Integration of Vis–NIR Spectroscopy and Machine Learning Techniques to Predict Eight Soil Parameters in Alpine Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Sample Collection
2.2. Data Collection and Processing
2.3. Research Methodology and Development of Models
2.3.1. Pearson Correlation
2.3.2. Feature Selection Algorithm
- Let t0 = 1, choose any column vector in Xn×m as xk(0), k(0) is the initial position of the selected variable x (j = k(0), 1 ≤ j ≤ m), the set of other remaining variable positions is defined as s:
- Compute the projection of the remaining column vector xj onto the orthogonal vector space formed by the selected vector xk(t−1):
- Select the maximum projection value variable to add to the set of selected variables;
- Let t = t + 1, if t < H, then return to step (2) for circular calculation.
2.3.3. Regression Model
- PLSR model
- 2.
- RF model
- 3.
- SVM model
- 4.
- BPNN model
- 5.
- XGBoost model
2.3.4. Evaluation of Model Accuracy
3. Results and Analysis
3.1. Soil Parameters and Spectrum Feature Analysis
3.2. Correlation Analysis
3.3. Feature Band Extraction
3.4. Model Performance Comparison
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Yang, Z.J.; Chen, X.M.; Jing, F.; Guo, B.L.; Lin, G.Z. Spatial variability of nutrients and heavy metals in paddy field soils based on GIS and Geostatistics. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2018, 29, 1893–1901. [Google Scholar]
- Man, Z.H. Monitoring Study on Alpine Meadow Response to Freezing-Thawing Events in the Nagqu River Basin. Master’s Thesis, Hebei University of Engineering, Handan, China, 2020. [Google Scholar]
- Qiu, J. China: The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Qin, Q.T.; Chen, J.J.; Yang, Y.P.; Zhao, X.Y.; Zhou, G.Q.; You, H.T.; Han, X.W. Spatiotemporal variations of vegetation and its response to topography and climate in the source region of the Yellow River. China Environ. Sci. 2021, 41, 3832–3841. [Google Scholar]
- Li, C.Y.; Zhang, W.J.; Lai, Z.M.; Peng, F.; Chen, X.J.; Xue, X.; Wang, T.; You, Q.G.; Du, H.Q. Plant productivity, species diversity, soil properties, and their relationships in an alpine steppe under different degradation degress at the source of the Yellow River. Acta Evologica Sin. 2021, 41, 4541–4551. [Google Scholar]
- Zhao, J.; Jiang, C.; Ding, Y.; Peng, J. Alpine vegetation coverage mutation and its attribution analysis based on AVHRR NDVI data. In Proceedings of the Fourth International Conference on Geoscience and Remote Sensing Mapping (GRSM 2022), Changchun, China, 21–23 October 2022; p. 125512X. [Google Scholar]
- Chen, H.; Ju, P.; Zhu, Q.; Xu, X.; Wu, N.; Gao, Y.; Feng, X.; Tian, J.; Niu, S.; Zhang, Y.; et al. Carbon and nitrogen cycling on the Qinghai–Tibetan Plateau. Nat. Rev. Earth Environ. 2022, 3, 701–716. [Google Scholar] [CrossRef]
- Xu, Y.-d.; Dong, S.-k.; Shen, H.; Xiao, J.-n.; Li, S.; Gao, X.-x.; Wu, S.-n. Degradation significantly decreased the ecosystem multifunctionality of three alpine grasslands: Evidences from a large-scale survey on the Qinghai-Tibetan Plateau. J. Mt. Sci. 2021, 18, 357–366. [Google Scholar] [CrossRef]
- Li, H.; Qiu, Y.; Yao, T.; Han, D.; Gao, Y.; Zhang, J.; Ma, Y.; Zhang, H.; Yang, X. Nutrients available in the soil regulate the changes of soil microbial community alongside degradation of alpine meadows in the northeast of the Qinghai-Tibet Plateau. Sci. Total Environ. 2021, 792, 148363. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, H.; Li, G.; Ma, W.; Wu, J.; Gong, Y.; Xu, G. Vegetation degradation impacts soil nutrients and enzyme activities in wet meadow on the Qinghai-Tibet Plateau. Sci. Rep. 2020, 10, 21271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Xue, X.; Peng, F.; You, Q.; Hao, A. Meta-analysis of the effects of grassland degradation on plant and soil properties in the alpine meadows of the Qinghai-Tibetan Plateau. Glob. Ecol. Conserv. 2019, 20, e00774. [Google Scholar] [CrossRef]
- Jianyun, Z.; Chuanli, J.; Wenhui, L.; Yuanyuan, D.; Guorong, L. Pika disturbance intensity observation system via multidimensional stereoscopic surveying for monitoring alpine meadow. J. Appl. Remote Sens. 2022, 16, 044524. [Google Scholar]
- Xie, S.; Ding, F.; Chen, S.; Wang, X.; Li, Y.; Ma, K. Prediction of soil organic matter content based on characteristic band selection method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 273, 120949. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, K. Nitrogen cycling and management focusing on the central role of soils: A review. Soil Sci. Plant Nutr. 2022, 68, 514–525. [Google Scholar] [CrossRef]
- Devianti; Sufardi; Bulan, R.; Sitorus, A. Vis-NIR spectra combined with machine learning for predicting soil nutrients in cropland from Aceh Province, Indonesia. Case Stud. Chem. Environ. Eng. 2022, 6, 100268. [Google Scholar] [CrossRef]
- Sardans, J.; Bartrons, M.; Margalef, O.; Gargallo-Garriga, A.; Janssens, I.A.; Ciais, P.; Obersteiner, M.; Sigurdsson, B.D.; Chen, H.Y.H.; Peñuelas, J. Plant invasion is associated with higher plant–soil nutrient concentrations in nutrient-poor environments. Glob. Chang. Biol. 2017, 23, 1282–1291. [Google Scholar] [CrossRef]
- Wang, Y.C.; Yang, X.F.; Zhao, Q.C.; Gu, X.H.; Guo, C.; Liu, Y.P. Quantitative inversion of soil organic matter content in northern alluvial soil based on binary wavelet transform. Spectrosc. Spectr. Anal. 2019, 39, 2855–2861. [Google Scholar]
- Zhong, H.; Li, X.C.; Zhai, H.R.; Zhou, Y. Hyperspectral indirect estimation model of soil organic matter content in plough layer. J. Geomat. Sci. Technol. 2019, 36, 74–78+85. [Google Scholar]
- Zhang, C.; Xie, Z. Object-based vegetation mapping in the Kissimmee River watershed using HyMap data and machine learning techniques. Wetlands 2013, 33, 233–244. [Google Scholar] [CrossRef]
- Selige, T.; Böhner, J.; Schmidhalter, U. High resolution topsoil mapping using hyperspectral image and field data in multivariate regression modeling procedures. Geoderma 2006, 136, 235–244. [Google Scholar] [CrossRef]
- Jiang, Y.L.; Wang, R.H.; Li, Y.; Li, C.; Peng, Q.; Wu, X.Q. Hypersperctral retrieval of soil nutrient content of various land-cover types in Ebinur Lake Basin. Chin. J. Eco-Agric. 2016, 24, 1555–1564. [Google Scholar]
- Wang, Y.; Li, M.; Ji, R.; Wang, M.; Zheng, L. Comparison of Soil Total Nitrogen Content Prediction Models Based on Vis-NIR Spectroscopy. Sensors 2020, 20, 7078. [Google Scholar] [CrossRef]
- Zhou, P.; Zhang, Y.; Yang, W.; Li, M.; Liu, Z.; Liu, X. Development and performance test of an in-situ soil total nitrogen-soil moisture detector based on near-infrared spectroscopy. Comput. Electron. Agric. 2019, 160, 51–58. [Google Scholar] [CrossRef]
- Morellos, A.; Pantazi, X.-E.; Moshou, D.; Alexandridis, T.; Whetton, R.; Tziotzios, G.; Wiebensohn, J.; Bill, R.; Mouazen, A.M. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosyst. Eng. 2016, 152, 104–116. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, T.; Xie, S.; Liu, Z.; Lin, C.; Hu, Y.; Wang, J.; Mao, X. Estimation of Soil Cations Based on Visible and Near-Infrared Spectroscopy and Machine Learning. Agriculture 2023, 13, 1237. [Google Scholar] [CrossRef]
- Akter, S.; de Jonge, L.W.; Møldrup, P.; Greve, M.H.; Nørgaard, T.; Weber, P.L.; Hermansen, C.; Mouazen, A.M.; Knadel, M. Visible Near-Infrared Spectroscopy and Pedotransfer Function Well Predict Soil Sorption Coefficient of Glyphosate. Remote Sens. 2023, 15, 1712. [Google Scholar] [CrossRef]
- Juanjuan, Z.; Qinqin, W.; Shuping, X.; Lei, S.; Xinming, M.; Pan, D.; Jianbiao, G. A spectral parameter for the estimation of soil total nitrogen and nitrate nitrogen of winter wheat growth period. Soil Use Manag. 2020, 37, 698–711. [Google Scholar]
- El-Sayed, M.A.; Abd-Elazem, A.H.; Moursy, A.R.A.; Mohamed, E.S.; Kucher, D.E.; Fadl, M.E. Integration Vis-NIR Spectroscopy and Artificial Intelligence to Predict Some Soil Parameters in Arid Region: A Case Study of Wadi Elkobaneyya, South Egypt. Agronomy 2023, 13, 935. [Google Scholar] [CrossRef]
- Wang, L.; Wang, R. Determination of soil pH from Vis-NIR spectroscopy by extreme learning machine and variable selection: A case study in lime concretion black soil. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 283, 121707. [Google Scholar] [CrossRef]
- Yu, B.; Yan, C.; Yuan, J.; Ding, N.; Chen, Z. Prediction of soil properties based on characteristic wavelengths with optimal spectral resolution by using Vis-NIR spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 293, 122452. [Google Scholar] [CrossRef]
- Zhou, P.; Sudduth, K.A.; Veum, K.S.; Li, M. Extraction of reflectance spectra features for estimation of surface, subsurface, and profile soil properties. Comput. Electron. Agric. 2022, 196, 106845. [Google Scholar] [CrossRef]
- Yang, J.; Wang, X.; Wang, R.; Wang, H. Combination of Convolutional Neural Networks and Recurrent Neural Networks for predicting soil properties using Vis–NIR spectroscopy. Geoderma 2020, 380, 114616. [Google Scholar] [CrossRef]
- Ren, G.X.; Wei, Z.Q.; Fan, P.P.; Wang, X.Y. Visible/near infrared spectroscopy method applied research in wetland soil nutrients rapid test. IOP Conf. Ser. Earth Environ. Sci. 2019, 344, 012123. [Google Scholar] [CrossRef]
- Kawamura, K.; Nishigaki, T.; Andriamananjara, A.; Rakotonindrina, H.; Tsujimoto, Y.; Moritsuka, N.; Rabenarivo, M.; Razafimbelo, T. Using a One-Dimensional Convolutional Neural Network on Visible and Near-Infrared Spectroscopy to Improve Soil Phosphorus Prediction in Madagascar. Remote Sens. 2021, 13, 1519. [Google Scholar] [CrossRef]
- Xiaobo, Z.; Jiewen, Z.; Povey, M.J.W.; Holmes, M.; Hanpin, M. Variables selection methods in near-infrared spectroscopy. Anal. Chim. Acta 2010, 667, 14–32. [Google Scholar] [CrossRef]
- Liu, L.; Ji, M.; Dong, Y.; Zhang, R.; Buchroithner, M. Quantitative Retrieval of Organic Soil Properties from Visible Near-Infrared Shortwave Infrared (Vis-NIR-SWIR) Spectroscopy Using Fractal-Based Feature Extraction. Remote Sens. 2016, 8, 1035. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Zhan, B.; Zhang, Y.; Li, R.; Li, J. Nondestructive firmness measurement of the multiple cultivars of pears by Vis-NIR spectroscopy coupled with multivariate calibration analysis and MC-UVE-SPA method. Infrared Phys. Technol. 2020, 104, 103154. [Google Scholar]
- Jiang, C.L.; Zhao, J.Y.; Ding, Y.Y.; Zhao, Q.H.; Ma, H.Y. Study on Soil Water Retrieval Technology of Yellow River Source Based on SPA Algorithm and Machine Learning. Spectrosc. Spectr. Anal. 2023, 43, 1961–1967. [Google Scholar]
- Zhang, C.; Liu, Y.M.; Sun, Y.N.; Wang, L.; Liu, J.H. Hyperspectral prediction model of soil nutrient content in the loess hilly-gully region, China. Chin. J. Appl. Ecol. 2018, 29, 2835–2842. [Google Scholar]
- Lin, N.; Liu, H.Q.; Yang, J.J.; Wu, M.H.; Liu, H.L. Hyperspectral estimation of soil nutrient content in the black soil region based on BA-Adaboost. Spectrosc. Spectr. Anal. 2020, 40, 3825–3831. [Google Scholar]
- Pudełko, A.; Chodak, M.; Roemer, J.; Uhl, T. Application of FT-NIR spectroscopy and NIR hyperspectral imaging to predict nitrogen and organic carbon contents in mine soils. Measurement 2020, 164, 108117. [Google Scholar] [CrossRef]
- Yang, R.-M. Characterization of the salt marsh soils and visible-near-infrared spectroscopy along a chronosequence of Spartina alterniflora invasion in a coastal wetland of eastern China. Geoderma 2020, 362, 114138. [Google Scholar] [CrossRef]
- Kawamura, K.; Nishigaki, T.; Tsujimoto, Y.; Andriamananjara, A.; Rabenaribo, M.; Asai, H.; Rakotoson, T.; Razafimbelo, T. Exploring relevant wavelength regions for estimating soil total carbon contents of rice fields in Madagascar from Vis-NIR spectra with sequential application of backward interval PLS. Plant Prod. Sci. 2021, 24, 1–14. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, L.; Hu, Y.; Wang, G.; Wang, L.; Liu, Z. Prediction of Soil Nutrient Contents Using Visible and Near-Infrared Reflectance Spectroscopy. ISPRS Int. J. Geo-Inf. 2019, 8, 437. [Google Scholar] [CrossRef]
- Xie, W. Study on Spectral Characteristics and Estimation Models of Different Nutrient Contents in Forest Soils Based on Hyperspectral Techonlogy. Ph.D. Thesis, Jiangxi Agricultural University, Nanchang, China, 2017. [Google Scholar]
- Yang, Y.C.; Zhao, Y.J.; Qin, K.; Zhao, N.B.; Yang, C.; Zhang, D.H.; Cui, X. Prediction of black soil nutrient content based on airborne hyperspectral remote sensing. Trans. Chin. Soc. Agric. Eng. 2019, 35, 94–101. [Google Scholar]
- Blazhko, U.; Shapaval, V.; Kovalev, V.; Kohler, A. Comparison of augmentation and pre-processing for deep learning and chemometric classification of infrared spectra. Chemom. Intell. Lab. Syst. 2021, 215, 104367. [Google Scholar] [CrossRef]
- Sun, J.; Wang, G.; Zhang, H.; Xia, L.; Zhao, W.; Guo, Y.; Sun, X. Detection of fat content in peanut kernels based on chemometrics and hyperspectral imaging technology. Infrared Phys. Technol. 2020, 105, 103226. [Google Scholar] [CrossRef]
- Alkesaiberi, A.; Harrou, F.; Sun, Y. Efficient Wind Power Prediction Using Machine Learning Methods: A Comparative Study. Energies 2022, 15, 2327. [Google Scholar] [CrossRef]
- Pan, Q.; Harrou, F.; Sun, Y. A comparison of machine learning methods for ozone pollution prediction. J. Big Data 2023, 10, 63. [Google Scholar] [CrossRef]
- Chen, S.; Lou, F.; Tuo, Y.; Tan, S.; Peng, K.; Zhang, S.; Wang, Q. Prediction of Soil Water Content Based on Hyperspectral Reflectance Combined with Competitive Adaptive Reweighted Sampling and Random Frog Feature Extraction and the Back-Propagation Artificial Neural Network Method. Water 2023, 15, 935. [Google Scholar] [CrossRef]
- Tan, B.; You, W.; Tian, S.; Xiao, T.; Wang, M.; Zheng, B.; Luo, L. Soil Nitrogen Content Detection Based on Near-Infrared Spectroscopy. Sensors 2022, 22, 8013. [Google Scholar] [CrossRef]
- Zhao, J.Y.; Ding, Y.Y.; Du, M.; Liu, W.H.; Zhu, H.L.; Li, G.R.; Yang, J. Vegetation coverage inversion of alpine grassland in the source of the Yellow River based on unmanned aerial vehicle and machine learning. Sci. Technol. Eng. 2021, 21, 10209–10214. [Google Scholar]
- Zhen, Z.Y.; Lv, M.X.; Ma, Z.G. Climate, hydrology, and vegetation coverage changes in source region of Yellow River and countermeasures for challenges. Bull. Chin. Acad. Sci. 2020, 35, 61–72. [Google Scholar]
- Wu, X.F.; Li, G.X.; Pan, X.P.; Wang, Y.F.; Zhang, S.; Liu, F.G.; Shen, Y.J. Response of vegetation cover to temperature and precipitation in the source region of the Yellow River. Resour. Sci. 2015, 37, 512–521. [Google Scholar]
- Yang, R.R. Spatio-Temporal Variation of Vegetation Coverage and Its Response to Climate Change in the Source Region of the Yellow River from 2000 to 2017. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 2019. [Google Scholar]
- Shi, D.D.; Yand, T.; Hu, J.M.; Gu, Z.J.; Jia, H.F. Spatio-temporal variation of NDVI-based wegetation during the growing-season and its relation with climatic factiors in the Yellow River Source Region. Mt. Res. 2018, 36, 184–193. [Google Scholar]
- Wan, B.; Mei, X.; Hu, Z.; Guo, H.; Chen, X.; Griffiths, B.S.; Liu, M. Moderate grazing increases the structural complexity of soil micro-food webs by promoting root quantity and quality in a Tibetan alpine meadow. Appl. Soil Ecol. 2021, 168, 104161. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Wu, J.; Shen, Z.; Zhang, Y.; Xu, X.; Fan, Y.; Zhao, Y.; Yan, W. Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau. Environ. Earth Sci. 2011, 64, 1911–1919. [Google Scholar] [CrossRef]
- Su, P.; Zhou, Z.; Shi, R.; Xie, T. Variation in basic properties and carbon sequestration capacity of an alpine sod layer along moisture and elevation gradients. Acta Ecol. Sin. 2018, 38, 1040–1052. [Google Scholar]
- Jiang, C.; Zhao, J.; Ding, Y.; Li, G. Vis-NIR Spectroscopy Combined with GAN Data Augmentation for Predicting Soil Nutrients in Degraded Alpine Meadows on the Qinghai-Tibet Plateau. Sensors 2023, 23, 3686. [Google Scholar] [CrossRef]
- Zhu, H.; Chu, B.; Zhang, C.; Liu, F.; Jiang, L.; He, Y. Hyperspectral Imaging for Presymptomatic Detection of Tobacco Disease with Successive Projections Algorithm and Machine-learning Classifiers. Sci. Rep. 2017, 7, 4125. [Google Scholar] [CrossRef]
- Kamruzzaman, M.; Kalita, D.; Ahmed, M.T.; ElMasry, G.; Makino, Y. Effect of variable selection algorithms on model performance for predicting moisture content in biological materials using spectral data. Anal. Chim. Acta 2022, 1202, 339390. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.F.C.; Gomes, A.A.; Araujo, M.C.U.; Filho, A.R.G.; Galvão, R.K.H. The successive projections algorithm. TrAC Trends Anal. Chem. 2013, 42, 84–98. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Dai, L.; Ge, J.; Wang, L.; Zhang, Q.; Liang, T.; Bolan, N.; Lischeid, G.; Rinklebe, J. Influence of soil properties, topography, and land cover on soil organic carbon and total nitrogen concentration: A case study in Qinghai-Tibet plateau based on random forest regression and structural equation modeling. Sci. Total Environ. 2022, 821, 153440. [Google Scholar] [CrossRef] [PubMed]
- Xiao, T.; Segoni, S.; Liang, X.; Yin, K.; Casagli, N. Generating soil thickness maps by means of geomorphological-empirical approach and random forest algorithm in Wanzhou County, Three Gorges Reservoir. Geosci. Front. 2023, 14, 101514. [Google Scholar] [CrossRef]
- Bansal, M.; Goyal, A.; Choudhary, A. A comparative analysis of K-Nearest Neighbor, Genetic, Support Vector Machine, Decision Tree, and Long Short Term Memory algorithms in machine learning. Decis. Anal. J. 2022, 3, 100071. [Google Scholar] [CrossRef]
- He, B.; Jia, B.; Zhao, Y.; Wang, X.; Wei, M.; Dietzel, R. Estimate soil moisture of maize by combining support vector machine and chaotic whale optimization algorithm. Agric. Water Manag. 2022, 267, 107618. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, Y.; Luo, Y. Improvement of multi-layer soil moisture prediction using support vector machines and ensemble Kalman filter coupled with remote sensing soil moisture datasets over an agriculture dominant basin in China. Hydrol. Process. 2021, 35, e14154. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation: A Gradient Boosting Machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Chollet, F. Keras. 2015. Available online: https://github.com/keras-team/keras (accessed on 15 August 2023).
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O. Scikit-Learn: Machine Learning in Python. Available online: https://github.com/scikit-learn/scikit-learn (accessed on 15 August 2023).
- Liu, J.; Han, J.; Xie, J.; Wang, H.; Tong, W.; Ba, Y. Assessing heavy metal concentrations in earth-cumulic-orthic-anthrosols soils using Vis-NIR spectroscopy transform coupled with chemometrics. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 226, 117639. [Google Scholar] [CrossRef]
- Zhang, D.H.; Zhao, Y.J.; Qin, K. A new model for predicting black soil nutrient content by spectral parameters. Spectrosc. Spectr. Anal. 2018, 38, 2932–2936. [Google Scholar]
- Zhang, D.H.; Qin, K.; Zhao, Y.J.; Zhao, N.B.; Yang, Y.C. Influence of spectral transformation methods on nutrient content inversion accuracy by hyperspectral remote sensing in black soil. Trans. Chin. Soc. Agric. Eng. 2018, 34, 141–147. [Google Scholar]
- Cheng, X.F.; Song, T.T.; Chen, Y.; Wei, Y.M.; Shen, J.X.; Qi, W.F. Retrieval and analysis of heavy metal content in soil based on measured spectrain the Lanping Zn-Pb mining area, western Yunnan Province. Acta Petrol. Et Mineral. 2017, 36, 60–69. [Google Scholar]
- Gao, X.; Yang, Y.; Zhang, W.; Jia, W.; Li, J.; Tian, C.; Zhang, Y.; He, L. Visible-near infrared reflectance spectroscopy for estimating soil total nitrogen contents in the Sanjiang Yuan Regions, China: A case study of Yushu County and Maduo County, Qinghai province. In Proceedings of the SPIE Asia-Pacific Remote Sensing, Beijing, China, 13–16 October 2014; p. 92631O. [Google Scholar]
- Zhang, X.; Xue, J.; Xiao, Y.; Shi, Z.; Chen, S. Towards Optimal Variable Selection Methods for Soil Property Prediction Using a Regional Soil Vis-NIR Spectral Library. Remote Sens. 2023, 15, 465. [Google Scholar] [CrossRef]
- Yang, M.; Xu, D.; Chen, S.; Li, H.; Shi, Z. Evaluation of Machine Learning Approaches to Predict Soil Organic Matter and pH Using vis-NIR Spectra. Sensors 2019, 19, 263. [Google Scholar] [CrossRef] [PubMed]
- Dhawale, N.M.; Adamchuk, V.I.; Prasher, S.O.; Viscarra Rossel, R.A. Evaluating the Precision and Accuracy of Proximal Soil vis–NIR Sensors for Estimating Soil Organic Matter and Texture. Soil Syst. 2021, 5, 48. [Google Scholar] [CrossRef]
- Nawar, S.; Buddenbaum, H.; Hill, J.; Kozak, J.; Mouazen, A.M. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil Tillage Res. 2016, 155, 510–522. [Google Scholar] [CrossRef]
- Stenberg, B.; Viscarra Rossel, R.A.; Mouazen, A.M.; Wetterlind, J. Chapter Five—Visible and Near Infrared Spectroscopy in Soil Science. Adv. Agron. 2010, 107, 163–215. [Google Scholar]
- Zhao, D.; Arshad, M.; Wang, J.; Triantafilis, J. Soil exchangeable cations estimation using Vis-NIR spectroscopy in different depths: Effects of multiple calibration models and spiking. Comput. Electron. Agric. 2021, 182, 105990. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, J.; Du, Y. Combining multivariate method and spectral variable selection for soil total nitrogen estimation by Vis–NIR spectroscopy. Arch. Agron. Soil Sci. 2021, 67, 1665–1678. [Google Scholar] [CrossRef]
- Chen, Z.; Ren, S.; Qin, R.; Nie, P. Rapid Detection of Different Types of Soil Nitrogen Using Near-Infrared Hyperspectral Imaging. Molecules 2022, 27, 2017. [Google Scholar] [CrossRef]
- Kawamura, K.; Tsujimoto, Y.; Rabenarivo, M.; Asai, H.; Andriamananjara, A.; Rakotoson, T. Vis-NIR Spectroscopy and PLS Regression with Waveband Selection for Estimating the Total C and N of Paddy Soils in Madagascar. Remote Sens. 2017, 9, 1081. [Google Scholar] [CrossRef]
Soil Parameters | Minimum Value (g/kg) | Maximum Value (g/kg) | Mean Value (g/kg) | Standard Deviation (g/kg) | Coefficient of Variation |
---|---|---|---|---|---|
TN | 0.450 | 4.510 | 2.372 | 0.942 | 0.397 |
TP2O5 | 1.020 | 5.920 | 1.539 | 0.815 | 0.529 |
TK2O | 13.790 | 22.480 | 19.225 | 1.956 | 0.101 |
AHN | 0.045 | 0.317 | 0.183 | 0.076 | 0.415 |
AP | 0.003 | 0.050 | 0.008 | 0.007 | 0.918 |
AK | 0.040 | 0.360 | 0.162 | 0.071 | 0.441 |
SOM | 4.070 | 92.190 | 41.660 | 20.443 | 0.490 |
pH | 6.300 | 9.060 | 7.794 | 0.714 | 0.091 |
Soil Parameters | Spectral Transformation Type | ||||||
---|---|---|---|---|---|---|---|
S–G | RC | LG | CR | FD | FDR | FDL | |
TN | −0.58 ** | 0.51 ** | −0.56 ** | −0.64 ** | −0.65 ** | −0.62 ** | 0.68 ** |
TP2O5 | −0.42 ** | 0.62 * | −0.52 * | −0.48 | −0.57 | −0.86 * | −0.77 |
TK2O | −0.37 | 0.24 | −0.30 | −0.25 | −0.620 * | 0.35 | −0.46 |
AHN | −0.68 ** | 0.66 ** | −0.69 ** | −0.83 ** | −0.76 ** | −0.75 ** | 0.74 ** |
AP | −0.37 ** | 0.60 * | −0.48 * | −0.47 | −0.50 | −0.84 * | −0.75 * |
AK | −0.45 ** | 0.45 ** | −0.45 * | −0.42 ** | −0.57 ** | −0.60 ** | 0.61 ** |
SOM | −0.58 ** | 0.56 ** | −0.58 ** | −0.68 ** | −0.69 ** | −0.68 ** | 0.72 ** |
pH | 0.62 ** | −0.61 ** | 0.63 ** | 0.77 ** | 0.78 ** | 0.67 ** | −0.74 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Zhao, J.; Li, G. Integration of Vis–NIR Spectroscopy and Machine Learning Techniques to Predict Eight Soil Parameters in Alpine Regions. Agronomy 2023, 13, 2816. https://doi.org/10.3390/agronomy13112816
Jiang C, Zhao J, Li G. Integration of Vis–NIR Spectroscopy and Machine Learning Techniques to Predict Eight Soil Parameters in Alpine Regions. Agronomy. 2023; 13(11):2816. https://doi.org/10.3390/agronomy13112816
Chicago/Turabian StyleJiang, Chuanli, Jianyun Zhao, and Guorong Li. 2023. "Integration of Vis–NIR Spectroscopy and Machine Learning Techniques to Predict Eight Soil Parameters in Alpine Regions" Agronomy 13, no. 11: 2816. https://doi.org/10.3390/agronomy13112816
APA StyleJiang, C., Zhao, J., & Li, G. (2023). Integration of Vis–NIR Spectroscopy and Machine Learning Techniques to Predict Eight Soil Parameters in Alpine Regions. Agronomy, 13(11), 2816. https://doi.org/10.3390/agronomy13112816