Optimizing Nitrogen Regime Improves Dry Matter and Nitrogen Accumulation during Grain Filling to Increase Rice Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growing Conditions
2.2. Sampling and Measurements
2.2.1. Shoot Dry Weight
2.2.2. Plant N Uptake
2.2.3. Leaf Photosynthetic Characteristics
2.2.4. NSC Accumulation and Translocation
2.2.5. Root Oxidation Activity
2.2.6. Z + ZR Contents in Roots
2.2.7. NR, GS, and GOGAT Activities of Leaves
2.2.8. Harvest
2.3. Statistical Analysis
3. Results
3.1. Analysis of Variance
3.2. Grain Yield and Its Components
3.3. Nitrogen Utilization Efficiency
3.4. Dry Matter Accumulation and Nitrogen Accumulation
3.5. Leaf Photosynthetic Characteristics
3.6. NSC Accumulation and Translocation in Stems
3.7. Root Oxidation Activity and Z + ZR Contents in Roots
3.8. NR, GS, and GOGAT Activities in Leaves
3.9. Correlation Analysis
3.10. Regulation of Panicle Nitrogen Application Rate on Grain Yield in Rice
4. Discussion
4.1. Effects of N Fertilizer on Rice Yield
4.2. Physiological Mechanisms of N Fertilizer Affecting Rice Yield
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cheng, B.; Jiang, Y.; Cao, C. Balance Rice Yield and Eating Quality by Changing the Traditional Nitrogen Management for Sustainable Production in China. J. Clean. Prod. 2021, 312, 127793. [Google Scholar] [CrossRef]
- Liu, K.; Chen, Y.; Huang, J.; Qiu, Y.; Li, S.; Zhuo, X.; Yu, F.; Gao, J.; Li, G.; Zhang, W.; et al. Spikelet Differentiation and Degeneration in Rice Varieties with Different Panicle Sizes. Food Energy Secur. 2022, 11, e320. [Google Scholar] [CrossRef]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [Green Version]
- Fahad, S.; Bajwa, A.A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [Green Version]
- Fu, P.; Wang, J.; Zhang, T.; Huang, J.; Peng, S. High Nitrogen Input Causes Poor Grain Filling of Spikelets at the Panicle Base of Super Hybrid Rice. Field Crops Res. 2019, 244, 107635. [Google Scholar] [CrossRef]
- Xu, L.; Yuan, S.; Wang, X.; Yu, X.; Peng, S. High Yields of Hybrid Rice Do Not Require More Nitrogen Fertilizer than Inbred Rice: A Meta-Analysis. Food Energy Secur. 2021, 10, 341–350. [Google Scholar] [CrossRef]
- Zhang, W.J.; Li, G.H.; Yang, Y.M.; Li, Q.; Zhang, J.; Liu, J.Y.; Wang, S.; Tang, S.; Ding, Y.F. Effects of Nitrogen Application Rate and Ratio on Lodging Resistance of Super Rice with Different Genotypes. J. Integr. Agric. 2014, 13, 63–72. [Google Scholar] [CrossRef]
- Ouyang, W.; Yin, X.; Yang, J.; Struik, P.C. Roles of Canopy Architecture and Nitrogen Distribution in the Better Performance of an Aerobic than a Lowland Rice Cultivar under Water Deficit. Field Crops Res. 2021, 271, 108257. [Google Scholar] [CrossRef]
- Ju, C.; Zhu, Y.; Liu, T.; Sun, C. The Effect of Nitrogen Reduction at Different Stages on Grain Yield and Nitrogen Use Efficiency for Nitrogen Efficient Rice Varieties. Agronomy 2021, 11, 462. [Google Scholar] [CrossRef]
- Song, T.; Xu, F.; Yuan, W.; Chen, M.; Hu, Q.; Tian, Y.; Zhang, J.; Xu, W. Combining Alternate Wetting and Drying Irrigation with Reduced Phosphorus Fertilizer Application Reduces Water Use and Promotes Phosphorus Use Efficiency without Yield Loss in Rice Plants. Agric. Water Manag. 2019, 223, 105686. [Google Scholar] [CrossRef]
- Ali, A.; Xu, P.; Riaz, A.; Wu, X. Current Advances in Molecular Mechanisms and Physiological Basis of Panicle Degeneration in Rice. Int. J. Mol. Sci. 2019, 20, 1613. [Google Scholar] [CrossRef] [Green Version]
- Idowu, O.; Wang, Y.; Homma, K.; Nakazaki, T.; Xu, Z.; Shiraiwa, T. Interaction of Erect Panicle Genotype and Nitrogen Fertilizer Application on the Source-Sink Ratio and Nitrogen Use Efficiency in Rice. Field Crops Res. 2022, 278, 108430. [Google Scholar] [CrossRef]
- Sui, B.; Feng, X.; Tian, G.; Hu, X.; Shen, Q.; Guo, S. Optimizing Nitrogen Supply Increases Rice Yield and Nitrogen Use Efficiency by Regulating Yield Formation Factors. Field Crops Res. 2013, 150, 99–107. [Google Scholar] [CrossRef]
- Ye, C.; Ma, H.; Huang, X.; Xu, C.; Chen, S.; Chu, G.; Zhang, X.; Wang, D. Effects of Increasing Panicle-Stage N on Yield and N Use Efficiency of Indica Rice and Its Relationship with Soil Fertility. Crop J. 2022, 10, 1784–1797. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, K.; Wang, Z.; Zhang, H.; Gu, J.; Liu, L.; Yang, J.; Zhang, J. Brassinosteroids Function in Spikelet Differentiation and Degeneration in Rice. J. Integr. Plant Biol. 2019, 61, 943–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Z.; Liang, X.G.; Zhang, L.; Lin, S.; Zhao, X.; Zhou, L.L.; Shen, S.; Zhou, S.L. Spraying Exogenous 6-Benzyladenine and Brassinolide at Tasseling Increases Maize Yield by Enhancing Source and Sink Capacity. Field Crops Res. 2017, 211, 1–9. [Google Scholar] [CrossRef]
- Krouk, G. Hormones and Nitrate: A Two-Way Connection. Plant Mol. Biol. 2016, 91, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Chu, G.; Chen, S.; Xu, C.; Wang, D.; Zhang, X. Agronomic and Physiological Performance of Indica/Japonica Hybrid Rice Cultivar under Low Nitrogen Conditions. Field Crops Res. 2019, 243, 107625. [Google Scholar] [CrossRef]
- Pan, J.; Cui, K.; Wei, D.; Huang, J.; Xiang, J.; Nie, L. Relationships of Non-Structural Carbohydrates Accumulation and Translocation with Yield Formation in Rice Recombinant Inbred Lines under Two Nitrogen Levels. Physiol. Plant. 2011, 141, 321–331. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, W.; Beebout, S.S.; Zhang, H.; Liu, L.; Yang, J.; Zhang, J. Grain Yield, Water and Nitrogen Use Efficiencies of Rice as Influenced by Irrigation Regimes and Their Interaction with Nitrogen Rates. Field Crops Res. 2016, 193, 54–69. [Google Scholar] [CrossRef]
- Li, G.; Pan, J.; Cui, K.; Yuan, M.; Hu, Q.; Wang, W.; Mohapatra, P.K.; Nie, L.; Huang, J.; Peng, S. Limitation of Unloading in the Developing Grains Is a Possible Cause Responsible for Low Stem Non-Structural Carbohydrate Translocation and Poor Grain Yield Formation in Rice through Verification of Recombinant Inbred Lines. Front. Plant Sci. 2017, 8, 1369. [Google Scholar] [CrossRef] [Green Version]
- Ramasamy, S.; ten Berge, H.F.M.; Purushothaman, S. Yield Formation in Rice in Response to Drainage and Nitrogen Application. Field Crops Res. 1997, 51, 65–82. [Google Scholar] [CrossRef]
- Liu, K.; Li, T.; Chen, Y.; Huang, J.; Qiu, Y.; Li, S.; Wang, H.; Zhu, A.; Zhuo, X.; Yu, F.; et al. Effects of Root Morphology and Physiology on the Formation and Regulation of Large Panicles in Rice. Field Crops Res. 2020, 258, 107946. [Google Scholar] [CrossRef]
- Foyer, C.H.; Valadier, M.H.; Migge, A.; Becker, T.W. Drought-Induced Effects on Nitrate Reductase Activity and MRNA and on the Coordination of Nitrogen and Carbon Metabolism in Maize Leaves. Plant Physiol. 1998, 117, 283–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayakawa, T.; Yamaya, T.; Mae, T.; Ojima, K. Changes in the Content of Two Glutamate Synthase Proteins in Spikelets of Rice (Oryza sativa) Plants during Ripening. Plant Physiol. 1993, 101, 1257–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Fan, P.; Mo, Z.; Kong, L.; Tian, H.; Duan, M.; Li, L.; Wu, L.; Wang, Z.; Tang, X.; et al. Deep Placement of Nitrogen Fertilizer Affects Grain Yield, Nitrogen Recovery Efficiency, and Root Characteristics in Direct-Seeded Rice in South China. J. Plant Growth Regul. 2021, 40, 379–387. [Google Scholar] [CrossRef]
- Hou, M.; Yu, M.; Li, Z.; Ai, Z.; Chen, J. Molecular Regulatory Networks for Improving Nitrogen Use Efficiency in Rice. Int. J. Mol. Sci. 2021, 22, 9040. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Jiang, Z.; Wang, W.; Xu, R.; Wang, Q.; Zhang, Z.; Li, A.; Liang, Y.; Ou, S.; et al. Genomic Basis of Geographical Adaptation to Soil Nitrogen in Rice. Nature 2021, 590, 600–605. [Google Scholar] [CrossRef]
- Chong, H.; Jiang, Z.; Shang, L.; Shang, C.; Deng, J.; Zhang, Y.; Huang, L. Dense Planting with Reduced Nitrogen Input Improves Grain Yield, Protein Quality, and Resource Use Efficiency in Hybrid Rice. J. Plant Growth Regul. 2023, 42, 960–972. [Google Scholar] [CrossRef]
- Zhang, Z.; Chu, C. Nitrogen-Use Divergence Between Indica and Japonica Rice: Variation at Nitrate Assimilation. Mol. Plant 2020, 13, 6–7. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, X.; He, X.; Li, C.; Chang, T.; Chang, S.; Zhang, H.; Zhang, Y. Scheduling of Nitrogen Fertilizer Topdressing during Panicle Differentiation to Improve Grain Yield of Rice with a Long Growth Duration. Sci. Rep. 2020, 10, 15197. [Google Scholar] [CrossRef]
- Jin, Z.; Shah, T.; Zhang, L.; Liu, H.; Peng, S.; Nie, L. Effect of Straw Returning on Soil Organic Carbon in Rice–Wheat Rotation System: A Review. Food Energy Secur. 2020, 9, e200. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Li, C.; Xing, X.; Pan, X.; Liu, C.; Tian, Y.; Wang, Z.; Zhao, J.; Wang, J.; He, B. Straw Return and Organic Fertilizers Instead of Chemical Fertilizers on Growth, Yield and Quality of Rice. Earth Sci. Inform. 2022, 15, 1363–1369. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Yuan, L.; Wang, Z.; Yang, J.; Zhang, J. Post-Anthesis Alternate Wetting and Moderate Soil Drying Enhances Activities of Key Enzymes in Sucrose-to-Starch Conversion in Inferior Spikelets of Rice. J. Exp. Bot. 2012, 63, 215–227. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Wang, Z.; Xiao, F.; Yang, L.; Li, G.; Ding, Y.; Paul, M.J.; Li, W.; Liu, Z. Dynamics of Dry Matter Accumulation in Internodes Indicates Source and Sink Relations during Grain-Filling Stage of Japonica Rice. Field Crops Res. 2021, 263, 108009. [Google Scholar] [CrossRef]
- Wang, W.; Cai, C.; He, J.; Gu, J.; Zhu, G.; Zhang, W.; Zhu, J.; Liu, G. Yield, Dry Matter Distribution and Photosynthetic Characteristics of Rice under Elevated CO2 and Increased Temperature Conditions. Field Crops Res. 2020, 248, 107605. [Google Scholar] [CrossRef]
- Zheng, Y.M.; Ding, Y.F.; Liu, Z.H.; Wang, S.H. Effects of Panicle Nitrogen Fertilization on Non-Structural Carbohydrate and Grain Filling in Indica Rice. Agric. Sci. China 2010, 9, 1630–1640. [Google Scholar] [CrossRef]
- Jiang, Q.; Du, Y.; Tian, X.; Wang, Q.; Xiong, R.; Xu, G.; Yan, C.; Ding, Y. Effect of Panicle Nitrogen on Grain Filling Characteristics of High-Yielding Rice Cultivars. Eur. J. Agron. 2016, 74, 185–192. [Google Scholar] [CrossRef]
- Li, C.Z.; Yang, L.; Lin, Y.J.; Zhang, H.; Rad, S.; Yu, X.Z. Assimilation of Exogenous Cyanide Cross Talk in Oryza sativa L. to the Key Nodes in Nitrogen Metabolism. Ecotoxicology 2020, 29, 1552–1564. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Hu, Y.; Jiang, H.; Lan, Y.; Wang, H.; Xu, L.; Yin, D.; Wang, H.; Zheng, G.; Lv, Y. Improving Photosynthetic Production in Rice Using Integrated Crop Management in Northeast China. Crop Sci. 2020, 60, 454–465. [Google Scholar] [CrossRef]
- Del Bianco, M.; Giustini, L.; Sabatini, S. Spatiotemporal Changes in the Role of Cytokinin during Root Development. New Phytol. 2013, 199, 324–338. [Google Scholar] [CrossRef]
- Zheng, C.; Zhu, Y.; Wang, C.; Guo, T. Wheat Grain Yield Increase in Response to Pre-Anthesis Foliar Application of 6-Benzylaminopurine Is Dependent on Floret Development. PLoS ONE 2016, 11, e0156627. [Google Scholar] [CrossRef] [Green Version]
- Kawai, T.; Chen, Y.; Takahashi, H.; Inukai, Y.; Siddique, K.H.M. Rice Genotypes Express Compensatory Root Growth With Altered Root Distributions in Response to Root Cutting. Front. Plant Sci. 2022, 13, 830577. [Google Scholar] [CrossRef]
- Chu, G.; Xu, R.; Chen, S.; Xu, C.; Liu, Y.; Abliz, B.; Zhang, X.; Wang, D. Root Morphological-physiological Traits for Japonica/Indica Hybrid Rice with Better Yield Performance under Low N Conditions. Food Energy Secur. 2022, 11, e355. [Google Scholar] [CrossRef]
- Wang, D.R.; Wolfrum, E.J.; Virk, P.; Ismail, A.; Greenberg, A.J.; McCouch, S.R. Robust Phenotyping Strategies for Evaluation of Stem Non-Structural Carbohydrates (NSC) in Rice. J. Exp. Bot. 2016, 67, 6125–6138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Park, J.; Yim, Y. Genetic Modification of Rice for Efficient Nitrogen Utilization. Plant Biotechnol. Rep. 2021, 15, 573–583. [Google Scholar] [CrossRef]
- Deng, F.; Wang, L.; Mei, X.F.; Li, S.X.; Pu, S.L.; Ren, W.J. Polyaspartate Urea and Nitrogen Management Affect Nonstructural Carbohydrates and Yield of Rice. Crop Sci. 2016, 56, 3272–3285. [Google Scholar] [CrossRef]
- Zhu, K.; Yan, J.; Shen, Y.; Zhang, W.; Xu, Y.; Wang, Z.; Yang, J. Deciphering the Morpho–Physiological Traits for High Yield Potential in Nitrogen Efficient Varieties (NEVs): A Japonica Rice Case Study. J. Integr. Agric. 2022, 21, 947–963. [Google Scholar] [CrossRef]
- Li, G.; Hu, Q.; Shi, Y.; Cui, K.; Nie, L.; Huang, J.; Peng, S. Low Nitrogen Application Enhances Starch-Metabolizing Enzyme Activity and Improves Accumulation and Translocation of Non-Structural Carbohydrates in Rice Stems. Front. Plant Sci. 2018, 9, 1128. [Google Scholar] [CrossRef]
- Zhen, F.; Zhou, J.; Mahmood, A.; Wang, W.; Chang, X.; Liu, B.; Liu, L.; Cao, W.; Zhu, Y.; Tang, L. Quantifying the Effects of Short-Term Heat Stress at Booting Stage on Nonstructural Carbohydrates Remobilization in Rice. Crop J. 2020, 8, 194–212. [Google Scholar] [CrossRef]
- Lancien, M.; Martin, M.; Hsieh, M.H.; Leustek, T.; Goodman, H.; Coruzzi, G.M. Arabidopsis Glt1-T Mutant Defines a Role for NADH-GOGAT in the Non-Photorespiratory Ammonium Assimilatory Pathway. Plant J. 2002, 29, 347–358. [Google Scholar] [CrossRef] [PubMed]
- Brauer, E.K.; Rochon, A.; Bi, Y.M.; Bozzo, G.G.; Rothstein, S.J.; Shelp, B.J. Reappraisal of Nitrogen Use Efficiency in Rice Overexpressing Glutamine Synthetase1. Physiol. Plant. 2011, 141, 361–372. [Google Scholar] [CrossRef] [PubMed]
May | June | July | August | September | October | |
---|---|---|---|---|---|---|
Precipitation (mm) | ||||||
2019 | 31.4 | 113.9 | 69.7 | 123.0 | 23.6 | 3.3 |
2020 | 41.6 | 359.2 | 212.2 | 140.7 | 30.2 | 39.4 |
2021 | 144.4 | 57.5 | 429.2 | 90.7 | 36.1 | 98.0 |
2022 | 14.3 | 92.5 | 160.7 | 40.1 | 54.8 | 69.1 |
Sunshine (h) | ||||||
2019 | 167.5 | 141.6 | 122.0 | 162.2 | 138.7 | 118.7 |
2020 | 189.6 | 112.0 | 63.8 | 202.9 | 183.7 | 159.0 |
2021 | 147.1 | 127.4 | 97.1 | 81.2 | 136.7 | 139.7 |
2022 | 176.7 | 171.1 | 165.1 | 155.0 | 119.4 | 115.3 |
Temperature (°C) | ||||||
2019 | 21.8 | 25.6 | 28.4 | 28.4 | 23.5 | 17.9 |
2020 | 22.0 | 25.4 | 25.3 | 29.4 | 23.9 | 17.1 |
2021 | 22.2 | 26.8 | 28.8 | 28.3 | 26.7 | 19.6 |
2022 | 20.8 | 27.4 | 29.6 | 30.0 | 23.1 | 16.9 |
Source of Variation | df | Grain Yield | Dry Matter Accumulation | N Accumulation | NSC Translocation in Stems | Root Oxidation Activity | Z + ZR Contents in Roots |
---|---|---|---|---|---|---|---|
Year (Y) | 1 | NS a | NS | NS | NS | NS | NS |
Variety (V) | 2 | 4.0 * | 23.3 ** | 43.2 ** | 26.7 ** | 13.5 ** | NS |
N treatment (N) | 3 | 199.8 ** | 347.5 ** | 701.7 ** | 45.0 ** | 657.8 ** | 9.3 ** |
Y × V | 2 | NS | NS | NS | NS | NS | NS |
Y × N | 3 | NS | NS | 3.1 * | NS | NS | NS |
N × V | 6 | NS | NS | NS | NS | 4.0 ** | NS |
Y × V × N | 6 | NS | NS | NS | NS | NS | NS |
Source of Variation | df | Grain Yield | Dry Matter Accumulation | N Accumulation | NSC Translocation in Stems | Root Oxidation Activity | Z + ZR Contents in Roots |
---|---|---|---|---|---|---|---|
Year (Yr) | 1 | NS a | NS | NS | NS | NS | NS |
N treatment (N) | 4 | 5.2 * | 39.4 ** | 76.4 ** | NS | 138.2 ** | 30.1 ** |
Yr × N | 4 | NS | NS | NS | NS | NS | NS |
Variety | Treatment | Grain Yield | Panicles | Spikelets per Panicle | Total Spikelets | Filled Grains | Grain Weight |
---|---|---|---|---|---|---|---|
(t ha−1) | (×104 ha−1) | (×106 ha−1) | (%) | (mg) | |||
Jinxiangyu 1 | 0T | 6.73 c | 268.9 c | 108.4 c | 272.7 d | 90.5 a | 25.5 a |
180T | 9.64 b | 322.5 b | 132.9 b | 406.0 c | 88.9 ab | 25.3 a | |
270T | 10.31 a | 334.4 a | 138.1 a | 438.4 b | 87.9 ab | 25.4 a | |
360T | 10.16 a | 348.2 a | 140.8 a | 465.9 a | 86.7 b | 23.9 b | |
Nanjing 46 | 0T | 6.90 c | 243.2 c | 112.9 c | 257.4 d | 95.6 a | 26.3 a |
180T | 9.87 b | 309.5 b | 127.1 b | 371.8 c | 95.0 a | 26.4 a | |
270T | 10.66 a | 319.4 ab | 136.8 a | 414.7 b | 93.8 a | 26.0 a | |
360T | 10.44 a | 341.4 a | 138.8 a | 449.8 a | 89.9 b | 24.5 b | |
Huaidao 5 | 0T | 6.54 c | 278.6 d | 95.0 d | 245.1 d | 93.9 a | 26.3 a |
180T | 9.59 b | 335.9 c | 117.1 c | 363.6 c | 93.4 ab | 26.1 a | |
270T | 10.16 a | 349.9 b | 121.1 b | 399.1 b | 92.9 b | 25.8 a | |
360T | 10.01 a | 354.2 a | 122.8 a | 413.4 a | 93.9 a | 24.5 b |
Variety | Treatment | Agronomic Use Efficiency, AEN | Recovery Efficiency, REN | Physiological Efficiency, PEN | Partial Factor Productivity, PEP |
---|---|---|---|---|---|
(kg kg−1) | (%) | (kg kg−1) | (kg kg−1) | ||
JXY1 | 0T | — | — | — | — |
180T | 16.18 a | 35.70 a | 45.34 a | 53.56 a | |
270T | 13.27 b | 33.43 ab | 39.71 b | 38.19 b | |
360T | 9.95 c | 30.29 b | 31.48 c | 28.22 c | |
NJ46 | 0T | — | — | — | — |
180T | 16.46 a | 38.19 a | 43.10 a | 54.81 a | |
270T | 13.90 b | 34.30 ab | 40.52 b | 39.47 b | |
360T | 9.82 c | 31.59 b | 31.07 c | 28.99 c | |
HD5 | 0T | — | — | — | — |
180T | 16.96 a | 35.85 a | 47.30 a | 53.27 a | |
270T | 13.41 b | 33.96 a | 39.48 b | 37.61 b | |
360T | 9.64 c | 29.61 b | 32.55 c | 27.80 c |
Variety | Treatment | Grain Yield | Panicles | Spikelets per Panicle | Total Spikelets | Filled Grains | Grain Weight |
---|---|---|---|---|---|---|---|
(t ha−1) | (×104 ha−1) | (×106 ha−1) | (%) | (mg) | |||
Jinxiangyu1 | 0P | 8.04 d | 263.5 b | 129.5 d | 341.2 e | 89.3 a | 26.4 a |
54P | 9.25 c | 270.4 ab | 150.4 c | 406.7 d | 86.8 b | 26.2 ab | |
108P | 9.74 a | 272.6 ab | 159.3 b | 434.3 c | 86.3 b | 26.0 ab | |
162P | 9.42 b | 269.8 ab | 164.1 b | 442.7 b | 82.8 c | 25.7 b | |
216P | 9.36 b | 276.1 a | 170.4 a | 470.5 a | 81.2 c | 24.5 c |
Variety | Treatment | Agronomic Use Efficiency, AEN | Recovery Efficiency, REN | Physiological Efficiency, PEN | Partial Factor Productivity, PEP |
---|---|---|---|---|---|
(kg kg−1) | (%) | (kg kg−1) | (kg kg−1) | ||
Jinxiangyu 1 | 0P | —— | —— | —— | —— |
54P | 20.02 a | 34.91 a | 57.35 b | 168.99 a | |
108P | 14.18 b | 40.80 b | 34.75 a | 88.66 b | |
162P | 11.05 c | 38.02 c | 29.06 ab | 60.71 c | |
216P | 6.17 d | 35.20 d | 17.54 c | 43.42 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, S.; Liu, K.; Zhuo, X.; Wang, W.; Zhang, W.; Zhang, H.; Gu, J.; Yang, J.; Liu, L. Optimizing Nitrogen Regime Improves Dry Matter and Nitrogen Accumulation during Grain Filling to Increase Rice Yield. Agronomy 2023, 13, 1983. https://doi.org/10.3390/agronomy13081983
Zhou S, Liu K, Zhuo X, Wang W, Zhang W, Zhang H, Gu J, Yang J, Liu L. Optimizing Nitrogen Regime Improves Dry Matter and Nitrogen Accumulation during Grain Filling to Increase Rice Yield. Agronomy. 2023; 13(8):1983. https://doi.org/10.3390/agronomy13081983
Chicago/Turabian StyleZhou, Shenqi, Kun Liu, Xinxin Zhuo, Weilu Wang, Weiyang Zhang, Hao Zhang, Junfei Gu, Jianchang Yang, and Lijun Liu. 2023. "Optimizing Nitrogen Regime Improves Dry Matter and Nitrogen Accumulation during Grain Filling to Increase Rice Yield" Agronomy 13, no. 8: 1983. https://doi.org/10.3390/agronomy13081983
APA StyleZhou, S., Liu, K., Zhuo, X., Wang, W., Zhang, W., Zhang, H., Gu, J., Yang, J., & Liu, L. (2023). Optimizing Nitrogen Regime Improves Dry Matter and Nitrogen Accumulation during Grain Filling to Increase Rice Yield. Agronomy, 13(8), 1983. https://doi.org/10.3390/agronomy13081983