fereres, E.; Testi, L. Riego. In El Cultivo del Olivo, 7th ed.; Barranco, D., Fernandez-Escobar, R., Rallo, L., Eds.; Ediciones Mundi-Prensa: Madrid, Spain, 2017; pp. 461–490. [Google Scholar]
- Beltran, G.; Uceda, M.; Hermoso, M.; Frías, L. Maduración. In El Cultivo del Olivo, 7th ed.; Barranco, D., Fernandez-Escobar, R., Rallo, L., Eds.; Ediciones Mundi-Prensa: Madrid, Spain, 2008; pp. 187–212. [Google Scholar]
- Regulation (EEC) 2568/91 Regulation (EEC) 2568/91 on the characteristics of olive and olive pomace oils and their analytical methods. Off. J. Eur. Communities L 1991, L248, 49–74.
- Firestone, D. Official Methods and Recommended Practices of the American Oil Chemists’ Society, 5th ed.; American Oil Chemists’ Society Press: Champaign, IL, USA, 1998. [Google Scholar]
- Minguez-Mosquera, M.I.; Rejano-Navarro, L.; Gandul-Rojas, B.; Sanchez-Gomez, A.H.; Garrido-Fernandez, J. Color-Pigment Correlation in Virgin Olive Oil. J. Am. Oil Chem. Soc. 1991, 68, 332–336. [Google Scholar] [CrossRef]
- Colorimetric Quantities. Standard UNE 72031:1983; 1983.
- Commission Regulation (EC) 640/2008 Commission Regulation (EC) 640/2008 of 4 July 2008 amending Regulation (EEC) 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. Eur. Commun. Off. J. 2008, L178, 11–16.
- Mateos, R.; Espartero, J.L.; Trujillo, M.; Rios, J.; León-Camacho, M.; Alcudia, F.; Cert, A. Determination of phenols, flavones, and lignans in virgin olive oils by solid-phase extraction and high-performance liquid chromatography with diode array ultraviolet detection. J. Agric. Food Chem. 2001, 49, 2185–2192. [Google Scholar] [PubMed]
- Regulation (EC) 1989/2003 Commission Regulation (EC) 1989/2003 of 6 November 2003 amending Regulation (EEC) 2568/91 on the characteristics of olive oil and olive-pomace oil and on the relevant methods of analysis. Off. J. Eur. Commun. 2003, L295, 57–77.
- Cert, A.; Alba, J.; León-Camacho, M.; Moreda, W.; Pérez-Camino, M.C. Effects of Talc Addition and Operating Mode on the Quality and Oxidative Stability of Virgin Olive Oils Obtained by Centrifugation. J. Agric. Food Chem. 1996, 44, 3930–3934. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, L.; Kranjac, M.; Marijanović, Z.; Jerković, I.; Pérez-López, D.; Carbonell-Barrachina, Á.A.; Hernández, F.; Sendra, E. “Arbequina” Olive Oil Composition Is Affected by the Application of Regulated Deficit Irrigation during Pit Hardening Stage. J. Am. Oil Chem. Soc. 2020, 97, 449–462. [Google Scholar] [CrossRef]
- Garcia-Garvi, J.M.; Sanchez-Bravo, P.; Hernandez, F.; Sendra, E.; Corell, M.; Moriana, A.; Burgos-Hernandez, A.; Carbonell-Barrachina, A.A. Effect of Regulated Deficit Irrigation on the Quality of ‘Arbequina’ Extra Virgin Olive Oil Produced on a Super-High-Intensive Orchard. Agronomy 2022, 12, 1892. [Google Scholar] [CrossRef]
- Sena-Moreno, E.; Manuel Perez-Rodriguez, J.; De Miguel, C.; Henar Prieto, M.; Nieves Franco, M.; Cabrera-Banegil, M.; Martin-Vertedor, D. Pigment Profile, Color and Antioxidant Capacity of Arbequina Virgin Olive Oils from Different Irrigation Treatments. J. Am. Oil Chem. Soc. 2017, 94, 935–945. [Google Scholar] [CrossRef]
- Garcia, J.M.; Morales-Sillero, A.; Perez-Rubio, A.G.; Diaz-Espejo, A.; Montero, A.; Fernandez, J.E. Virgin olive oil quality of hedgerow ‘Arbequina’ olive trees under deficit irrigation. J. Sci. Food Agric. 2017, 97, 1018–1026. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Rico, A.; Salvador, M.D.; La Greca, M.; Fregapane, G. Phenolic and volatile compounds of extra virgin olive oil (Olea europaea L. cv. Cornicabra) with regard to fruit ripening and irrigation management. J. Agric. Food Chem. 2006, 54, 7130–7136. [Google Scholar] [CrossRef]
- Tsimidou, M.Z. Analytical Methodologies: Phenolic Compounds Related to Olive Oil Taste Issues. In Handbook of Olive Oil. Analysis and Properties, 2nd ed.; Aparicio, R., Harwood, J., Eds.; Springer: Boston, MA, USA, 2013; pp. 311–333. [Google Scholar]
- Kycyk, O.; Paz Aguilera, M.; Juan Gaforio, J.; Jimenez, A.; Beltran, G. Sterol composition of virgin olive oil of forty-three olive cultivars from the World Collection Olive Germplasm Bank of Cordoba. J. Sci. Food Agric. 2016, 96, 4143–4150. [Google Scholar] [CrossRef]
- Fuentes de Mendoza, M.; De Miguel Gordillo, C.; Marín Expóxito, J.; Sánchez Casas, J.; Martínez Cano, M.; Martín Vertedor, D.; Franco Baltasar, M.N. Chemical composition of virgin olive oils according to the ripening in olives. Food Chem. 2013, 141, 2575–2581. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, R.; Luna, G. Characterisation of monovarietal virgin olive oils. Eur. J. Lipid Sci. Technol. 2002, 104, 614–627. [Google Scholar] [CrossRef]
- Mailer, R.J.; Ayton, J.; Graham, K. The Influence of Growing Region, Cultivar and Harvest Timing on the Diversity of Australian Olive Oil. J. Am. Oil Chem. Soc. 2010, 87, 877–884. [Google Scholar] [CrossRef]
- Fernandes Silva, A.; Gouveia, J.; Vasconcelos, P.; Ferreira, T.; Villalobos, F. Effect of different irrigation regimes on the quality attributes of monovarietal virgin olive oil from cv.”cobrançosa”. Grasas y Aceites 2013, 64, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Stefanoudaki, E.; Williams, M.; Chartzoulakis, K.; Harwood, J. Effect of irrigation on quality attributes of olive oil. J. Agric. Food Chem. 2009, 57, 7048–7055. [Google Scholar] [CrossRef] [PubMed]
- Faci, J.M.; Berenguer, M.J.; Espada, J.L.; Gracia, S. Effect of variable water irrigation supply in olive (Olea europaea L.) CV. Arbequina in Aragon (Spain). I. Fruit and oil production. Acta Hortic. 2002, 586, 341–344. [Google Scholar] [CrossRef]
- Vita Serman, F.; Pacheco, D.; Carelli, A.; Capraro, F. Effect of regulated deficit irrigation strategies on productivity, quality and water use efficiency in a high-density ‘Arbequina’ olive orchard located in an arid region of Argentina. Acta Hortic. 2011, 888, 81–88. [Google Scholar] [CrossRef]
- Arbones, A.; Sastre, B.; Perez, M.Á.; de Lorenzo, C.; Pascual, M.; Benito, A.; Villar, J.M.; Rufat, J. Influence of irrigation and fertilization on the sterol and triterpene dialcohol compositions of virgin olive oil. Grasas Aceites 2020, 71, 376. [Google Scholar] [CrossRef]
- Inglese, P.; Barone, E.; Gullo, G. The effect of complementary irrigation on fruit growth, ripening pattern and oil characteristics of olive (Olea europaea L.) cv. Carolea. J. Hortic. Sci. 1996, 71, 257–263. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU) No 1348/2013 of amending Regulation (EEC) No 2568/91 on the characteristics of olive oil and olive-residue oil and on the relevant methods of analysis. 16 December 2013.
- Aparicio, R.; García-González, D.L. Olive oil characterization and traceability. In Handbook of Olive Oil, 2nd ed.; Aparicio, R., Harwood, J., Eds.; Springer: Boston, MA, USA, 2013; pp. 431–478. [Google Scholar]
Plot Location | Olive Grove Density (Olive Tree·ha−1) | Elevation (MASL) 1 | Year of Planting | 2015 | 2016 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ET0 2 (mm) | P 3 (mm) | Irrigation FI (mm) | Irrigation RDI (mm) | ET0 (mm) | P (mm) | Irrigation FI (mm) | Irrigation RDI (mm) | ||||
Madrid | 1481 | 494 | 2003 | 1312 | 246 | 460 | 335 | 1239 | 450 | 597 | 415 |
Lleida | 1010 | 119 | 2002 | 1112 | 301 | 372 | 315 | 1107 | 312 | 447 | 327 |
Tarragona | 1250 | 87 | 2007 | 1065 | 550 | 381 | 259 | 1063 | 500 | 320 | 214 |
Alicante | 1667 | 505 | 2001 | 1369 | 277 | 449 | 365 | 1346 | 288 | 458 | 383 |
Navarra | 1667 | 283 | 2005 | 1321 | 320 | 590 | 504 | 1111 | 289 | 345 | 307 |
Average | 1236 | 339 | 450 | 356 | 1173 | 368 | 433 | 329 |
Factor (p-Value) | Factors | Standard of Quality for EVOO | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Irrig. | Loc. | CS | Irrig. | Loc. | CS | ||||||||
FI | RDI | Mad | Lle | Tar | Ali | Nav | 2015 | 2016 | |||||
Maturity index | NS | 0.001 | 0.001 | 2.9a | 3.0a | 3.2a | 3.1ab | 2.7b | 3.4a | 2.7b | 3.2a | 2.8b | |
Indices of quality | |||||||||||||
Acidity (% oleic acid) | NS | 0.000 | 0.000 | 0.282a | 0.274a | 0.149c | 0.175c | 0.264b | 0.702a | 0.312b | 0.181b | 0.356a | ≤0.8 |
Peroxide value (meq O2·kg−1) | NS | 0.000 | NS | 5.157a | 4.816a | 2.775c | 6.717a | 5.130b | 6.073a | 4.782b | 4.906a | 5.051a | ≤20 |
K232 | NS | 0.000 | 0.000 | 1.595a | 1.646a | 1.707a | 1.721a | 1.613b | 1.667ab | 1.418c | 1.733a | 1.531b | ≤2.50 |
K270 | NS | 0.000 | 0.024 | 0.095a | 0.098a | 0.120a | 0.092b | 0.094b | 0.097b | 0.081c | 0.093b | 0.099a | ≤0.22 |
Oxidative stability (h) | NS | 0.000 | 0.000 | 13.1a | 13.1a | 20.0a | 14.9b | 7.0c | 5.6c | 14.2b | 12.9b | 13.2a | |
Pigments | |||||||||||||
Lutein (mg·kg−1) | NS | 0.000 | 0.000 | 4.811a | 5.077a | 6.211a | 5.901a | 2.356c | 3.337b | 6.112a | 4.570b | 5.244a | |
Pheophytin (mg·kg−1) | NS | 0.000 | 0.003 | 4.300a | 4.611a | 5.547b | 7.477a | 1.204c | 1.432c | 5.106b | 4.280b | 4.596a | |
Total pigments (mg·kg−1) | NS | 0.000 | 0.000 | 9.111a | 9.689a | 11.758b | 13.378a | 3.560c | 4.768c | 11.218b | 8.850b | 9.839a | |
Chloro/carot | NS | 0.000 | 0.025 | 0.854a | 0.808a | 0.907b | 1.187a | 0.662c | 0.413d | 0.776c | 0.935a | 0.748b | |
Color | |||||||||||||
*L | NS | 0.000 | 0.000 | 87.622a | 88.892a | 87.683b | 84.129c | 91.982a | 92.627a | 87.049b | 88.482a | 87.277b | |
*a | NS | 0.000 | 0.000 | −8.760a | −9.149a | −10.327b | −9.688b | −6.326a | −8.533a | −9.688b | −8.043a | −9.684b | |
*b | NS | 0.000 | 0.000 | 66.031a | 69.494a | 80.958ab | 75.804b | 38.542d | 47.100c | 86.078a | 64.833b | 70.106a | |
Sensory profile | |||||||||||||
Fruity | NS | 0.000 | NS | 5.0a | 5.0a | 5.2a | 5.3a | 5.0a | 5.2a | 4.5b | 4.9a | 5.1a | Mf > 0 |
Bitter | NS | 0.000 | NS | 2.3a | 2.5a | 3.5a | 2.8b | 1.9c | 1.6c | 1.8c | 2.3a | 2.4a | |
Pungent | NS | 0.000 | NS | 2.7a | 3.0a | 4.1a | 3.2b | 2.2cd | 1.8d | 2.5c | 3.0a | 2.8a |
Phenolic Compounds (mg kg−1) | Factor (p-Value) | Factors | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Irrig. | Loc. | CS | Irrig. | Loc. | CS | |||||||
FI | RDI | Mad | Lle | Tar | Ali | Nav | 2015 | 2016 | ||||
Hydroxytyrosol | NS | 0.000 | 0.000 | 6.800a | 6.301a | 2.038b | 2.551b | 1.555b | 1.698b | 24.912a | 9.869a | 3.232b |
Tyrosol | NS | 0.000 | 0.000 | 3.702a | 3.604a | 1.440c | 1.696bc | 2.102bc | 2.588b | 10.438a | 4.395a | 2.911b |
Vanillic acid | NS | 0.000 | 0.000 | 2.079a | 2.093a | 0.710d | 2.029c | 3.269a | 2.496b | 1.926c | 2.424a | 1.748b |
Caffeic acid | NS | 0.000 | 0.000 | 0.028a | 0.032a | 0.000b | 0.000b | 0.000b | 0.000b | 0.151a | 0.000b | 0.060a |
Vanillin | NS | 0.000 | NS | 2.558a | 2.394a | 1.841c | 3.121a | 2.543b | 2.008c | 2.868ab | 2.506a | 2.447a |
p-Coumaric acid | NS | 0.000 | NS | 2.867a | 3.199a | 2.621b | 2.388b | 2.966b | 2.468b | 4.723a | 3.067a | 2.999a |
Hydroxytyrosol acetate | NS | 0.000 | NS | 13.067a | 14.418a | 5.435c | 20.695a | 22.072a | 7.084c | 13.428b | 13.444a | 14.041a |
o-Coumaric acid | NS | NS | 0.010 | 1.262a | 1.556a | 1.786 | 1.211 | 1.208 | 1.412 | 1.428 | 1.630a | 1.188b |
Oleuropein | NS | 0.000 | 0.000 | 3.288a | 3.366a | 6.891a | 2.999b | 1.847c | 3.375b | 1.522c | 3.832a | 2.821b |
Tyrosol acetate | NS | 0.000 | 0.000 | 3.545a | 3.581a | 5.847a | 2.453c | 2.850c | 2.646c | 4.018b | 2.556b | 4.569a |
Cinnamic acid | NS | 0.000 | 0.001 | 1.473a | 1.329a | 1.633b | 1.316bc | 2.768a | 0.832cd | 0.455d | 1.087b | 1.715a |
Luteolin | NS | 0.000 | NS | 16.551a | 16.763a | 31.426a | 20.825b | 7.050d | 7.432d | 16.552c | 17.150a | 16.164a |
Apigenin | NS | 0.000 | NS | 5.108a | 5.113a | 9.903a | 6.323b | 1.793e | 2.888d | 4.643c | 4.853a | 5.367a |
ƩOrtho-diphenols | NS | 0.000 | 0.009 | 27.12a | 27.91a | 14.76c | 27.39b | 28.58b | 14.02c | 52.80a | 30.27a | 24.75b |
ƩSecoiridoids | NS | 0.000 | 0.000 | 234.3a | 246.9a | 425.2a | 309.6b | 150.0d | 131.7d | 186.6c | 223.5b | 257.7a |
Total phenolic content | NS | 0.000 | 0.019 | 307.5a | 299.8a | 496.8a | 377.2b | 202.1d | 168.6e | 273.6c | 291.6b | 315.7a |
Sterols and Triterpene Dialcohol (%, Except Total Sterols in mg·kg−1) | Factor (p-Value) | Factors | Standard of Sterol Composition in EVOOs | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Irrig. | Loc. | CS | Irrig. | Loc. | CS | ||||||||
FI | RDI | Mad | Lle | Tar | Ali | Nav | 2015 | 2016 | |||||
Cholesterol | NS | 0.015 | NS | 0.180 | 0.192 | 0.258a | 0.183b | 0.179b | 0.167b | 0.142b | 0.200 | 0.172 | ≤0.5 |
Brasicasterol | NS | NS | NS | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | 0.100 | ≤0.1 |
24-Methylene cholesterol | NS | NS | NS | 0.103 | 0.107 | 0.100 | 0.108 | 0.100 | 0.108 | 0.108 | 0.100 | 0.110 | |
Campesterol | 0.008 | 0.000 | 0.000 | 3.417b | 3.488a | 3.658a | 3.392c | 3.554b | 3.625ab | 3.033d | 3.360b | 3.545a | ≤4.0 |
Campestanol | NS | NS | NS | 0.105 | 0.100 | 0.100 | 0.112 | 0.100 | 0.100 | 0.100 | 0.105 | 0.100 | |
Stigmasterol | NS | 0.000 | 0.000 | 0.850 | 0.857 | 0.842b | 0.708c | 0.892ab | 0.892ab | 0.933a | 0.773b | 0.933a | < Campeste. |
Δ7-Campesterol | NS | NS | NS | 0.103 | 0.107 | 0.117 | 0.100 | 0.100 | 0.108 | 0.100 | 0.100 | 0.110 | |
Apparent β-Sitosterol | 0.009 | 0.000 | 0.000 | 94.680a | 94.548b | 94.058c | 94.875a | 94.638b | 94.500b | 95.000a | 94.793a | 94.435b | ≥93.0 |
Δ7-Stigmastenol | NS | 0.000 | 0.000 | 0.182 | 0.203 | 0.300a | 0.179bc | 0.125c | 0.167bc | 0.192b | 0.242a | 0.143b | ≤0.5 |
Δ7-Avenasterol | NS | 0.000 | 0.001 | 0.450 | 0.480 | 0.650a | 0.433b | 0.425b | 0.375c | 0.442b | 0.437b | 0.493a | |
Erythrodiol+Uvaol | 0.039 | 0.000 | 0.005 | 1.920b | 2.227a | 2.642b | 1.825c | 1.017d | 1.467cd | 3.417a | 1.857b | 2.290a | ≤4.5 |
Total sterols | NS | 0.000 | NS | 1319 | 1235 | 967c | 1327b | 1507a | 1547a | 1036c | 1326 | 1228 | ≥1000 |
Factor (p-Value) | Factors | Standard of Fatty Acids in EVOO | |||||||||||
Fatty Acids (%) | Irrig. | Loc. | CS | Irrig. | Loc. | CS | |||||||
FI | RDI | Mad | Lle | Tar | Ali | Nav | 2015 | 2016 | |||||
Myristic acid | 0.014 | 0.000 | 0.000 | 0.011b | 0.014a | 0.010d | 0.012c | 0.013b | 0.017a | 0.010d | 0.014a | 0.011b | ≤0.03 |
Palmitic acid | 0.039 | 0.000 | 0.009 | 14.095b | 14.329a | 14.273b | 14.396b | 15.080a | 14.553b | 12.757c | 14.087a | 14.336b | 7.50–20.00 |
Palmitoleic acid | 0.000 | 0.000 | 0.025 | 1.686a | 1.611b | 1.544bc | 1.478c | 2.429a | 1.613b | 1.178d | 1.689a | 1.608b | 0.30–3.50 |
Margaric acid | 0.003 | 0.003 | 0.003 | 0.099b | 0.110a | 0.104a | 0.109a | 0.097b | 0.109a | 0.104a | 0.098b | 0.111a | |
Margaroleic acid | 0.000 | 0.000 | NS | 0.220b | 0.233a | 0.217c | 0.221c | 0.235b | 0.247a | 0.213c | 0.226a | 0.227a | |
Stearic acid | 0.000 | 0.000 | 0.000 | 1.809b | 1.886a | 1.833c | 1.919b | 1.695d | 1.812c | 1.979a | 1.814b | 1.881a | 0.50–5.00 |
Oleic acid | 0.000 | 0.000 | 0.000 | 72.079a | 71.458b | 73.357b | 71.174c | 69.530d | 68.964e | 75.816a | 72.078a | 71.459b | 55.00–83.00 |
Linoleic acid | 0.000 | 0.000 | 0.000 | 8.589b | 8.942a | 7.330c | 9.282b | 9.415b | 11.143a | 6.659d | 8.582b | 8.949a | 3.50–21.00 |
Linolenic acid | NS | 0.000 | NS | 0.501a | 0.506a | 0.451d | 0.495c | 0.559b | 0.595a | 0.417e | 0.499a | 0.508a | |
Arachidic acid | 0.000 | 0.000 | 0.000 | 0.381b | 0.391a | 0.366c | 0.396a | 0.388b | 0.397a | 0.384b | 0.389a | 0.383b | ≤0.060 |
Gadoleic acid | NS | 0.000 | NS | 0.307a | 0.296a | 0.289c | 0.301bc | 0.320a | 0.316ab | 0.283c | 0.304a | 0.300a | |
Behenic acid | NS | NS | NS | 0.136a | 0.138a | 0.136a | 0.130a | 0.149a | 0.143a | 0.127a | 0.137a | 0.137a | ≤0.020 |
Lignoceric acid | NS | 0.001 | NS | 0.064a | 0.062a | 0.062b | 0.064ab | 0.068a | 0.066ab | 0.055c | 0.064a | 0.062a | ≤1.00 |
SFA | 0.002 | 0.000 | 0.002 | 16.60b | 16.93a | 16.78b6 | 17.026b | 17.487a | 17.094b | 15.415c | 16.601b | 16.922a | |
MUFA | 0.000 | 0.000 | 0.000 | 74.299a | 73.603b | 75.406b | 73.184c | 72.516d | 71.153e | 77.498a | 74.297a | 73.606b | |
PUFA | 0.000 | 0.000 | 0.000 | 9.105b | 9.470a | 7.807c | 9.789b | 10.002b | 11.753a | 7.088d | 9.102b | 9.473a | |
MUFA/PUFA | 0.000 | 0.000 | 0.042 | 8.651a | 8.225b | 9.7b | 7.8c | 7.3d | 6.4e | 11.0a | 8.521a | 8.354b | |
OS | 0.001 | 0.000 | 0.000 | 510.9b | 526.6a | 450.3c | 540.3b | 552.1b | 632.1a | 418.9d | 510.4b | 527.1a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sastre, B.; Arbonés, A.; Pérez-Jiménez, M.Á.; Pascual, M.; Benito, A.; de Lorenzo, C.; Villar, J.M.; Bonet, L.J.; Paz, S.; Santos, Á.; et al. Influence of Regulated Deficit Irrigation on Arbequina’s Crop Yield and EVOOs Quality and Sensory Profile. Agronomy 2023, 13, 31. https://doi.org/10.3390/agronomy13010031
Sastre B, Arbonés A, Pérez-Jiménez MÁ, Pascual M, Benito A, de Lorenzo C, Villar JM, Bonet LJ, Paz S, Santos Á, et al. Influence of Regulated Deficit Irrigation on Arbequina’s Crop Yield and EVOOs Quality and Sensory Profile. Agronomy. 2023; 13(1):31. https://doi.org/10.3390/agronomy13010031
Chicago/Turabian StyleSastre, Blanca, Amadeu Arbonés, M. Ángeles Pérez-Jiménez, Miquel Pascual, Alejandro Benito, Cristina de Lorenzo, Josep M. Villar, Luis J. Bonet, Sergio Paz, Ángel Santos, and et al. 2023. "Influence of Regulated Deficit Irrigation on Arbequina’s Crop Yield and EVOOs Quality and Sensory Profile" Agronomy 13, no. 1: 31. https://doi.org/10.3390/agronomy13010031
APA StyleSastre, B., Arbonés, A., Pérez-Jiménez, M. Á., Pascual, M., Benito, A., de Lorenzo, C., Villar, J. M., Bonet, L. J., Paz, S., Santos, Á., Hermoso, J. F., Romero, A., Farolfi, C., & Rufat, J. (2023). Influence of Regulated Deficit Irrigation on Arbequina’s Crop Yield and EVOOs Quality and Sensory Profile. Agronomy, 13(1), 31. https://doi.org/10.3390/agronomy13010031