Exploration of Compost Soil for the Production of Thermo-Stable Bacillus Protease to Synthesize Bioactive Compounds through Soy Protein Hydrolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Bacterial Growth and Medium Used
2.3. Identification of Bacteria
2.3.1. Morphological and Biochemical Analysis
2.3.2. PCR Amplification and 16S rDNA Sequencing
2.4. Optimization of Fermentation Condition
2.5. Purification and Characterization of Protease
2.6. Enzyme Assays
2.6.1. Gelatin Hydrolysis
2.6.2. Quantitative Estimation of Protease Activity
2.6.3. Soy Protein Hydrolysis Assay
2.6.4. Bioactive Compound Synthesis from Casein, Skim Milk and Soybean Meal
2.7. Partial Identification of Bioactive Compound
2.8. Determination of Antimicrobial Activity
2.9. Statistical Analysis
3. Results
3.1. Microbial Enzyme Production and Application
3.1.1. Isolation and Screening of Bacteria
3.1.2. Identification of Isolate
3.1.3. Optimization of Physical Condition
- ➢
- Effect of incubation period
- ➢
- Effect of pH
- ➢
- Effect of Carbon source concentration
- ➢
- Effect of Substrate on Enzyme production
- ➢
- Effect of Nitrogen source and its concentrations
3.1.4. Purification and Characterization of Protease
- ➢
- Thermostability of protease
- ➢
- Effect of Metal Ions
- ➢
- pH effect on Protease Activity and Stability
- ➢
- Effect of various Inorganic and organic compounds on the Protease Activity
3.1.5. Antimicrobial Activity of Bioactive Compound Synthesized from Casein, Soy Protein, and Skim Milk
4. Discussion
4.1. Isolation, Screening, and Identification of Bacteria
4.2. Optimization of Enzyme Production
4.3. Purification and Characterization of Protease
4.4. Antimicrobial Activity of Bioactive Compound Synthesized from Soy Protein
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Joo, H.S.; Choi, J.W. Purification and Characterization of a Novel Alkaline Protease from Bacillus horikoshii. J. Microbiol. Biotechnol. 2012, 22, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Malathu, R.; Chowdhury, S.; Mishra, M.; Das, S.; Moharana, P.; Mitra, J.; Mukhopadhyay, U.K.; Thakur, A.R.; Chaudhuri, S.R. Characterization and Wash Performance Analysis of Microbial Extracellular Enzymes from East Calcutta Wetland in India. Am. J. Appl. Sci. 2008, 5, 1650–1661. [Google Scholar] [CrossRef]
- de-Oliveira, C.F.; Corrêa, A.P.F.; Coletto, D.; Daroit, D.J.; Cladera-Olivera, F.; Brandelli, A. Soy protein hydrolysis with microbial protease to improve antioxidant and functional properties. J. Food Sci. Technol. 2015, 52, 2668–2678. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Wang, L.; Liu, C.; Liang, Y.; Lin, Q. Bioactive Peptides From Foods: Production, Function, and Application. Food Funct. 2021, 12, 7108–7125. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Beeg, Q.K.; Loranz, P. Bacterial alkaline proteases: Molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 2002, 59, 15–32. [Google Scholar] [CrossRef]
- Gupta, R.; Beeg, Q.K.; Khan, S.; Chauhan, B. An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl. Microbiol. Biotechnol. 2002, 60, 381–395. [Google Scholar] [CrossRef] [PubMed]
- Biyada, S.; Merzouki, M.; Dėmčėnko, T.; Vasiliauskienė, D.; Ivanec-Goranina, R.; Urbonavičius, J.; Marčiulaitienė, E.; Vasarevičius, S.; Benlemlih, M. Microbial community dynamics in the mesophilic and thermophilic phases of textile waste composting identified through next-generation sequencing. Sci. Rep. 2021, 11, 23624. [Google Scholar] [CrossRef]
- Hemati, A.; Aliasgharzad, N.; Khakvar, R.; Khoshmanzar, E.; Lajayer, B.A.; Hullebusch, E.D. Role of lignin and thermophilic lignocellulolytic bacteria in the evolution of humification indices and enzymatic activities during compost production. Waste Manag. 2021, 119, 122–134. [Google Scholar] [CrossRef]
- Buyuksonmez, F.; Rynk, R.; Hess, T.G.; Bechinski, E. Occurrence, degradation and fate of pesticides during composting. Part II: Occurrence and fate of pesticides in compost and composting systems. Compost. Sci. Util. 2000, 8, 61–81. [Google Scholar] [CrossRef]
- Pan, I.; Dam, B.; Sen, S.K. Composting of common organic wastes using microbial inoculants. 3 Biotech 2012, 12, 127–134. [Google Scholar] [CrossRef]
- Liu, X.; Richard, C.; Nordin, J.N. A cysteine protease purification and partial characterization. J. Biol. Chem. 1996, 271, 3344–3351. [Google Scholar]
- Adinarayana, K.; Ellain, P. Response surface optimization of the critical medium component for the production of alkaline protease by a newly isolated Bacillus sp. J. Pharm. Pharm. Sci. 2002, 5, 272–278. [Google Scholar] [PubMed]
- Olajuyigbe, F.M.; Ajele, J.O. Production dynamics of extracellular protease from Bacillus species. Afr. J. Biotechnol. 2005, 4, 776–779. [Google Scholar]
- Feijoo-Siota, L.; Blasco, L.; Rodriguez-Rama, J.; Barros-Velazquez, J.; Miguel, T.; Sanchez-Perez, A.; Villa, T. Recent Patents on Microbial Proteases for the Dairy Industry. Recent Adv. DNA Gene Seq. 2014, 8, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Priest, F.G. Extracellular enzyme synthesis in the genus Bacillus. Bacteriol. Rev. 1977, 41, 711–753. [Google Scholar] [CrossRef] [PubMed]
- Qadar, S.A.U.; Shireen, E.; Iqbal, S.; Anwar, A. Optimization of protease production from newly isolated strain of Bacillus sp. PCSIR EA-3. Indian J. Biotechnol. 2009, 8, 286–290. [Google Scholar]
- Barett, A.J. Proteolytic enzyme: Serine and cysteine peptidase. Methods Enzymol. 1994, 244, 1–15. [Google Scholar] [CrossRef]
- Brenner, S. The molecular evolution of genes and protein: A tale of two serines. Nature 1998, 334, 528–530. [Google Scholar] [CrossRef]
- Vargas-Bello-Pérez, E.; Márquez-Hernández, R.I.; Hernández-Castellano, L.E. Bioactive peptides from milk: Animal determinants and their implications in human health. J. Dairy Res. 2019, 86, 136–144. [Google Scholar] [CrossRef]
- Marcone, S.; Belton, O.; Fitzgerald, D.J. Milk-derived bioactive peptides and their health promoting effects: A potential role in atherosclerosis. Br. J. Clin. Pharmacol. 2017, 83, 152–162. [Google Scholar] [CrossRef]
- Park, Y.W.; Nam, M.S. Bioactive Peptides in Milk and Dairy Products: A Review. Korean J. Food Sci. Anim. 2015, 35, 831–840. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, C.; Gleddie, S.; Xiao, C.W. Soybean Bioactive Peptides and Their Functional Properties. Nutrients 2018, 10, 1211. [Google Scholar] [CrossRef]
- Hartmann, R.; Meisel, H. Food-derived peptides with biological activity: From research to food applications. Curr. Opin. Biotechnol. 2007, 18, 163–169. [Google Scholar] [CrossRef]
- Wang, W.; Gonzalez De Mejia, E. A new frontier in soy bioactive peptides that may prevent age-related chronic diseases. Compr. Rev. Food Sci. Food Saf. 2005, 4, 63–78. [Google Scholar] [CrossRef] [PubMed]
- Escudero, E.; Mora, L.; Toldrá, F. Stability of ACE inhibitory ham peptides against heat treatment and in vitro digestion. Food Chem. 2014, 161, 305–311. [Google Scholar] [CrossRef]
- Aneja, K.R. Experiments in Microbiology, Plant Pathology, Tissue Culture and Mushroom Cultivation, 2nd ed.; Wishwa Prakashan: New Delhi, India, 1996; pp. 130–132. [Google Scholar]
- Davis, B.D.; Mingoli, E.S. Mutant of Escherichia coli requiring methionine of vitamin B12. J. Bacteriol. 1950, 60, 17. [Google Scholar] [CrossRef]
- Vishalakshi, N.; Lingappa, K.; Amena, S.; Prabhakar, M.; Dayanand, A. Production of alkaline protease from Streptomycesgulbargensis and its application in removal of blood stains. Indian J. Biotechnol. 2009, 8, 280–285. [Google Scholar]
- Amann, R.I.; Ludwig, W.; Schleifer, K.H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 1995, 59, 143–169. [Google Scholar] [CrossRef]
- Gerhardt, P.; Murray, R.G.E.; Wood, W.A.; Krieg, N.R. Methods for General and Molecular Bacteriology; American Society for Microbiology: Washington, DC, USA, 1994. [Google Scholar]
- Pearson, W.R.; Lipman, D.J. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 1988, 85, 2444–2448. [Google Scholar] [CrossRef] [PubMed]
- Safey, E.M.E.; Abdul-Raouf, U.M. Production, purification and characterization of protease enzyme from Bacillus subtilis. In Proceedings of the International Conferences for Development and the Environment in the Arab World, Riyadh, Saudi Arabia, 5–8 December 2004; Assiut University: Assiut, Egypt, 2004; p. 14. [Google Scholar]
- Kumar, G.A.; Nagesh, N.; Prabhakar, T.G.; Sekaran, G. Purification of extracellular acid protease and analysis of fermentation metabolites by Synergistes sp. utilizing proteinaceous solid waste from tanneries. Bioresour. Technol. 2008, 99, 2364–2372. [Google Scholar] [CrossRef]
- Pan, I. Exploration for thermostable b-amylase of a Bacillus sp. isolated from compost soil to degrade bacterial biofilm. Microbiol. Spectr. 2021, 9, e00647-21. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Huang, X.X.; Ren, Q.; Wang, X.X. Purifcation and characterization of a H2O2-tolerant alkaline protease from Bacillus sp. ZJ1502, a newly isolated strain from fermented bean curd. Food Chem. 2019, 274, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Amid, M.; Manap, M.Y.A.B.D.; Zohdi, N.K. Purification and Characterization of Alkaline-Thermostable Protease Enzyme from Pitaya (Hylocereus polyrhizus) Waste: A Potential Low Cost of the Enzyme. BioMed Res. Int. 2014, 2014, 259238. [Google Scholar] [CrossRef] [PubMed]
- Avcı, A.; Demir, S.; Akçay, F.A. Production, properties and some applications of protease from alkaliphilic Bacillus sp. EBTA6. Prep. Biochem. Biotechnol. 2021, 51, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Elwan, S.H.; Ammar, M.S.; El Moussallamy, M.K. Relation of the production of Penicillium chrysogenum lipase to amylase biosynthesis and some factors affecting the crude lipase activity. Egypt. J. Microbiol. 1986, 21, 129–142. [Google Scholar]
- Cowan, S.T. Cowan and Steel’s Manual for the Identification of Medical Bacteria, 2nd ed.; Cambridge, University Press: London, UK, 1974. [Google Scholar]
- Coscueta, E.R.; Amorim, M.M.; Voss, G.B.; Nerli, B.B.; Picó, G.A.; Pintado, M.E. Bioactive properties of peptides obtained from Argentinian defatted soy flour protein by Corolase PP hydrolysis. Food Chem. 2016, 198, 36–44. [Google Scholar] [CrossRef]
- Silva, S.V.; Malcata, F.X. Caseins as source of bioactive peptides. Int. Dairy J. 2005, 15, 1–15. [Google Scholar] [CrossRef]
- Wolf, W.J. Soybean proteins: Their functional, chemical, and physical properties. J. Agric. Food Chem. 1970, 18, 969–976. [Google Scholar] [CrossRef]
- Park, S.Y.; Lee, J.S.; Baek, H.H.; Lee, H.G. Purification and characterization of antioxidant peptides from soy protein hydrolysate. J. Food Biochem. 2010, 34, 120–132. [Google Scholar] [CrossRef]
- Waddell, W.J. A simple UV spectrophotometric method for the determination of protein. J. Lab. Clin. Med. 1956, 48, 311–314. [Google Scholar] [PubMed]
- Anthis, N.J.; Clore, G.M. Sequence-specific determination of protein and peptide concentrations by absorbance at 205 nm. Protein Sci. 2013, 22, 851–858. [Google Scholar] [CrossRef] [PubMed]
- de Castro, R.J.S.; Sato, H.H. Comparison and synergistic effects of intact proteins and their hydrolysates on the functional properties and antioxidant activities in a simultaneous process of enzymatic hydrolysis. Food Bioprod. Process. 2014, 92, 80–88. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statical Methods; Lowa State University Press: Ames, IA, USA, 1980; 428p. [Google Scholar]
- Nwachukwu, I.D.; Aluko, R.E. A systematic evaluation of various methods for quantifying food protein hydrolysate peptides. Food Chem. 2019, 270, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Banks, D.; Jarret, R.L.; Chang, C.J.; Smith, B.J. Use of 16S r DNA Sequences as Signature Characters to identify Xylella fastidiosa. Curr. Microbiol. 2000, 40, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Liu, S. Identification and Characterization of the Phosphate-Solubilizing Bacterium Pantoea sp. S32 in Reclamation Soil in Shanxi, China. Front. Microbiol. 2019, 10, 2171. [Google Scholar] [CrossRef]
- Pastor, M.D.; Lorda, G.S.; Balatti, A. Protease obtention using Bacillus subtilis 3411 and Amaranth seed meal medium of different aeration rate. Braz. J. Microbiol. 2001, 32, 6–9. [Google Scholar] [CrossRef]
- Naidu, K.S.B.; Devi, K.L. Optimization of thermostable alkaline protease production from species of Bacillus using rice bran. Afr. J. Biotechnol. 2005, 4, 724–726. [Google Scholar] [CrossRef]
- Andrade, V.S.; Sarubbo, L.S.; Fukushima, K.; Miyaji, M.; Nishimura, K. Production of extracellular protease by Mucor cireinelloides using D-glucose as carbon source substrate. Braz. J. Microbiol. 2002, 33, 106–110. [Google Scholar] [CrossRef]
- Prakash, S.; Kannapiran, E.; Ramasubburayan, R.; Palanisamy, I.; Suyambu, A.; Palavesam, A.; Immanuelet, G. Production and Partial Purification of Protease by Selected Bacterial Strains Using Raw Milk as Substrate. Malays. J. Microbiol. 2011, 7, 192–200. [Google Scholar] [CrossRef]
- Gul, S.; Rahman, M.U.; Ajmal, M.; Achakzai, A.K.K.; Iqbal, A. Effects of carbon and nitrogen sources on production of proteases by Bacillus subtilis IC-5. Bangladesh J. Bot. 2015, 44, 285–292. [Google Scholar] [CrossRef]
- Sevinc, N.; Demirkan, E. Production of protease by Bacillus sp. N-40 isolated from soil and its enzymatic properties. J. Biol. Environ. Sci. 2011, 5, 95–103. [Google Scholar]
- Rahman, R.N.Z.R.; Geok, L.P.; Basri, M.; Salleh, A.B. Physical factors affecting the production of organic solvent tolerant protease by Pseudomonas aeruginosa strain K. Bioresour. Technol. 2005, 96, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Ghorbel, B.; Kamoun, A.S.; Nasri, M. Stability studies of protease from Bacillus cereus BGI. Enzym. Microb. Technol. 2003, 32, 513–518. [Google Scholar] [CrossRef]
- Wang, S.L.; Kao, T.Y.; Wang, C.L.; Yen, Y.H.; Chern, M.K.; Chen, Y.H. A solvent stable metalloprotease produced by Bacillus sp. TKU004 and its application in the deproteinization of squid pen for b chitin preparation. Enzym. Microb. Technol. 2006, 39, 724–731. [Google Scholar] [CrossRef]
- Rao, M.B.; Tanksale, A.M.; Fhatge, M.S.; Despande, V.V. Molecular and biotechnological aspects of microbial protease. Microbiol. Mol. Biol. Rev. 1998, 62, 597–635. [Google Scholar] [CrossRef]
- Paliwal, N.; Singh, S.P.; Garg, S.K. Cation induced thermal stability of an alkaline protease from a Bacillus sp. Bioresour. Technol. 1994, 50, 209–211. [Google Scholar] [CrossRef]
- Parekh, S.; Vinci, V.A.; Strobel, R.J. Improvement of microbial strains and fermentation processes. Appl. Microbiol. Biotechnol. 2000, 54, 287–301. [Google Scholar] [CrossRef]
- Gerze, A.; Omay, D.; Guvenilir, Y. Partial Purification and Characterization of Protease Enzyme from Bacillussubtilis megatherium. Appl. Biochem. Biotechnol. 2005, 121–124, 335–346. [Google Scholar] [CrossRef]
- Haddar, A.; Sellami-Kamoun, A.; Fakhfakh-Zouari, N.; Hmidet, N.; Nasri, M. Characterization of detergent stable and feather degrading serine proteases from Bacillus mojavensis A21. Biochem. Eng. J. 2010, 51, 53–63. [Google Scholar] [CrossRef]
- Kobayashi, T.; Hakamada, Y.; Adachi, S.; Hitomi, J.; Yoshimatsu, T.; Koike, K.; Kawai, S.; Ito, S. Purification and properties of an alkaline protease form alkalophilic Bacillus sp. KSM-16. Appl. Microbiol. Biotechnol. 1995, 43, 473–481. [Google Scholar] [CrossRef] [PubMed]
- Klingeberg, M.; Galunsky, B.; Sjoholm, C.; Kasche, V.; Antranikian, G. Purification and properties of a highly thermostable, sodium dodecyl sulfate-resistant and stereospecic proteinase from the extremely thermophilic archaeon Thermococcus stetteri. Appl. Environ. Microbiol. 1995, 61, 3098–3104. [Google Scholar] [CrossRef] [PubMed]
- Saeki, K.; Hitomi, J.; Okuda, M.; Hatada, Y.; Kageyama, Y.; Takaiwa, M.; Kubota, H.; Hagihara, H.; Kobayashi, T.; Kawai, S.; et al. A novel species of alkalophilic Bacillus that produces an oxidatively stable alkaline serine protease. Extremophiles 2002, 6, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Gobbetti, M.; Minervini, F.; Rizzello, C.G. Bioactive peptides in dairy products. In Handbook of Food Products Manufacturing; Hui, Y.H., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 489–517. [Google Scholar]
- Lee, J. Soy Protein Hydrolysate; Solubility, Thermal Stability, Bioactivity, and Sensory Acceptability in a Tea Beverage. Master’s Thesis, University of Minnesota, Minneapolis, MN, USA, 2011. [Google Scholar]
Carbohydrates | Use (+/−) |
---|---|
Maltose | + |
Fructose | + |
Dextrose | + |
Raffinose | + |
Sucrose | + |
L-Arabinose | + |
Lactose | − |
Inulin | + |
Sodium gluconate | + |
Glycerol | + |
Salicin | + |
Glucosamine | + |
Mannitol | + |
Ribose | + |
Dulcitol | − |
Xylose | − |
Galactose | − |
Melibiose | − |
Mannose | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, I.; Nanjundan, K.; Achuthan, A.; Issac, P.K.; Rajagopal, R.; Chang, S.W.; Bhat, S.A.; Ravindran, B. Exploration of Compost Soil for the Production of Thermo-Stable Bacillus Protease to Synthesize Bioactive Compounds through Soy Protein Hydrolysis. Agronomy 2023, 13, 1019. https://doi.org/10.3390/agronomy13041019
Pan I, Nanjundan K, Achuthan A, Issac PK, Rajagopal R, Chang SW, Bhat SA, Ravindran B. Exploration of Compost Soil for the Production of Thermo-Stable Bacillus Protease to Synthesize Bioactive Compounds through Soy Protein Hydrolysis. Agronomy. 2023; 13(4):1019. https://doi.org/10.3390/agronomy13041019
Chicago/Turabian StylePan, Ieshita, Krishnamoorthy Nanjundan, Aravindan Achuthan, Praveen Kumar Issac, Rajinikanth Rajagopal, Soon Woong Chang, Sartaj Ahmad Bhat, and Balasubramani Ravindran. 2023. "Exploration of Compost Soil for the Production of Thermo-Stable Bacillus Protease to Synthesize Bioactive Compounds through Soy Protein Hydrolysis" Agronomy 13, no. 4: 1019. https://doi.org/10.3390/agronomy13041019
APA StylePan, I., Nanjundan, K., Achuthan, A., Issac, P. K., Rajagopal, R., Chang, S. W., Bhat, S. A., & Ravindran, B. (2023). Exploration of Compost Soil for the Production of Thermo-Stable Bacillus Protease to Synthesize Bioactive Compounds through Soy Protein Hydrolysis. Agronomy, 13(4), 1019. https://doi.org/10.3390/agronomy13041019