Nitrogen and Phosphorus Counteracted the Adverse Effects of Salt on Sorghum by Improving ROS Scavenging and Osmotic Regulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Site
2.2. Experimental Design
2.3. Observations and Measurements
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Velmurugan, B.; Narra, M.; Rudakiya, D.M.; Madamwar, D. Sweet sorghum: A potential resource for bioenergy production. In Refining Biomass Residues for Sustainable Energy and Bioproducts; Kumar, R.P., Raman, J.K., Gnansounou, E., Baskar, G., Eds.; Academic Press: London, UK, 2020; pp. 215–242. [Google Scholar]
- Goshadrou, A.; Karimi, K.; Taherzadeh, M.J. Bioethanol production from sweet sorghum bagasse by Mucor hiemalis. Ind. Crop. Prod. 2011, 34, 1219–1225. [Google Scholar] [CrossRef]
- FAO. Food and Agriculture Organization of the United Nations, Statistics. 2018. Available online: http://www.fao.org/faostat/en/#data/Q (accessed on 20 June 2018).
- Nokerbekova, N.K.; Zavalin, A.A.; Suleimenov, Y.T.; Zhapayev, R.K. The Nutrition Influence of Nitrogen Fertilizers on the Sugar Content of Sweet Sorghum Plants in the Southeast of Kazakhstan. Russ. Agric. Sci. 2018, 44, 25–30. [Google Scholar] [CrossRef]
- Sher, A.; Barbanti, L.; Ansar, M.; Malik, M.A. Growth response and plant water status in forage sorghum [Sorghum bicolor (L.) Moench] cultivars subjected to decreasing levels of soil moisture. Aust. J. Crop Sci. 2013, 7, 801–808. [Google Scholar]
- Bai, Z.Z.; Hu, X.J.; Tian, J.P.; Chen, P.; Luo, H.B.; Huang, D. Rapid and nondestructive detection of sorghum adulteration using optimization algorithms and hyperspectral imaging. Food Chem. 2020, 331, 127290. [Google Scholar] [CrossRef]
- Kumar, P.; Tokas, J.; Kumar, N.; Lal, M.; Singal, H.R. Climate change consequences and its impact on agriculture and food security. Int. J. Chem. Stud. 2018, 6, 124–133. [Google Scholar]
- Kumar, P.; Tokas, J.; Singal, H.R. Amelioration of Chromium VI Toxicity in Sorghum (Sorghum bicolor L.) using Glycine Betaine. Sci. Rep. 2019, 9, 16020. [Google Scholar] [CrossRef] [Green Version]
- Raza, A.; Tabassum, J.; Fakhar, A.Z.; Sharif, R.; Chen, H.; Zhang, C.; Ju, L.; Fotopoulos, V.; Siddique, K.H.M.; Singh, R.K.; et al. Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit. Rev. Biotechnol. 2022. [Google Scholar] [CrossRef]
- Farahmand, N.; Sadeghi, V. Estimating soil salinity in the dried lake bed of Urmia Lake using optical Sentinel-2 images and nonlinear regression models. J. Indian Soc. Remote 2020, 48, 675–687. [Google Scholar] [CrossRef]
- Ansari, F.A.; Ahmad, I. Plant growth promoting attributes and alleviation of salinity stress to wheat by biofilm forming Brevibacterium sp. FAB3 isolated from rhizospheric soil. Saudi J. Biol. Sci. 2018; in press. [Google Scholar] [CrossRef]
- Khan, M.A.; Hamayun, M.; Asaf, S.; Khan, M.; Yun, B.-W.; Kang, S.-M.; Lee, I.-J. Rhizospheric bacillus spp. Rescues Plant Growth Under Salinity Stress via Regulating Gene Expression, Endogenous Hormones, and Antioxidant System of Oryza sativa L. Front. Plant Sci. 2021, 12, 665590. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef] [PubMed]
- Jiang, D.; Lu, B.; Liu, L.; Duan, W.; Chen, L.; Li, J.; Zhang, K.; Sun, H.; Zhang, Y.; Dong, H.; et al. Exogenous melatonin improves salt stress adaptation of cotton seedlings by regulating active oxygen metabolism. PeerJ 2020, 8, e10486. [Google Scholar] [CrossRef] [PubMed]
- Kamran, M.; Parveen, A.; Ahmar, S.; Malik, Z.; Hussain, S.; Chattha, M.S.; Chen, J.T. An overview of hazardous impacts of soil salinity in crops, tolerance mechanisms, and amelioration through selenium supplementation. Int. J. Mol. Sci. 2020, 21, 148–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, S.; Liu, D.; Chu, M.; Liu, X.; Wei, Y.; Che, X.; Xu, J. Dynamic and adaptive membrane lipid remodeling in leaves of sorghum under salt stress. Crop J. 2022, 10, 1557–1569. [Google Scholar] [CrossRef]
- Kaur, M.; Gupta, N.; Kaur, N.; Sohu, R.S.; Mahal, A.K.; Choudhary, A. Preliminary screening of sorghum (Sorghum bicolor L.) germplasm for salinity stress tolerance at the early seedling stage. Cereal Res. Commun. 2022. [Google Scholar] [CrossRef]
- Saberi, A.R.; Siti, A.H. Growth analysis of forage sorghum (Sorghum bicolor L.) varieties under varying salinity and irrigation frequency. Int. J. Biotechnol. 2013, 2, 130–140. [Google Scholar]
- Wang, Z.; Wei, Y. Physiological and transcriptomic analysis of antioxidant mechanisms in sweet sorghum seedling leaves in response to single and combined drought and salinity stress. J. Plant Interact. 2022, 17, 1006–1016. [Google Scholar] [CrossRef]
- Chen, W.; Hou, Z.; Wu, L.; Liang, Y.; Wei, C. Effects of salinity and nitrogen on cotton growth in arid environment. Plant Soil 2009, 326, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Bouras, H.; Choukr-Allah, R.; Amouaouch, Y.; Bouaziz, A.; Devkota, K.P.; Mouttaqi, A.E.; Bouazzama, B.; Hirich, A. How Does Quinoa (Chenopodium quinoa Willd.) Respond to Phosphorus Fertilization and Irrigation Water Salinity? Plants 2022, 11, 216. [Google Scholar] [CrossRef]
- Bouras, H.; Bouaziz, A.; Bouazzama, B.; Hirich, A.; Choukr-Allah, R. How phosphorus fertilization alleviates the effect of salinity on sugar beet (Beta vulgaris L.) productivity and quality. Agronomy 2021, 11, 1491. [Google Scholar] [CrossRef]
- Bouras, H.; Bouaziz, A.; Choukr-Allah, R.; Hirich, A.; Devkota, K.P.; Bouazzama, B. Phosphorus fertilization enhances productivity of forage corn (Zea mays L.) irrigated with saline water. Plants 2021, 10, 2608. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Qin, C.; Begum, N.; Maodong, Q.; Dong, X.X.; El-Esawi, M.; El-Sheikh, M.A.; Alatar, A.A.; Zhang, L. Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation. BMC Plant Biol. 2019, 19, 479. [Google Scholar] [CrossRef] [PubMed]
- Kaci, H.S.-A.; Chaker-Haddadj, A.; Aid, F. Interactive effects of salinity and two phosphorus fertilizers on growth and grain yield of Cicer arietinum L. Acta Agric. Scand. Sect. B—Soil Plant Sci. 2016, 67, 208–216. [Google Scholar]
- Krouk, G.; Kiba, T. Nitrogen and Phosphorus interactions in plants: From agronomic to physiological and molecular insights. Curr. Opin. Plant Biol. 2020, 57, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.L.; Qu, W.J.; Li, X.F. Plant Physiology Experiment Instruction; Higher Education Press: Beijing, China, 2009. (In Chinese) [Google Scholar]
- Gao, J.F. Plant Physiology Experiment Instruction; Higher Education Press: Beijing, China, 2006; pp. 210–211. (In Chinese) [Google Scholar]
- Li, H.S. Principles and Techniques of Plant Physiological and Biochemical Experiments; Higher Education Press: Beijing, China, 2001; pp. 258–260. (In Chinese) [Google Scholar]
- Liu, Z.Q.; Zhang, S.C. Physiology of Plant Resistance; Agriculture Press: Beijing, China, 1994; pp. 371–372. (In Chinese) [Google Scholar]
- Zhang, Z.L.; Qu, W.J. Plant Physiology Experiment Instruction; Higher Education Press: Beijing, China, 2005; pp. 123–124. (In Chinese) [Google Scholar]
- Zou, Q. Plant Physiology Experiment Instruction; China Agriculture Press: Beijing, China, 2000; pp. 167–169. (In Chinese) [Google Scholar]
- Zhao, S.J.; Cang, J. Plant Physiology Experiment Instruction; Agriculture Press: Beijing, China, 2015. (In Chinese) [Google Scholar]
- Li, J.; Fan, X.L.; Zhu, Y.L.; Rao, G.S.; Chen, R.S.; Duan, T.T. Effects of irrigation and nitrogen fertilization on mitigating salt-induced Na+ toxicity and sustaining sea rice growth. Open Life Sci. 2022, 17, 1165–1173. [Google Scholar]
- Du, K.X.; Zhang, Y.Q.; Qin, S.S.; Wang, L.J.; Zhang, B.; Wang, S.J. Effects of nitrogen fertilization on physiological response of maize to soil salinity. Agriculture 2022, 12, 877. [Google Scholar] [CrossRef]
- Khalifa, G.S.; Abdelrassoul, M.; Hegazi, A.M.; Elsherif, M.H. Attenuation of negative effects of saline stress in two lettuce cultivars by salicylic acid and glycine betaine. Gesunde Pflanz. 2016, 68, 177–189. [Google Scholar] [CrossRef]
- Abdelkhalik, A.; El-Mageed, T.A.A.; Mohamed, I.A.A.; Semida, W.M.; Al-Elwany, O.A.A.I.; Ibrahim, I.M.; Hemida, K.A.; El-Saadony, M.T.; AbuQamar, S.F.; El-Tarabily, K.A.; et al. Soil application of effective microorganisms and nitrogen alleviates salt stress in hot pepper (Capsicum annum L.) plants. Front. Plant Sci. 2023, 13, 1079260. [Google Scholar] [CrossRef]
- Hussain, S.; Ahmed, S.; Akram, W.; Li, G.; Yasin, N.A. Selenium seed priming enhanced the growth of salt-stressed Brassica rapa L. through improving plant nutrition and the antioxidant system. Front. Plant Sci. 2023, 13, 1050359. [Google Scholar] [CrossRef]
- Mittler, R. ROS are good. Trends Plant Sci. 2017, 22, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Soares, C.; Carvalho, M.E.A.; Azevedo, R.A.; Fidalgo, F. Plants facing oxidative challenges—A little help from the antioxidant networks. Environ. Exp. Bot. 2019, 161, 4–25. [Google Scholar] [CrossRef]
- Zhang, H.H.; Li, X.; Guang, Y.P.; Li, M.B.; Wang, Y.; An, M.J.; Zhang, Y.; Liu, G.; Xu, N.; Sun, G. Physiological and proteomic responses of reactive oxygen species metabolism and antioxidant machinery in mulberry (Morus alba L.) seedling leaves to NaCl and NaHCO3 stress. Ecotoxicol. Environ. Saf. 2020, 193, 110259. [Google Scholar]
- Sun, S.; Wen, D.; Yang, W.; Meng, Q.; Shi, Q.; Gong, B. Overexpression of caffeic acid O-methyltransferase 1 (COMT1) increases melatonin level and salt stress tolerance in tomato plant. J. Plant Growth Regul. 2020, 39, 1221–1235. [Google Scholar] [CrossRef]
- Al Hinai, M.S.; Ullah, A.; Al-Rajhi, R.S.; Farooq, M. Proline accumulation, ion homeostasis and antioxidant defence system alleviate salt stress and protect carbon assimilation in bread wheat genotypes of Omani origin. Environ. Exp. Bot. 2022, 193, 104687. [Google Scholar] [CrossRef]
- Mandhania, S.; Madan, S.; Sawhney, V. Antioxidant defense mechanism under salt stress in wheat seedlings. Biol. Plant. 2006, 50, 227–231. [Google Scholar] [CrossRef]
- Kaya, C.; Higgs, D.; Sakar, E. Response of two leafy vegetables grown at high salinity to supplementary potassium and phosphorus during different growth stages. J. Plant Nutr. 2002, 25, 2663–2676. [Google Scholar] [CrossRef]
- Tian, T.; Wang, J.; Wang, H.; Cui, J.; Shi, X.; Song, J.; Li, W.; Zhong, M.; Qiu, Y.; Xu, T. Nitrogen application alleviates salt stress by enhancing osmotic balance, ROS scavenging, and photosynthesis of rapeseed seedlings (Brassica napus). Plant Signal. Behav. 2022, 17, e2081419. [Google Scholar] [CrossRef] [PubMed]
- Farhangi-Abriz, S.; Torabian, S. Antioxidant enzyme and osmotic adjustment changes in bean seedlings as affected by biochar under salt stress. Ecotoxicol. Environ. Saf. 2017, 137, 64–70. [Google Scholar] [CrossRef] [PubMed]
- García-Caparrós, P.; De Filippis, L.; Gul, A.; Hasanuzzaman, M.; Ozturk, M.; Altay, V.; Lao, M.T. Oxidative Stress and Antioxidant Metabolism under Adverse Environmental Conditions: A Review. Bot. Rev. 2020, 87, 421–466. [Google Scholar] [CrossRef]
- Gratão, P.L.; Polle, A.; Lea, P.J.; Azevedo, R.A. Making the life of heavy metal-stressed plants a little easier. Funct. Plant Biol. 2005, 32, 481–494. [Google Scholar] [CrossRef]
- Kiani, S.P.; Grieu, P.; Maury, P.; Hewezi, T.; Gentzbittel, L.; Sarrafi, A. Genetic variability for physiological traits under drought conditions and differential expression of water stress-associated genes in sunflower (Helianthus annuus L.). Theor. Appl. Genet. 2006, 114, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, A.; Murata, N. Genetic engineering of glycinebetaine synthesis in plants: Current status and implications for enhancement of stress tolerance. J. Exp. Bot. 2000, 51, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Sisay, T.A.; Nurbekova, Z.; Oshanova, D.; Dubey, A.K.; Khatri, K.; Mudgal, V.; Mudgal, A.; Neori, A.; Shpigel, M.; Srivastava, R.K.; et al. Effect of Salinity and Nitrogen Fertilization Levels on Growth Parameters of Sarcocornia fruticosa, Salicornia brachiata, and Arthrocnemum macrostachyum. Agronomy 2022, 12, 1749. [Google Scholar] [CrossRef]
- Singh, N.K.; Bracken, C.A.; Hasegawa, P.M.; Handa, A.K.; Buckel, S.; Hermodson, M.A.; Pfankoch, E.; Regnier, F.E.; Bressan, R.A. Characterization of osmotin: A thaumatin-like protein associated with osmotic adaptation in plant cells. Plant Physiol. 1987, 85, 529–536. [Google Scholar] [CrossRef] [Green Version]
Nitrogen | Phosphate | Height (cm) | Stem Diameter (mm) | ||||
---|---|---|---|---|---|---|---|
Seedling | Jointing | Maturity | Seedling | Jointing | Maturity | ||
N0 | P0 | 53.5 e | 80.7 f | 258.5 f | 5.31 d | 9.6 d | 16.8 d |
P1 | 64.6 cd | 103.1 cd | 304.0 c | 5.98 cd | 11.3 bc | 17.1 d | |
P2 | 61.2 d | 95.6 e | 288.3 de | 5.76 d | 10.7 cd | 19.8 bc | |
N1 | P0 | 65.0 cd | 101.9 cd | 299.1 cd | 5.52 d | 12.1 ab | 19.2 bc |
P1 | 78.4 a | 115.3 a | 344.3 a | 7.83 a | 12.2 ab | 21.1 ab | |
P2 | 73.3 b | 109.1 b | 331.9 b | 6.72 bc | 12.4 ab | 22.1 a | |
N2 | P0 | 62.4 cd | 97.8 de | 277.1 e | 5.42 d | 10.4 cd | 18.5 cd |
P1 | 66.5 c | 105.3 bc | 321.3 b | 7.17 ab | 12.4 ab | 20.2 bc | |
P2 | 71.0 b | 107.2 bc | 329.9 b | 8.03 a | 12.8 a | 19.5 bc |
Nitrogen | Phosphate | Aerial Fresh Weight (g) | Aerial Dry Weight (g) | ||||
---|---|---|---|---|---|---|---|
Seedling | Jointing | Maturity | Seedling | Jointing | Maturity | ||
N0 | P0 | 7.93 e | 47.8 e | 424.1 d | 1.77 e | 9.9 e | 156.0 e |
P1 | 9.10 d | 55.4 cd | 499.7 bc | 2.00 cd | 11.1 c | 174.1 c | |
P2 | 9.06 d | 53.4 d | 472.0 c | 1.88 de | 10.3 d | 164.1 d | |
N1 | P0 | 8.89 d | 54.7 cd | 475.1 c | 1.94 d | 10.7 c | 166.5 d |
P1 | 10.26 ab | 59.3 b | 538.2 a | 2.23 a | 12.0 a | 188.7 ab | |
P2 | 9.70 c | 57.0 bc | 509.5 b | 2.08 bc | 11.6 b | 183.2 b | |
N2 | P0 | 8.74 d | 53.4 d | 475.8 c | 1.91 d | 10.9 c | 170.3 cd |
P1 | 9.98 bc | 59.2 b | 523.9 ab | 2.13 ab | 12.0 a | 186.8 ab | |
P2 | 10.54 a | 62.1 a | 549.5 a | 2.26 a | 12.3 a | 191.7 a |
Nitrogen | Phosphate | Relative Conductivity (%) | MDA (μmol g−1 FW) | ||||
---|---|---|---|---|---|---|---|
Seedling | Jointing | Maturity | Seedling | Jointing | Maturity | ||
N0 | P0 | 48.9 a | 56.4 a | 74.3 a | 19.5 a | 20.1 a | 38.3 a |
P1 | 42.4 b | 50.2 cd | 68.7 bc | 15.2 cd | 16.9 bcd | 30.9 c | |
P2 | 43.0 b | 52.0 bc | 72.5 a | 16.2 bc | 17.3 bc | 33.3 b | |
N1 | P0 | 41.9 bc | 49.4 cd | 67.9 bc | 14.6 de | 16.1 cd | 34.1 b |
P1 | 37.9 de | 45.0 f | 62.3 de | 8.4 h | 10.9 f | 22.4 f | |
P2 | 39.2 d | 46.3 ef | 63.9 de | 11.9 g | 14.3 e | 27.3 d | |
N2 | P0 | 43.7 b | 53.0 b | 70.6 ab | 16.7 b | 18.5 ab | 34.9 b |
P1 | 39.9 cd | 48.2 de | 65.3 cd | 12.3 fg | 12.1 f | 25.2 e | |
P2 | 36.6 e | 44.4 f | 60.5 e | 13.4 ef | 15.3 de | 29.6 c |
Nitrogen | Phosphate | O2− (μ mol g−1) | H2O2 (μ mol g−1) | ||||
---|---|---|---|---|---|---|---|
Seedling | Jointing | Maturity | Seedling | Jointing | Maturity | ||
N0 | P0 | 0.75 a | 0.84 a | 0.95 a | 12.6 a | 23.1 a | 15.7 a |
P1 | 0.72 ab | 0.62 b | 0.80 bc | 10.2 bc | 19.1 bc | 11.6 cde | |
P2 | 0.65 bc | 0.53 bcd | 0.85 ab | 9.0 cd | 17.2 bc | 13.2 bc | |
N1 | P0 | 0.69 abc | 0.52 bcd | 0.86 ab | 11.6 ab | 20.0 ab | 12.6 bcd |
P1 | 0.55 de | 0.50 bcd | 0.64 de | 5.7 e | 9.9 d | 9.8 ef | |
P2 | 0.61 cd | 0.52 bcd | 0.70 cd | 7.5 d | 16.5 bc | 11.1 de | |
N2 | P0 | 0.67 abc | 0.60 bc | 0.75 bc | 10.9 ab | 18.5 bc | 13.6 b |
P1 | 0.60 cd | 0.48 cd | 0.62 de | 8.4 cd | 15.6 c | 10.2 ef | |
P2 | 0.48 e | 0.46 d | 0.59 e | 5.0 e | 9.1 d | 8.3 f |
Nitrogen | Phosphate | Proline (μg g−1) | Soluble Protein (mg g−1) | ||||
---|---|---|---|---|---|---|---|
Seedling | Jointing | Maturity | Seedling | Jointing | Maturity | ||
N0 | P0 | 35.3 e | 32.1 e | 22.3 f | 11.0 e | 13.4 g | 8.5 e |
P1 | 38.8 d | 35.8 d | 23.4 de | 11.9 d | 15.0 de | 10.0 d | |
P2 | 43.2 c | 39.5 bc | 24.6 c | 12.4 d | 14.3 f | 9.6 d | |
N1 | P0 | 39.2 d | 37.2 cd | 23.1 ef | 12.1 d | 14.7 ef | 9.9 d |
P1 | 46.3 b | 41.5 ab | 26.2 b | 14.0 b | 15.8 bc | 10.6 bc | |
P2 | 47.8 ab | 41.9 a | 27.1 ab | 14.5 b | 16.4 ab | 10.9 ab | |
N2 | P0 | 42.4 c | 38.9 c | 24.2 cd | 13.3 c | 15.0 de | 10.4 c |
P1 | 48.8 a | 44.0 a | 26.5 b | 14.2 b | 15.6 cd | 10.7 abc | |
P2 | 50.0 a | 42.5 a | 27.7 a | 15.2 a | 16.5 a | 11.1 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Wu, Q.; Zhang, Z.; Zhu, G.; Zhou, G. Nitrogen and Phosphorus Counteracted the Adverse Effects of Salt on Sorghum by Improving ROS Scavenging and Osmotic Regulation. Agronomy 2023, 13, 1020. https://doi.org/10.3390/agronomy13041020
Guo X, Wu Q, Zhang Z, Zhu G, Zhou G. Nitrogen and Phosphorus Counteracted the Adverse Effects of Salt on Sorghum by Improving ROS Scavenging and Osmotic Regulation. Agronomy. 2023; 13(4):1020. https://doi.org/10.3390/agronomy13041020
Chicago/Turabian StyleGuo, Xiaoqian, Qidi Wu, Zhe Zhang, Guanglong Zhu, and Guisheng Zhou. 2023. "Nitrogen and Phosphorus Counteracted the Adverse Effects of Salt on Sorghum by Improving ROS Scavenging and Osmotic Regulation" Agronomy 13, no. 4: 1020. https://doi.org/10.3390/agronomy13041020
APA StyleGuo, X., Wu, Q., Zhang, Z., Zhu, G., & Zhou, G. (2023). Nitrogen and Phosphorus Counteracted the Adverse Effects of Salt on Sorghum by Improving ROS Scavenging and Osmotic Regulation. Agronomy, 13(4), 1020. https://doi.org/10.3390/agronomy13041020