Effect of Biochar Amendments on the Co-Composting of Food Waste and Livestock Manure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Feedstock Preparation and Experimental Design
2.2. Physicochemical Analysis
2.3. Statistical Analysis
3. Results and Discussion
3.1. Changes in the Temperature, pH, and EC
3.2. Changes in Bulk Density and Porosity
3.3. Changes in the C:N Ratio
3.4. Variations in CO2 Emission
3.5. Effect on Nitrogen Conservation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010-2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; ISBN 9789251. [Google Scholar]
- KOSIS Number of Pig and Pig Farms by City and Province/Herd Size. Available online: https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1EO311&conn_path=I2&language=en (accessed on 13 October 2022).
- Nyamangara, J.; Gotosa, J.; Mpofu, S.E. Cattle Manure Effects on Structural Stability and Water Retention Capacity of a Granitic Sandy Soil in Zimbabwe. Soil Tillage Res. 2001, 62, 157–162. [Google Scholar] [CrossRef]
- Hepperly, P.; Lotter, D.; Ulsh, C.Z.; Seidel, R.; Reider, C. Compost, Manure and Synthetic Fertilizer Influences Crop Yields, Soil Properties, Nitrate Leaching and Crop Nutrient Content. Compost Sci. Util. 2013, 17, 117–126. [Google Scholar] [CrossRef]
- Salazar, F.J.; Chadwick, D.; Pain, B.F.; Hatch, D.; Owen, E. Nitrogen Budgets for Three Cropping Systems Fertilised with Cattle Manure. Bioresour. Technol. 2005, 96, 235–245. [Google Scholar] [CrossRef]
- Chen, H.; Jiang, W.; Yang, Y.; Yang, Y.; Man, X. State of the Art on Food Waste Research: A Bibliometrics Study from 1997 to 2014. J. Clean. Prod. 2017, 140, 840–846. [Google Scholar] [CrossRef]
- Petracchini, F.; Liotta, F.; Paolini, V.; Perilli, M.; Cerioni, D.; Gallucci, F.; Carnevale, M.; Bencini, A. A Novel Pilot Scale Multistage Semidry Anaerobic Digestion Reactor to Treat Food Waste and Cow Manure. Int. J. Environ. Sci. Technol. 2018, 15, 1999–2008. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A Review on Circular Economy: The Expected Transition to a Balanced Interplay of Environmental and Economic Systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Dowlath, M.J.H.; Karuppannan, S.K.; Rajan, P.; Mohamed Khalith, S.B.; Rajadesingu, S.; Arunachalam, K.D. Application of Advanced Technologies in Managing Wastes Produced by Leather Industries—An Approach toward Zero Waste Technology. In Concepts of Advanced Zero Waste Tools; Elsevier: Amsterdam, The Netherlands, 2021; pp. 143–179. [Google Scholar]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the Circular Economy: An Analysis of 114 Definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Yeo, J.; Chopra, S.S.; Zhang, L.; An, A.K. Life Cycle Assessment (LCA) of Food Waste Treatment in Hong Kong: On-Site Fermentation Methodology. J. Environ. Manag. 2019, 240, 343–351. [Google Scholar] [CrossRef]
- Sánchez, A.; Artola, A.; Font, X.; Gea, T.; Barrena, R.; Gabriel, D.; Sánchez-Monedero, M.A.; Roig, A.; Cayuela, M.L.; Mondini, C. CO2 Sequestration, Biofuels and Depollution. Environ. Chem. Sustain. World 2015, 5, 388. [Google Scholar] [CrossRef]
- Kawai, M.; Nagao, N.; Tajima, N.; Niwa, C.; Matsuyama, T.; Toda, T. The Effect of the Labile Organic Fraction in Food Waste and the Substrate/Inoculum Ratio on Anaerobic Digestion for a Reliable Methane Yield. Bioresour. Technol. 2014, 157, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, M.K.; Selvam, A.; Lai, K.M.; Wong, J.W.C. Critical Evaluation of Post-Consumption Food Waste Composting Employing Thermophilic Bacterial Consortium. Bioresour. Technol. 2017, 245, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Voběrková, S.; Maxianová, A.; Schlosserová, N.; Adamcová, D.; Vršanská, M.; Richtera, L.; Gagić, M.; Zloch, J.; Vaverková, M.D. Food Waste Composting—Is It Really so Simple as Stated in Scientific Literature?—A Case Study. Sci. Total Environ. 2020, 723, 138202. [Google Scholar] [CrossRef] [PubMed]
- Zhu-Barker, X.; Bailey, S.K.; Paw, K.T.U.; Burger, M.; Horwath, W.R. Greenhouse Gas Emissions from Green Waste Composting Windrow. Waste Manag. 2017, 59, 70–79. [Google Scholar] [CrossRef] [PubMed]
- Arriaga, H.; Viguria, M.; López, D.M.; Merino, P. Ammonia and Greenhouse Gases Losses from Mechanically Turned Cattle Manure Windrows: A Regional Composting Network. J. Environ. Manag. 2017, 203, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Schuchardt, F.; Li, G.; Guo, R.; Zhao, Y. Effect of C/N Ratio, Aeration Rate and Moisture Content on Ammonia and Greenhouse Gas Emission during the Composting. J. Environ. Sci. 2011, 23, 1754–1760. [Google Scholar] [CrossRef]
- Fillingham, M.A.; VanderZaag, A.C.; Burtt, S.; Baldé, H.; Ngwabie, N.M.; Smith, W.; Hakami, A.; Wagner-Riddle, C.; Bittman, S.; MacDonald, D. Greenhouse Gas and Ammonia Emissions from Production of Compost Bedding on a Dairy Farm. Waste Manag. 2017, 70, 45–52. [Google Scholar] [CrossRef]
- Ravindran, B.; Karmegam, N.; Awasthi, M.K.; Chang, S.W.; Selvi, P.K.; Balachandar, R.; Chinnappan, S.; Azelee, N.I.W.; Munuswamy-Ramanujam, G. Valorization of Food Waste and Poultry Manure through Co-Composting Amending Saw Dust, Biochar and Mineral Salts for Value-Added Compost Production. Bioresour. Technol. 2022, 346, 126442. [Google Scholar] [CrossRef]
- Young, B.J.; Rizzo, P.F.; Riera, N.I.; Della Torre, V.; López, V.A.; Molina, C.D.; Fernández, F.E.; Crespo, D.C.; Barrena, R.; Komilis, D.; et al. Development of Phytotoxicity Indexes and Their Correlation with Ecotoxicological, Stability and Physicochemical Parameters during Passive Composting of Poultry Manure. Waste Manag. 2016, 54, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Mao, H.; Lv, Z.; Sun, H.; Li, R.; Zhai, B.; Wang, Z.; Awasthi, M.K.; Wang, Q.; Zhou, L. Improvement of Biochar and Bacterial Powder Addition on Gaseous Emission and Bacterial Community in Pig Manure Compost. Bioresour. Technol. 2018, 258, 195–202. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Wang, M.; Chen, H.; Wang, Q.; Zhao, J.; Ren, X.; Li, D.S.; Awasthi, S.K.; Shen, F.; Li, R.; et al. Heterogeneity of Biochar Amendment to Improve the Carbon and Nitrogen Sequestration through Reduce the Greenhouse Gases Emissions during Sewage Sludge Composting. Bioresour. Technol. 2017, 224, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Janczak, D.; Malińska, K.; Czekała, W.; Cáceres, R.; Lewicki, A.; Dach, J. Biochar to Reduce Ammonia Emissions in Gaseous and Liquid Phase during Composting of Poultry Manure with Wheat Straw. Waste Manag. 2017, 66, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.X.; Liu, H.T.; Zhang, J. The Role of Biochar in Organic Waste Composting and Soil Improvement: A Review. Waste Manag. 2020, 102, 884–899. [Google Scholar] [CrossRef]
- Ravindran, B.; Awasthi, M.K.; Karmegam, N.; Chang, S.W.; Chaudhary, D.K.; Selvam, A.; Nguyen, D.D.; Rahman Milon, A.; Munuswamy-Ramanujam, G. Co-Composting of Food Waste and Swine Manure Augmenting Biochar and Salts: Nutrient Dynamics, Gaseous Emissions and Microbial Activity. Bioresour. Technol. 2022, 344, 126300. [Google Scholar] [CrossRef] [PubMed]
- Inbar, Y.; Hadar, Y.; Chen, Y. Recycling of Cattle Manure: The Composting Process and Characterization of Maturity. J. Environ. Qual. 1993, 22, 857–863. [Google Scholar] [CrossRef]
- Milon, A.R.; Chang, S.W.; Ravindran, B. Biochar Amended Compost Maturity Evaluation Using Commercial Vegetable Crops Seedlings through Phytotoxicity Germination Bioassay. J. King Saud Univ.-Sci. 2022, 34, 101770. [Google Scholar] [CrossRef]
- Ravindran, B.; Nguyen, D.D.; Chaudhary, D.K.; Chang, S.W.; Kim, J.; Lee, S.R.; Shin, J.D.; Jeon, B.H.; Chung, S.J.; Lee, J.J. Influence of Biochar on Physico-Chemical and Microbial Community during Swine Manure Composting Process. J. Environ. Manag. 2019, 232, 592–599. [Google Scholar] [CrossRef]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on Research Achievements of Biogas from Anaerobic Digestion. Renew. Sustain. Energy Rev. 2015, 45, 540–555. [Google Scholar] [CrossRef]
- McKennedy, J.; Sherlock, O. Anaerobic Digestion of Marine Macroalgae: A Review. Renew. Sustain. Energy Rev. 2015, 52, 1781–1790. [Google Scholar] [CrossRef]
- Cheung, H.N.B.; Huang, G.H.; Yu, H. Microbial-Growth Inhibition during Composting of Food Waste: Effects of Organic Acids. Bioresour. Technol. 2010, 101, 5925–5934. [Google Scholar] [CrossRef]
- Brinton, W.F. Compost Quality Standards and Guidelines: An International View; Final report by woods end research laboratories for the New York State Association of Recyclers; Woods End Research Laboratory Inc.: Mount Vernon, WA, USA, 2000; p. 42. [Google Scholar]
- Wong, J.W.C.; Wang, X.; Selvam, A. Improving Compost Quality by Controlling Nitrogen Loss During Composting. In Current Developments in Biotechnology and Bioengineering: Solid Waste Management; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 59–82. ISBN 9780444636751. [Google Scholar]
- Li, Y.; Luo, W.; Li, G.; Wang, K.; Gong, X. Performance of Phosphogypsum and Calcium Magnesium Phosphate Fertilizer for Nitrogen Conservation in Pig Manure Composting. Bioresour. Technol. 2018, 250, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Rynk, R. On-Farm Composting Handbook (NRAES 54); Northeast Regional Agricultural Engineering Service: Ithaca, NY, USA, 1992; 186p. [Google Scholar]
- OCQS Ontario Compost Quality Standards. Available online: https://www.ontario.ca/page/ontario-compost-quality-standards (accessed on 25 May 2021).
- Zhao, J.; Sun, X.; Awasthi, M.K.; Wang, Q.; Ren, X.; Li, R.; Chen, H.; Wang, M.; Liu, T.; Zhang, Z. Performance Evaluation of Gaseous Emissions and Zn Speciation during Zn-Rich Antibiotic Manufacturing Wastes and Pig Manure Composting. Bioresour. Technol. 2018, 267, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Waqas, M.; Nizami, A.S.; Aburiazaiza, A.S.; Barakat, M.A.; Ismail, I.M.I.; Rashid, M.I. Optimization of Food Waste Compost with the Use of Biochar. J. Environ. Manage. 2018, 216, 70–81. [Google Scholar] [CrossRef]
- Jain, M.S.; Jambhulkar, R.; Kalamdhad, A.S. Biochar Amendment for Batch Composting of Nitrogen Rich Organic Waste: Effect on Degradation Kinetics, Composting Physics and Nutritional Properties. Bioresour. Technol. 2018, 253, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Kim, J.K.; Jeong, K.-H.; Kwag, J.H.; Balasubramani, R. Effect of Moisture Content on Composting of Swine Manure with Sawdust. Korean Biol. Eng. Conf. 2017, 262. [Google Scholar]
- USDA-NRCS. National Engineering Handbook, Part 637, Environmental Engineering, Chapter 2, Agricultural Waste Characteristics; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2000. Available online: http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs143_022229.pdf (accessed on 10 November 2022).
- Zainudin, M.H.; Mustapha, N.A.; Maeda, T.; Ramli, N.; Sakai, K.; Hassan, M. Biochar Enhanced the Nitrifying and Denitrifying Bacterial Communities during the Composting of Poultry Manure and Rice Straw. Waste Manag. 2020, 106, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Biochar as an Additive to Compost and Growing Media. In Biochar for Environmental Management; Routledge: Taylor and Francis group, London, England, 2019; pp. 749–768.
- Zhang, L.; Sun, X. Influence of Bulking Agents on Physical, Chemical, and Microbiological Properties during the Two-Stage Composting of Green Waste. Waste Manag. 2016, 48, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Jain, M.S.; Paul, S.; Kalamdhad, A.S. Utilization of Biochar as an Amendment during Lignocellulose Waste Composting: Impact on Composting Physics and Realization (Probability) amongst Physical Properties. Process Saf. Environ. Prot. 2019, 121, 229–238. [Google Scholar] [CrossRef]
- Jain, M.S.; Daga, M.; Kalamdhad, A.S. Variation in the Key Indicators during Composting of Municipal Solid Organic Wastes. Sustain. Environ. Res. 2019, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-García, M.; Alburquerque, J.A.; Sánchez-Monedero, M.A.; Roig, A.; Cayuela, M.L. Biochar Accelerates Organic Matter Degradation and Enhances N Mineralisation during Composting of Poultry Manure without a Relevant Impact on Gas Emissions. Bioresour. Technol. 2015, 192, 272–279. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, X. Changes in Physical, Chemical, and Microbiological Properties during the Two-Stage Co-Composting of Green Waste with Spent Mushroom Compost and Biochar. Bioresour. Technol. 2014, 171, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Jindo, K.; Sonoki, T.; Matsumoto, K.; Canellas, L.; Roig, A.; Sanchez-Monedero, M.A. Influence of Biochar Addition on the Humic Substances of Composting Manures. Waste Manag. 2016, 49, 545–552. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Liu, B.; Xi, C.; Luo, X.; Yuan, X.; Wang, X.; Zhu, W.; Wang, H.; Cui, Z. Effect of Pig Manure on the Chemical Composition and Microbial Diversity during Co-Composting with Spent Mushroom Substrate and Rice Husks. Bioresour. Technol. 2018, 251, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.T.; Selvam, A.; Wong, J.W.C. Reducing Nitrogen Loss and Salinity during ‘Struvite’ Food Waste Composting by Zeolite Amendment. Bioresour. Technol. 2016, 200, 838–844. [Google Scholar] [CrossRef]
- Czekała, W.; Malińska, K.; Cáceres, R.; Janczak, D.; Dach, J.; Lewicki, A. Co-Composting of Poultry Manure Mixtures Amended with Biochar—The Effect of Biochar on Temperature and C-CO2 Emission. Bioresour. Technol. 2016, 200, 921–927. [Google Scholar] [CrossRef] [PubMed]
- Goyal, S.; Dhull, S.K.; Kapoor, K.K. Chemical and Biological Changes during Composting of Different Organic Wastes and Assessment of Compost Maturity. Bioresour. Technol. 2005, 96, 1584–1591. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Kumar Awasthi, M.; Du, W.; Ren, X.; Lei, T.; Lv, J. Compost Supplementation with Nitrogen Loss and Greenhouse Gas Emissions during Pig Manure Composting. Bioresour. Technol. 2020, 297, 122435. [Google Scholar] [CrossRef] [PubMed]
- Hachicha, R.; Rekik, O.; Hachicha, S.; Ferchichi, M.; Woodward, S.; Moncef, N.; Cegarra, J.; Mechichi, T. Co-Composting of Spent Coffee Ground with Olive Mill Wastewater Sludge and Poultry Manure and Effect of Trametes Versicolor Inoculation on the Compost Maturity. Chemosphere 2012, 88, 677–682. [Google Scholar] [CrossRef]
- Zhang, J.; Zeng, G.; Chen, Y.; Yu, M.; Yu, Z.; Li, H.; Yu, Y.; Huang, H. Effects of Physico-Chemical Parameters on the Bacterial and Fungal Communities during Agricultural Waste Composting. Bioresour. Technol. 2011, 102, 2950–2956. [Google Scholar] [CrossRef]
- Wei, L.; Shutao, W.; Jin, Z.; Tong, X. Biochar Influences the Microbial Community Structure during Tomato Stalk Composting with Chicken Manure. Bioresour. Technol. 2014, 154, 148–154. [Google Scholar] [CrossRef]
- Jeong, S.T.; Cho, S.R.; Lee, J.G.; Kim, P.J.; Kim, G.W. Composting and Compost Application: Trade-off between Greenhouse Gas Emission and Soil Carbon Sequestration in Whole Rice Cropping System. J. Clean. Prod. 2019, 212, 1132–1142. [Google Scholar] [CrossRef]
- Ortiz-Cornejo, N.L.; Romero-Salas, E.A.; Navarro-Noya, Y.E.; González-Zúñiga, J.C.; Ramirez-Villanueva, D.A.; Vásquez-Murrieta, M.S.; Verhulst, N.; Govaerts, B.; Dendooven, L.; Luna-Guido, M. Incorporation of Bean Plant Residue in Soil with Different Agricultural Practices and Its Effect on the Soil Bacteria. Appl. Soil Ecol. 2017, 119, 417–427. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Awasthi, M.K.; Jiang, Y.; Li, R.; Ren, X.; Zhao, J.; Shen, F.; Wang, M.; Zhang, Z. Evaluation of Medical Stone Amendment for the Reduction of Nitrogen Loss and Bioavailability of Heavy Metals during Pig Manure Composting. Bioresour. Technol. 2016, 220, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Awasthi, S.K.; Liu, T.; Zhang, Z.; Awasthi, M.K. Evaluation of Integrated Biochar with Bacterial Consortium on Gaseous Emissions Mitigation and Nutrients Sequestration during Pig Manure Composting. Bioresour. Technol. 2019, 291, 121880. [Google Scholar] [CrossRef]
- Kim, J.K.; Lee, D.J.; Ravindran, B.; Jeong, K.H.; Wong, J.W.C.; Selvam, A.; Karthikeyan, O.P.; Kwag, J.H. Evaluation of Integrated Ammonia Recovery Technology and Nutrient Status with an In-Vessel Composting Process for Swine Manure. Bioresour. Technol. 2017, 245, 365–371. [Google Scholar] [CrossRef]
- Ahn, H.K.; Mulbry, W.; White, J.W.; Kondrad, S.L. Pile Mixing Increases Greenhouse Gas Emissions during Composting of Dairy Manure. Bioresour. Technol. 2011, 102, 2904–2909. [Google Scholar] [CrossRef]
- Wang, S.; Zeng, Y. Ammonia Emission Mitigation in Food Waste Composting: A Review. Bioresour. Technol. 2018, 248, 13–19. [Google Scholar] [CrossRef]
- Khan, N.; Clark, I.; Sánchez-Monedero, M.A.; Shea, S.; Meier, S.; Bolan, N. Maturity Indices in Co-Composting of Chicken Manure and Sawdust with Biochar. Bioresour. Technol. 2014, 168, 245–251. [Google Scholar] [CrossRef]
- López-Cano, I.; Roig, A.; Cayuela, M.L.; Alburquerque, J.A.; Sánchez-Monedero, M.A. Biochar Improves N Cycling during Composting of Olive Mill Wastes and Sheep Manure. Waste Manag. 2016, 49, 553–559. [Google Scholar] [CrossRef]
- Godlewska, P.; Schmidt, H.P.; Ok, Y.S.; Oleszczuk, P. Biochar for Composting Improvement and Contaminants Reduction. A Review. Bioresour. Technol. 2017, 246, 193–202. [Google Scholar] [CrossRef]
Treatments | FW | CM | SM | Sawdust | Biochar |
---|---|---|---|---|---|
T1 | 20% (1.6 kg) | 30% (2.4 kg) | 30% (2.4 kg) | 20% (1.6 kg) | Control |
T2 | 40% (3.2 kg) | 20% (1.6 kg) | 20% (1.6 kg) | 20% (1.6 kg) | Control |
T3 | 60% (4.8 kg) | 10% (0.8 kg) | 10% (0.8 Kg) | 20% (1.6 kg) | Control |
T4 | 20% (1.6 kg) | 30% (2.4 kg) | 30% (2.4 kg) | 17% (1.36 kg) | 3% (0.24 kg) |
T5 | 40% (3.2 kg) | 20% (1.6 kg) | 20% (1.6 kg) | 17% (1.36 kg) | 3% (0.24 kg) |
T6 | 60% (4.8 kg) | 10% (0.8 kg) | 10% (0.8 Kg) | 17% (1.36 kg) | 3% (0.24 kg) |
T7 | 20% (1.6 kg) | 30% (2.4 kg) | 30% (2.4 kg) | 15% (1.2 kg) | 5% (0.40 Kg) |
T8 | 40% (3.2 kg) | 20% (1.6 kg) | 20% (1.6 kg) | 15% (1.2 kg) | 5% (0.40 Kg) |
T9 | 60% (4.8 kg) | 10% (0.8 kg) | 10% (0.8 Kg) | 15% (1.2 kg) | 5% (0.40 Kg) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, W.; Shim, J.; Chang, S.W.; Ravindran, B. Effect of Biochar Amendments on the Co-Composting of Food Waste and Livestock Manure. Agronomy 2023, 13, 35. https://doi.org/10.3390/agronomy13010035
Chung W, Shim J, Chang SW, Ravindran B. Effect of Biochar Amendments on the Co-Composting of Food Waste and Livestock Manure. Agronomy. 2023; 13(1):35. https://doi.org/10.3390/agronomy13010035
Chicago/Turabian StyleChung, Woojin, Jaehong Shim, Soon Woong Chang, and Balasubramani Ravindran. 2023. "Effect of Biochar Amendments on the Co-Composting of Food Waste and Livestock Manure" Agronomy 13, no. 1: 35. https://doi.org/10.3390/agronomy13010035
APA StyleChung, W., Shim, J., Chang, S. W., & Ravindran, B. (2023). Effect of Biochar Amendments on the Co-Composting of Food Waste and Livestock Manure. Agronomy, 13(1), 35. https://doi.org/10.3390/agronomy13010035