Optimizing Irrigation and Nitrogen Regimes in Rice Plants Can Contribute to Achieving Sustainable Rice Productivity
1. Introduction
2. Water Use Efficiency in Rice
3. Nitrogen Use Efficiency in Rice
3.1. Nitrogen Transformation and Nitrogen Losses in the Paddy Rice Field
3.2. The Physiological Basis of Nitrogen Use Efficiency
3.3. The Approaches to Increase NUE
4. The Interactions of Water and Nitrogen in Plants: New Paths toward Sustainable Crop Production
Funding
Conflicts of Interest
References
- United Nations Publication. World Population Prospects 2022: Summary of Results; UN DESA/POP/2022/TR/NO. 3 (UN, 2022); United Nations Publication: New York, NY, USA, 2022.
- GRiSP (Global Rice Science Partnership). Rice Almanac, 4th ed.; International Rice Research Institute: Los Baños, Philippines, 2013. [Google Scholar]
- Maraseni, T.N.; Deo, R.C.; Qu, J.; Gentle, P.; Neupane, P.R. An international comparison of rice consumption behaviours and greenhouse gas emissions from rice production. J. Clean. Prod. 2018, 172, 2288–2300. [Google Scholar] [CrossRef]
- Zhang, Q.F. Theory and Practice of Resource-Saving and Environment-Friendly. In Agricultural Production System; Science Press: Beijing, China, 2015. [Google Scholar]
- Belder, P.; Bouman, B.A.M.; Spiertz, J.H.J. Exploring options for water saving in lowland rice using a modeling approach. Agric. Syst. 2007, 92, 91–114. [Google Scholar] [CrossRef]
- Bouman, B.A.M. A conceptual framework for the improvement of crop water productivity at different spatial scales. Agric. Syst. 2007, 93, 43–60. [Google Scholar] [CrossRef]
- Norton, G.J.; Shafaei, M.; Travis, A.J.; Deacon, C.M.; Danku, J.; Pond, D.; Cochrane, N.; Lockhart, K.; Salt, D.; Zhang, H.; et al. Impact of alternate wetting and drying on rice physiology, grain production, and grain quality. Field Crop. Res. 2017, 205, 1–13. [Google Scholar] [CrossRef]
- Ishfaq, M.; Farooq, M.; Zulfiqar, U.; Hussaina, S.; Akbar, N.; Nawaz, A.; Anjum, S.A. Alternate wetting and drying: A water-saving and ecofriendly rice production system. Agric. Water Manag. 2020, 241, 106363. [Google Scholar] [CrossRef]
- Pan, J.F.; Liu, Y.Z.; Zhong, X.H.; Lampayan, R.M.; Singleton, G.R.; Huang, N.R.; Liang, K.M.; Peng, B.L.; Tian, K. Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China. Agric. Water Manage. 2017, 184, 191–200. [Google Scholar] [CrossRef]
- Yang, J.C.; Zhang, J.H. High-Yielding and Water-Saving Irrigation in Rice; Science Press: Beijing, China, 2019. [Google Scholar]
- Omara, P.; Aula, L.; Oyebiyi, F.; Raun, W.R. World cereal nitrogen use efficiency trends: Review and current knowledge. Agrosys. Geosci. Env. 2019, 2, 1–8. [Google Scholar] [CrossRef]
- Robertson, G.P.; Vitousek, P.M. Nitrogen in agriculture: Balancing the cost of an essential resource. Annu. Rev. Environ. Resour. 2009, 34, 97–125. [Google Scholar] [CrossRef]
- Gu, J.; Yang, J. Nitrogen (N) transformation in paddy rice fifield: Its effect on N uptake and relation to improved N management. Crop Environ. 2022, 1, 7–14. [Google Scholar] [CrossRef]
- Plett, D.C.; Ranathunge, K.; Melino, V.J.; Kuya, N.; Uga, Y.; Kronzucker, H.J. The intersection of nitrogen nutrition and water use in plants: New paths toward improved crop productivity. J. Exp. Bot. 2020, 71, 4452–4468. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J. Simultaneously improving grain yield and water and nutrient use efficiencies by enhancing the harvest index in rice. Crop Environ. 2023, 2, 157–164. [Google Scholar] [CrossRef]
- Kemanian, A.R.; Stockle, C.O.; Huggins, D.R.; Viega, L.M. A simple method to estimate harvest index in grain crops. Field Crop. Res. 2007, 103, 208–216. [Google Scholar] [CrossRef]
- D’Andrea, K.E.; Otegui, M.E.; de la Vega, A.J. Multi-attribute responses of maize inbred lines across managed environments. Euphytica 2008, 162, 381–394. [Google Scholar] [CrossRef]
- Bueno, C.S.; Lafarge, T. Higher crop performance of rice hybrids than of elite inbreds in the tropics. 1. Hybrids accumulate more biomass during each phenological phase. Field Crop. Res. 2009, 112, 229–237. [Google Scholar] [CrossRef]
- Fletcher, A.L.; Jamieson, P.D. Causes of variation in the rate of increase of wheat harvest index. Field Crop. Res. 2009, 113, 268–273. [Google Scholar] [CrossRef]
- Zang, Y.G.; Wu, G.Z.; Li, Q.Q.; Xu, Y.W.; Xue, M.M.; Chen, X.Y.; Wei, H.Y.; Zhang, W.Y.; Zhang, H.; Liu, L.J.; et al. Irrigation regimes modulate non-structural carbohydrates remobilization and improve grain filling in rice (Oryza sativa L.) by regulating starch metabolisms. J. Integr. Agr. 2023. [Google Scholar] [CrossRef]
- Ehlers, W.; Goss, M. Water Dynamics in Plant Production; CABI Publishing: Wallingford, UK, 2003; pp. 297–305. [Google Scholar]
- Yang, J.; Zhang, J. Crop management techniques to enhance harvest index in rice. J. Exp. Bot. 2010, 61, 3177–3189. [Google Scholar] [CrossRef]
- Kartal, B.; Maalcke, W.J.; de Almeida, N.M.; Cirpus, I.; Gloerich, J.; Geerts, W.; op den Camp, H.J.M.; Harhangi, H.R.; Janssen-Megens, E.M.; Francoijs, K.J.; et al. Molecular mechanism of anaerobic ammonium oxidation. Nature 2011, 479, 127–130. [Google Scholar] [CrossRef]
- van Niftrik, L.; Jetten, M.S.M. Anaerobic ammonium-oxidizing bacteria: Unique microorganisms with exceptional properties. Microbiol. Mol. Biol. Rev. 2012, 76, 585–596. [Google Scholar] [CrossRef]
- Nasholm, T.; Ekblad, A.; Nordin, A.; Giesler, R.; Hogberg, M.; Hogberg, P. Boreal forest plants take up organic nitrogen. Nature 1998, 392, 914–916. [Google Scholar] [CrossRef]
- Schimel, J.P.; Bennett, J. Nitrogen mineralization: Challenges of a changing paradigm. Ecology 2004, 85, 591–602. [Google Scholar] [CrossRef]
- Johnson, D.W.; Cheng, W.; Burke, I.C. Biotic and abiotic nitrogen retention in a variety of forest soils. Soil Sci. Soc. Am. J. 2000, 64, 1503–1514. [Google Scholar] [CrossRef]
- Ladha, J.K.; Tirol-Padre, A.; Reddy, C.K.; Cassman, K.G.; Verma, S.; Powlson, D.S.; van Kessel, C.; de, B.; Richter, D.; Chakraborty, D.; et al. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems. Sci. Rep. 2016, 6, 19355. [Google Scholar] [CrossRef] [PubMed]
- Herrera, J.M.; Rubio, G.; Häner, L.L.; Delgado, J.A.; Lucho-Constantino, C.A.; Islas-Valdez, S.; Pellet, D. Emerging and established technologies to increase nitrogen use efficiency of cereals. Agronomy 2016, 6, 25. [Google Scholar] [CrossRef]
- Chen, L.; Xie, H.; Wang, G.L.; Yuan, L.M.; Qian, X.Q.; Wang, W.L.; Xu, Y.J.; Zhang, W.Y.; Zhang, H.; Liu, L.J.; et al. Reducing environmental risk by improving crop management practices at high crop yield levels. Field Crop. Res. 2021, 265, 108123. [Google Scholar] [CrossRef]
- Yang, J.C.; Liu, L.J.; Zhang, H. Principle and Technology of Efficient Utilization of Fertilizer-Nitrogen in High-Yielding Rice; Science Press: Beijing, China, 2022. [Google Scholar]
- Peng, S.; Buresh, R.J.; Huang, J.; Zhong, X.; Zou, Y.; Yang, J.; Wang, G.; Liu, Y.; Hu, R.; Tang, Q.; et al. Improving nitrogen fertilization in rice by site specific N management. A review. Agron. Sust. Dev. 2010, 30, 649–656. [Google Scholar] [CrossRef]
- Huang, J.; He, F.; Cui, K.; Buresh, R.J.; Xu, B.; Gong, W.; Peng, S. Determination of optimal nitrogen rate for rice varieties using a chlorophyll meter. Field Crop. Res. 2008, 105, 70–80. [Google Scholar] [CrossRef]
- Wu, G.Z.; Chen, X.Y.; Zang, Y.G.; Ying, Y.E.; Qian, X.Q.; Zhang, W.Y.; Zhang, H.; Liu, L.J.; Zhang, Z.J.; Wang, Z.Q.; et al. An optimized strategy of nitrogen-split application based on the leaf positional differences in chlorophyll meter readings. J. Integr. Agri. 2023. [Google Scholar] [CrossRef]
- Scharf, P.C.; Lory, J.A. Calibrating reflectance measurements to predict optimal sidedress nitrogen rate for corn. Agron. J. 2009, 101, 615–625. [Google Scholar] [CrossRef]
- Gu, J.F.; Chen, Y.; Zhang, H.; Li, Z.K.; Zhou, Q.; Yu, C.; Kong, X.S.; Liu, L.J.; Wang, Z.Q.; Yang, J.C. Canopy light and nitrogen distributions are related to grain yield and nitrogen use efficiency in rice. Field Crop. Res. 2017, 206, 74–85. [Google Scholar] [CrossRef]
- Nkebiwe, P.M.; Weinmann, M.; Bar-Tal, A.; Müller, T. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crop. Res. 2016, 196, 389–401. [Google Scholar] [CrossRef]
- Incrocci, L.; Maggini, R.; Cei, T.; Carmassi, G.; Botrini, L.; Filippi, F.; Clemens, R.; Terrones, C.; Pardossi, A. Innovative controlled-release polyurethane-coated urea could reduce N leaching in tomato crop in comparison to conventional and stabilized fertilizers. Agronomy 2020, 10, 1827. [Google Scholar] [CrossRef]
- Hikosaka, K. Interspecific difference in the photosynthesis-nitrogen relationship: Patterns, physiological causes, and ecological importance. J. Plant Res. 2004, 117, 481–494. [Google Scholar] [CrossRef]
- Wang, W.; Hu, B.; Yuan, D.; Liu, Y.; Che, R.; Hu, Y.; Ou, S.; Liu, Y.; Zhang, Z.; Wang, H.; et al. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell 2018, 30, 638–651. [Google Scholar] [CrossRef] [PubMed]
- Yang, J. Approaches to achieve high grain yield and high resource use efficiency in rice. Front. Agric. Sci. Eng. 2015, 2, 115–123. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, W.; Beebout, S.S.; Zhang, H.; Liu, L.; Yang, J.; Zhang, J. Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crop. Res. 2016, 193, 54–69. [Google Scholar] [CrossRef]
- Xue, Y.; Duan, H.; Liu, L.; Wang, Z.; Yang, J.; Zhang, J. An improved crop management increases grain yield and nitrogen and water use efficiency in rice. Crop. Sci. 2013, 53, 271–284. [Google Scholar] [CrossRef]
- Liu, L.; Chen, T.; Wang, Z.; Zhang, H.; Yang, J.; Zhang, J. Combination of site-specific nitrogen management and alternate wetting and drying irrigation increases grain yield and nitrogen and water use efficiency in super rice. Field Crop. Res. 2013, 154, 226–235. [Google Scholar] [CrossRef]
- Meng, W.; Xing, J.; Niu, M.; Zuo, Q.; Wu, X.; Shi, J.; Sheng, J.; Jiang, P.; Chen, Q.; Ben-Gal, A. Optimizing fertigation schemes based on root distribution. Agric. Water Manag. 2023, 275, 107994. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, J. Optimizing Irrigation and Nitrogen Regimes in Rice Plants Can Contribute to Achieving Sustainable Rice Productivity. Agronomy 2023, 13, 2495. https://doi.org/10.3390/agronomy13102495
Gu J. Optimizing Irrigation and Nitrogen Regimes in Rice Plants Can Contribute to Achieving Sustainable Rice Productivity. Agronomy. 2023; 13(10):2495. https://doi.org/10.3390/agronomy13102495
Chicago/Turabian StyleGu, Junfei. 2023. "Optimizing Irrigation and Nitrogen Regimes in Rice Plants Can Contribute to Achieving Sustainable Rice Productivity" Agronomy 13, no. 10: 2495. https://doi.org/10.3390/agronomy13102495
APA StyleGu, J. (2023). Optimizing Irrigation and Nitrogen Regimes in Rice Plants Can Contribute to Achieving Sustainable Rice Productivity. Agronomy, 13(10), 2495. https://doi.org/10.3390/agronomy13102495