Biochar and Polyhalite Fertilizers Improve Soil’s Biochemical Characteristics and Sunflower (Helianthus annuus L.) Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Biochar Preparation and Characterization
2.3. Pot Experiment
2.4. Field Experiment
2.5. Analytical Methods
2.5.1. Soil Analysis
2.5.2. Plant Analysis
2.6. Statistical Analysis
3. Results
3.1. Soil pH and EC
3.2. Macronutrient Availability in Soil
3.3. Micronutrient Availability in Soil
3.4. Crop Growth and Nutrient Uptake
3.5. Grain and Biological Yield
3.6. Harvest Index
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peake, L.R.; Reid, B.J.; Tang, X. Quantifying the influence of biochar on the physical and hydrological properties of dissimilar soils. Geoderma 2014, 235–236, 182–190. [Google Scholar] [CrossRef]
- Bestelmeyer, B.T.; Okin, G.S.; Duniway, M.C.; Archer, S.R.; Sayre, N.F.; Williamson, J.C.; Herrick, J.E. Desertification, land use, and the transformation of global drylands. Front. Ecol. Environ. 2015, 13, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Roy, P.; Pal, S.C.; Chakrabortty, R.; Islam, A.R.M.T.; Chowdhuri, I.; Saha, A. Impact of ineffective measures on the increasing land degradation in a monsoon-dominated region of India: Issues and policy implications. Land Degrad. Dev. 2022, 33, 3174–3185. [Google Scholar] [CrossRef]
- Hossain, A.; Krupnik, T.J.; Timsina, J.; Mahboob, M.G.; Chaki, A.K.; Farooq, M.; Bhatt, R.; Fahad, S.; Hasanuzzaman, M. Agricultural land degradation: Processes and problems undermining future food security. In Environment, Climate, Plant and Vegetation Growth; Springer: Cham, Switzerland, 2020; pp. 17–61. [Google Scholar]
- Sadaf, J.; Shah, G.A.; Shahzad, K.; Ali, N.; Shahid, M.; Ali, S.; Hussain, R.A.; Ahmed, Z.I.; Traore, B.; Ismail, I.M. Improvements in wheat productivity and soil quality can accomplish by co-application of biochars and chemical fertilizers. Sci. Total Environ. 2017, 607, 715–724. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Ghosh, B.N.; Mishra, P.K.; Mandal, B.; Rao, C.S.; Sarkar, D.; Das, K.; Anil, K.S.; Lalitha, M.; Hati, K.M. Soil degradation in India: Challenges and potential solutions. Sustainability 2015, 7, 3528–3570. [Google Scholar] [CrossRef]
- Khatoon, H.; Solanki, P.; Narayan, M.; Tewari, L.; Rai, J.; Hina Khatoon, C. Role of microbes in organic carbon decomposition and maintenance of soil ecosystem. Int. J. Chem. Stud. 2017, 5, 1648–1656. [Google Scholar]
- Bhadha, J.H.; Capasso, J.M.; Khatiwada, R.; Swanson, S.; LaBorde, C. Raising soil organic matter content to improve water holding capacity. Uf/Ifas 2017, 447, 1–5. [Google Scholar] [CrossRef]
- Ayuke, F.O.; Brussaard, L.; Vanlauwe, B.; Six, J.; Lelei, D.; Kibunja, C.; Pulleman, M. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Appl. Soil Ecol. 2011, 48, 53–62. [Google Scholar] [CrossRef]
- Sun, M.; Liu, X.; Shi, K.; Peng, F.; Xiao, Y. Effects of Root Zone Aeration on Soil Microbes Species in a Peach Tree Rhizosphere and Root Growth. Microorganisms 2022, 10, 1879. [Google Scholar] [CrossRef]
- Ameloot, N.; Sleutel, S.; Das, K.; Kanagaratnam, J.; De Neve, S. Biochar amendment to soils with contrasting organic matter level: Effects on N mineralization and biological soil properties. Gcb Bioenergy 2015, 7, 135–144. [Google Scholar] [CrossRef]
- Khan, K.S.; Joergensen, R.G. Microbial C, N, and P relationships in moisture-stressed soils of Potohar, Pakistan. J. Plant Nutr. Soil Sci. 2006, 169, 494–500. [Google Scholar] [CrossRef]
- Masood, T.; Gul, R.; Munsif, F.; Jalal, F.; Hussain, Z.; Noreen, N.; Khan, H.; Nasiruddin, K. Effect of different phosphorus levels on the yield and yield components of maize. Sarhad J. Agric. 2011, 27, 167–170. [Google Scholar]
- Raza, S.; Zhou, J.; Aziz, T.; Afzal, M.R.; Ahmed, M.; Javaid, S.; Chen, Z. Piling up reactive nitrogen and declining nitrogen use efficiency in Pakistan: A challenge not challenged (1961–2013). Environ. Res. Lett. 2018, 13, 034012. [Google Scholar] [CrossRef]
- Rashid, M.I.; Mujawar, L.H.; Shahzad, T.; Almeelbi, T.; Ismail, I.M.; Oves, M. Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiol. Res. 2016, 183, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Zhang, F.; Li, H.; Cui, J.; Ren, Y.; Yu, X. Recent progress in biochar-based photocatalysts for wastewater treatment: Synthesis, mechanisms, and applications. Appl. Sci. 2020, 10, 1019. [Google Scholar] [CrossRef]
- De Corato, U.; De Bari, I.; Viola, E.; Pugliese, M. Assessing the main opportunities of integrated biorefining from agro-bioenergy co/by-products and agroindustrial residues into high-value added products associated to some emerging markets: A review. Renew. Sustain. Energy Rev. 2018, 88, 326–346. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Y.; Zhao, X.; Wang, S.; Xing, G. Comparisons of biochar properties from wood material and crop residues at different temperatures and residence times. Energy Fuels 2013, 27, 5890–5899. [Google Scholar] [CrossRef]
- Campos, P.; Miller, A.Z.; Knicker, H.; Costa-Pereira, M.F.; Merino, A.; De la Rosa, J.M. Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment. Waste Manag. 2020, 105, 256–267. [Google Scholar] [CrossRef]
- Samreen, T.; Rashid, S.; Zulqernain Nazir, M.; Riaz, U.; Noreen, S.; Nadeem, F.; Kanwal, S.; Munir, H.; Tul-Muntaha, S. Co-application of Boron, Sulphur, and Biochar for Enhancing Growth and Yield of Brassica napus under Calcareous Soil. Commun. Soil Sci. Plant Anal. 2022, 53, 1050–1067. [Google Scholar] [CrossRef]
- Fang, Q.; Chen, B.; Lin, Y.; Guan, Y. Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environ. Sci. Technol. 2014, 48, 279–288. [Google Scholar] [CrossRef]
- Liu, X.; Zheng, J.; Zhang, D.; Cheng, K.; Zhou, H.; Zhang, A.; Li, L.; Joseph, S.; Smith, P.; Crowley, D. Biochar has no effect on soil respiration across Chinese agricultural soils. Sci. Total Environ. 2016, 554, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yin, R.; Liu, R. Characterization of biochar from fast pyrolysis and its effect on chemical properties of the tea garden soil. J. Anal. Appl. Pyrolysis 2014, 110, 375–381. [Google Scholar] [CrossRef]
- Sekar, M.; Mathimani, T.; Alagumalai, A.; Chi, N.T.L.; Duc, P.A.; Bhatia, S.K.; Brindhadevi, K.; Pugazhendhi, A. A review on the pyrolysis of algal biomass for biochar and bio-oil–Bottlenecks and scope. Fuel 2021, 283, 119190. [Google Scholar] [CrossRef]
- Lefebvre, D.; Williams, A.; Meersmans, J.; Kirk, G.J.; Sohi, S.; Goglio, P.; Smith, P. Modelling the potential for soil carbon sequestration using biochar from sugarcane residues in Brazil. Sci. Rep. 2020, 10, 19479. [Google Scholar] [CrossRef] [PubMed]
- Yermiyahu, U.; Zipori, I.; Faingold, I.; Yusopov, L.; Faust, N.; Bar-Tal, A. Polyhalite as a multi nutrient fertilizer–potassium, magnesium, calcium and sulfate. Isr. J. Plant Sci. 2017, 64, 145–157. [Google Scholar]
- Herrera, B.; Ferney, W. The Potential of Polyhalite as a Multi-Nutrient Fertilizer for Sugarcane. Doctoral Thesis, Universidade de São Paulo, São Paulo, Brazil, 2019. [Google Scholar]
- Barbier, M.; Li, Y.C.; Liu, G.; He, Z.; Mylavarapu, R.; Zhang, S. Characterizing polyhalite plant nutritional properties. Agric. Res. Technol. 2017, 6, 555690. [Google Scholar] [CrossRef]
- Albadarin, A.B.; Lewis, T.D.; Walker, G.M. Granulated polyhalite fertilizer caking propensity. Powder Technol. 2017, 308, 193–199. [Google Scholar] [CrossRef]
- Mikkelsen, R.L.; Roberts, T.L. Inputs: Potassium sources for agricultural systems. In Improving Potassium Recommendations for Agricultural Crops; Springer: Cham, Switzerland, 2021; pp. 47–74. [Google Scholar]
- Yermiyahu, U.; Zipori, I.; Omer, C.; Beer, Y. Solubility of Granular Polyhalite under Laboratory and Field Conditions; International Potash Institute (IPI): Zug, Switzerland, 2019; pp. 3–9. [Google Scholar]
- Lillywhite, R.; Wiltshire, J.; Webb, J.; Menadue, H. The response of winter barley (Hordeum vulgare) and forage maize (Zea mays) crops to polyhalite, a multi-nutrient fertilizer. J. Agric. Sci. 2020, 158, 269–278. [Google Scholar] [CrossRef]
- Zhou, H.; Fang, H.; Zhang, Q.; Wang, Q.; Chen, C.; Mooney, S.; Peng, X.; Du, Z. Biochar enhances soil hydraulic function but not soil aggregation in a sandy loam. Eur. J. Soil Sci. 2019, 70, 291–300. [Google Scholar] [CrossRef]
- Rasa, K.; Heikkinen, J.; Hannula, M.; Arstila, K.; Kulju, S.; Hyväluoma, J. How and why does willow biochar increase a clay soil water retention capacity? Biomass Bioenergy 2018, 119, 346–353. [Google Scholar] [CrossRef]
- Siedt, M.; Schäffer, A.; Smith, K.E.; Nabel, M.; Roß-Nickoll, M.; van Dongen, J.T. Comparing straw, compost, and biochar regarding their suitability as agricultural soil amendments to affect soil structure, nutrient leaching, microbial communities, and the fate of pesticides. Sci. Total Environ. 2021, 751, 141607. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Huang, L.; Nguyen, T.A.; Ok, Y.S.; Rudolph, V.; Yang, H.; Zhang, D. Copper and zinc adsorption by softwood and hardwood biochars under elevated sulphate-induced salinity and acidic pH conditions. Chemosphere 2016, 142, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Toková, L.; Igaz, D.; Horák, J.; Aydin, E. Effect of biochar application and re-application on soil bulk density, porosity, saturated hydraulic conductivity, water content and soil water availability in a silty loam Haplic Luvisol. Agronomy 2020, 10, 1005. [Google Scholar] [CrossRef]
- Benbi, D.K.; Brar, K. Pyrogenic conversion of rice straw and wood to biochar increases aromaticity and carbon accumulation in soil. Carbon Manag. 2021, 12, 385–397. [Google Scholar] [CrossRef]
- Hussain, M.; Farooq, M.; Nawaz, A.; Al-Sadi, A.M.; Solaiman, Z.M.; Alghamdi, S.S.; Ammara, U.; Ok, Y.S.; Siddique, K.H. Biochar for crop production: Potential benefits and risks. J. Soils Sediments 2017, 17, 685–716. [Google Scholar] [CrossRef]
- Ahmad, A.; Chowdhary, P.; Khan, N.; Chaurasia, D.; Varjani, S.; Pandey, A.; Chaturvedi, P. Effect of sewage sludge biochar on the soil nutrient, microbial abundance, and plant biomass: A sustainable approach towards mitigation of solid waste. Chemosphere 2022, 287, 132112. [Google Scholar] [CrossRef]
- Das, S.K.; Ghosh, G.K.; Avasthe, R. Biochar application for environmental management and toxic pollutant remediation. Biomass Convers. Biorefinery 2023, 13, 555–566. [Google Scholar] [CrossRef]
- Gee, G.; Bauder, J. Hydrometer method. Methods Soil Anal. 1986, 1, 404–408. [Google Scholar]
- Thomas, G.W. Soil pH and soil acidity. Methods Soil Anal. 1996, 5, 475–490. [Google Scholar]
- Blume, H.-P. PAGE, A. L., R. H. MILLER and D. R. KEENEY (Ed., 1982): Methods of soil analysis; 2. Chemical and microbiological properties, 2. Aufl. 1184 S., American Soc. of Agronomy (Publ.), Madison, Wisconsin, USA, gebunden 36 Dollar. J. Plant Nutr. Soil Sci. 1982, 148, 363–364. [Google Scholar] [CrossRef]
- Anderson, J.; Ingram, J. A Handbook of Methods; CAB International: Wallingford, UK, 1993; Volume 221, pp. 62–65. [Google Scholar]
- Keeney, D.R.; Nelson, D.W. Nitrogen—Inorganic forms. Methods Soil Anal. 1983, 9, 643–698. [Google Scholar]
- Olsen, S. Phosphorus. Methods Soil Anal. 1982, 2, 403–430. [Google Scholar]
- Helmke, P.A.; Sparks, D.L. Lithium, sodium, potassium, rubidium, and cesium. Methods Soil Anal. 1996, 5, 551–574. [Google Scholar]
- Soltanpour, P.; Schwab, A. A new soil test for simultaneous extraction of macro-and micro-nutrients in alkaline soils. Commun. Soil Sci. Plant Anal. 1977, 8, 195–207. [Google Scholar] [CrossRef]
- Joergensen, R.G.; Kübler, H.; Meyer, B.; Wolters, V. Microbial biomass phosphorus in soils of beech (Fagus sylvatica L.) forests. Biol. Fertil. Soils 1995, 19, 215–219. [Google Scholar] [CrossRef]
- Brookes, P.; Powlson, D.; Jenkinson, D. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 1982, 14, 319–329. [Google Scholar] [CrossRef]
- Joergensen, R.G. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEC value. Soil Biol. Biochem. 1996, 28, 25–31. [Google Scholar] [CrossRef]
- Brookes, P.; Landman, A.; Pruden, G.; Jenkinson, D. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Kjeldahl, J. A new method for the estimation of nitrogen in organic compounds. Anal. Chem 1883, 22, 366–382. [Google Scholar] [CrossRef]
- Shapter, R. The estimation of phosphorus in plant material. J. Proceedings. Aust. Chem. Inst. 1940, 7, 155–163. [Google Scholar]
- Ryan, J.; Estefan, G.; Rashid, A. Soil and Plant Analysis Laboratory Manual; ICARDA: Beirut, Lebanon, 2001. [Google Scholar]
- Li, C.; Sun, Y.; Dong, D.; Gao, G.; Zhang, S.; Wang, Y.; Xiang, J.; Hu, S.; Mortaza, G.; Hu, X. Co-pyrolysis of cellulose/lignin and sawdust: Influence of secondary condensation of the volatiles on characteristics of biochar. Energy Fuels 2021, 226, 120442. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Cui, L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Cayuela, M.L.; Sigua, G.; Novak, J.; Spokas, K. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta-data analysis review. Biochar 2020, 2, 421–438. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Zhou, S.; Cui, P.; Wang, W.; Huang, W.; Yu, Z.; Zhou, S. Differentiated strategies of animal-derived and plant-derived biochar to reduce nitrogen loss during paper mill sludge composting. Bioresour. Technol. 2022, 360, 127583. [Google Scholar] [CrossRef]
- Choudhary, T.K.; Khan, K.S.; Hussain, Q.; Ashfaq, M. Nutrient availability to maize crop (Zea mays L.) in biochar amended alkaline subtropical soil. J. Soil Sci. Plant Nutr. 2021, 21, 1293–1306. [Google Scholar] [CrossRef]
- Akca, M.O.; OK, S.S.; Deniz, K.; Mohammedelnour, A.; Kibar, M. Spectroscopic Characterisation and Elemental Composition of Biochars Obtained from Different Agricultural Wastes. J. Agric. Sci. 2021, 27, 426–435. [Google Scholar] [CrossRef]
- Cheng, H.; Jones, D.L.; Hill, P.; Bastami, M.S.; Tu, C.l. Influence of biochar produced from different pyrolysis temperature on nutrient retention and leaching. Arch. Agron. Soil Sci. 2018, 64, 850–859. [Google Scholar] [CrossRef]
- Tan, Z.; Ye, Z.; Zhang, L.; Huang, Q. Application of the 15N tracer method to study the effect of pyrolysis temperature and atmosphere on the distribution of biochar nitrogen in the biomass–biochar-plant system. Sci. Total Environ. 2018, 622, 79–87. [Google Scholar] [CrossRef]
- Das, S.K.; Ghosh, G.K.; Avasthe, R.; Sinha, K. Morpho-mineralogical exploration of crop, weed and tree derived biochar. J. Hazard. Mater. 2021, 407, 124370. [Google Scholar] [CrossRef]
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.J.; Park, J.-H.; Wang, J.; Wang, X.; Zhao, Z.; Song, F.; Tang, B. Pyrolysis Temperature Affects Dissolved Phosphorus and Carbon Levels in Alkali-Enhanced Biochar and Its Soil Applications. Agronomy 2022, 12, 1923. [Google Scholar] [CrossRef]
- Bashir, S.; Zhu, J.; Fu, Q.; Hu, H. Cadmium mobility, uptake and anti-oxidative response of water spinach (Ipomoea aquatic) under rice straw biochar, zeolite and rock phosphate as amendments. Chemosphere 2018, 194, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Wang, J.; Wang, X.; Khan, M.B.; Lu, M.; Khan, K.Y.; Song, Y.; He, Z.; Yang, X.; Yan, B. Biochar from constructed wetland biomass waste: A review of its potential and challenges. Chemosphere 2022, 287, 132259. [Google Scholar] [CrossRef] [PubMed]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science Bio/Technology 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Van Hien, N.; Valsami-Jones, E.; Vinh, N.C.; Phu, T.T.; Tam, N.T.T.; Lynch, I. Physicochemical Characterization of Biomass Residue–Derived Biochars in Vietnam. Preprints 2018, 2018070403. [Google Scholar] [CrossRef]
- Puga, A.; Abreu, C.; Melo, L.; Paz-Ferreiro, J.; Beesley, L. Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar. Environ. Sci. Pollut. Res. 2015, 22, 17606–17614. [Google Scholar] [CrossRef]
- Alkharabsheh, H.M.; Seleiman, M.F.; Battaglia, M.L.; Shami, A.; Jalal, R.S.; Alhammad, B.A.; Almutairi, K.F.; Al-Saif, A.M. Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy 2021, 11, 993. [Google Scholar] [CrossRef]
- Bock, E.M.; Coleman, B.; Easton, Z.M. Effect of biochar on nitrate removal in a pilot-scale denitrifying bioreactor. J. Environ. Qual. 2016, 45, 762–771. [Google Scholar] [CrossRef]
- Graber, E.R.; Singh, B.; Hanley, K.; Lehmann, J. Determination of cation exchange capacity in biochar. In Biochar: A Guide to Analytical Methods; Csiro Publishing: Clayton, Australia, 2017; pp. 74–84. [Google Scholar]
- Randolph, P.; Bansode, R.; Hassan, O.; Rehrah, D.; Ravella, R.; Reddy, M.; Watts, D.; Novak, J.; Ahmedna, M. Effect of biochars produced from solid organic municipal waste on soil quality parameters. J. Environ. Manag. 2017, 192, 271–280. [Google Scholar] [CrossRef]
- Oladele, S.O.; Adetunji, A.T. Agro-residue biochar and N fertilizer addition mitigates CO2-C emission and stabilized soil organic carbon pools in a rain-fed agricultural cropland. Int. Soil Water Conserv. Res. 2021, 9, 76–86. [Google Scholar] [CrossRef]
- Masud, M.; Abdulaha-Al Baquy, M.; Akhter, S.; Sen, R.; Barman, A.; Khatun, M. Liming effects of poultry litter derived biochar on soil acidity amelioration and maize growth. Ecotoxicol. Environ. Saf. 2020, 202, 110865. [Google Scholar] [CrossRef]
- Alling, V.; Hale, S.E.; Martinsen, V.; Mulder, J.; Smebye, A.; Breedveld, G.D.; Cornelissen, G. The role of biochar in retaining nutrients in amended tropical soils. J. Plant Nutr. Soil Sci. 2014, 177, 671–680. [Google Scholar] [CrossRef]
- Zhang, Q.-Z.; Dijkstra, F.A.; Liu, X.-R.; Wang, Y.-D.; Huang, J.; Lu, N. Effects of biochar on soil microbial biomass after four years of consecutive application in the north China plain. PLoS ONE 2014, 9, e102062. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Ding, Z.; Ali, E.F.; Kheir, A.; Eissa, M.A.; Ibrahim, O.H. Biochar and compost enhance soil quality and growth of roselle (Hibiscus sabdariffa L.) under saline conditions. Sci. Rep. 2021, 11, 8739. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.-Q.; Xu, X.-X.; Lu, L.; Hu, R.-J.; Yang, Z.-B. Effects of Warming and Biochar Addition on Soil Nutrients and Microbial Biomass in Wheat Fields. J. Ecol. Rural. Environ. 2021, 37, 611–618. [Google Scholar] [CrossRef]
- Prayogo, C.; Jones, J.E.; Baeyens, J.; Bending, G.D. Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biol. Fertil. Soils 2014, 50, 695–702. [Google Scholar] [CrossRef]
- Ibrahim, M.M.; Zhang, H.; Guo, L.; Chen, Y.; Heiling, M.; Zhou, B.; Mao, Y. Biochar interaction with chemical fertilizer regulates soil organic carbon mineralization and the abundance of key C-cycling-related bacteria in rhizosphere soil. Eur. J. Soil Biol. 2021, 106, 103350. [Google Scholar] [CrossRef]
- Gul, S.; Whalen, J.K.; Thomas, B.W.; Sachdeva, V.; Deng, H. Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agric. Ecosyst. Environ. 2015, 206, 46–59. [Google Scholar] [CrossRef]
- Mahmoud, E.; Ibrahim, M.; Abd El-Rahman, L.; Khader, A. Effects of biochar and phosphorus fertilizers on phosphorus fractions, wheat yield and microbial biomass carbon in Vertic Torrifluvents. Commun. Soil Sci. Plant Anal. 2019, 50, 362–372. [Google Scholar] [CrossRef]
- Khajavi-Shojaei, S.; Moezzi, A.; Norouzi Masir, M.; Taghavi, M. Synthesis modified biochar-based slow-release nitrogen fertilizer increases nitrogen use efficiency and corn (Zea mays L.) growth. Biomass Convers. Biorefinery 2020, 13, 593–601. [Google Scholar] [CrossRef]
- Xia, H.; Riaz, M.; Zhang, M.; Liu, B.; El-Desouki, Z.; Jiang, C. Biochar increases nitrogen use efficiency of maize by relieving aluminum toxicity and improving soil quality in acidic soil. Ecotoxicol. Environ. Saf. 2020, 196, 110531. [Google Scholar] [CrossRef]
Parameter | Pot Soil | Field Soil | AWB | DWB | PLB |
---|---|---|---|---|---|
Sand (%) | 54.7 ± 3.17 | 51.26 ± 2.69 | --- | --- | --- |
Silt (%) | 23.3 ± 2.70 | 25.63 ± 1.92 | --- | --- | --- |
Clay (%) | 22 ± 2.8 | 23.11 ± 2.21 | --- | --- | --- |
Moisture | 32.2 ± 3.47 | 36.7 ± 3.61 | --- | --- | --- |
pH | 7.58 ± 0.15 | 7.70 ± 0.18 | 8.23 ± 0.55 | 8.51 ± 0.13 | 8.63 ± 0.29 |
EC (dS m−1) | 0.31 ± 0.11 | 0.37 ± 0.13 | 0.71 ± 0.10 | 0.77 ± 0.12 | 0.68 ± 0.15 |
Ash content (%) | --- | --- | 16.2 ± 1.51 | 17 ± 2.29 | 14.27 ± 1.73 |
TOC (%) | --- | --- | 62.31 ± 4.59 | 55.78 ± 4.16 | 41.43 ± 4.13 |
NO3-N (mg kg−1) | 0.89 ± 0.09 | 0.94 ± 0.08 | 2.88 ± 0.12 | 2.11 ± 0.09 | 3.24 ± 0.17 |
NH4-N (mg kg−1) | 2.87 ± 1.17 | 2.62 ± 0.72 | 7.41 ± 1.48 | 8.82 ± 1.19 | 11.55 ± 1.79 |
Olsen P (mg kg−1) | 0.87 ± 0.07 | 0.81 ± 0.1 | 3.34 ± 0.04 | 3.22 ± 1.12 | 3.41 ± 1.16 |
Ext. K (mg kg−1) | 87.4 ± 4.12 | 84.72 ± 2.19 | 109.8 ± 2.72 | 103 ± 3.81 | 111.3 ± 4.26 |
MBN (mg kg−1) | 8.33 ± 1.29 | 8.71 ± 2.19 | 12.55 ± 1.75 | 11.37 ± 2.41 | 13.81 ± 1.92 |
MBP (mg kg−1) | 1.13 ± 0.08 | 1.08 ± 0.04 | 2.78 ± 0.05 | 2.64 ± 0.07 | 3.19 ± 0.07 |
Zn (mg kg−1) | 2.12 ± 0.03 | 2.43 ± 1.14 | 3.7 ± 0.08 | 2.13 ± 0.09 | 5.10 ± 0.04 |
Cu (mg kg−1) | 1.29 ± 0.02 | 2 ± 0.01 | 3.34 ± 0.03 | 4.14 ± 0.02 | 4.00 ± 0.05 |
Fe (mg kg−1) | 2.31 ± 0.07 | 2.53 ± 0.09 | 4.14 ± 0.8 | 4.00 ± 1.21 | 4.20 ± 0.15 |
Mn (mg kg−1) | 1.84 ± 0.1 | 2.19 ± 0.03 | 3.12 ± 0.07 | 2.09 ± 0.40 | 3.80 ± 0.80 |
Pot Experiment Treatments | Field Experiment Treatments |
---|---|
Control (C) | Control (C) |
Polyhalite (PH) | Polyhalite (PH) |
Acacia wood biochar (AWB) | Acacia wood biochar + Polyhalite (AWB+PH) |
Dalbergia wood biochar (DWB) | Dalbergia wood biochar + Polyhalite (DWB+PH) |
Poultry litter biochar (PLB) | Poultry litter biochar + Polyhalite (PLB+PH) |
Acacia wood biochar + Polyhalite (AWB+PH) | |
Dalbergia wood biochar + Polyhalite (DWB+PH) | |
Poultry litter biochar + Polyhalite (PLB+PH) |
Treatments | Pot Experiment | Treatments | Field Experiment | ||
---|---|---|---|---|---|
pH | EC | pH | EC | ||
C | 7.55 ± 0.09 d | 0.39 ± 0.02 d | C | 7.68 ± 0.07 c | 0.43 ± 0.04 c |
PH | 7.58 ± 0.15 d | 0.57 ± 0.04 cd | PH | 7.74 ± 0.11 b | 0.69 ± 0.03 bc |
AWB | 7.63 ± 0.08 cd | 0.66 ± 0.03 c | AWB+PH | 7.86 ± 0.09 ab | 0.71 ± 0.03 bc |
DWB | 7.71 ± 0.16 c | 0.70 ± 0.03 bc | PLB+PH | 7.88 ± 0.13 ab | 0.76 ± 0.05 b |
PLB | 8.00 ± 0.21 abc | 0.76 ± 0.05 b | DWB+PH | 7.93 ± 0.10 a | 0.83 ± 0.02 a |
AWB+PH | 8.14 ± 0.07 b | 0.80 ± 0.02 ab | |||
DWB+PH | 8.38 ± 0.09 ab | 0.77 ± 0.06 ab | |||
PLB+PH | 8.68 ± 0.11 a | 0.84 ± 0.04 a |
Pot Experiment | ||||
---|---|---|---|---|
Treatments | Zn (mg kg−1) | Cu (mg kg−1) | Fe (mg kg−1) | Mn (mg kg−1) |
C | 0.82 ± 0.018 d | 0.83 ± 0.015 c | 1.78 ± 0.15 d | 0.9 ± 0.021 d |
PH | 0.7875 ± 0.02 cd | 1.24 ± 0.12 bc | 2.15 ± 0.04 cd | 1.4 ± 0.17 cd |
AWB | 0.965 ± 0.019 cd | 1.2375 ± 0.09 bc | 2.31 ± 0.09 c | 2.15 ± 0.08 b |
DWB | 1.0425 ± 0.33 c | 1.39 ± 0.11 b | 2.72 ± 0.016 bc | 2.3 ± 0.02 ab |
PLB | 1.15 ± 0.02 c | 1.48 ± 0.02 ab | 2.89 ± 0.10 abc | 1.89 ± 0.07 c |
AWB+PH | 1.6775 ± 0.015 b | 1.55 ± 0.03 b | 3.09 ± 0.02 b | 1.98 ± 0.16 bc |
DWB+PH | 2.035 ± 0.06 ab | 1.72 ± 0.08 ab | 3.26 ± 0.018 ab | 2.26 ± 0.04 ab |
PLB+PH | 2.1125 ± 0.03 a | 2.03 ± 0.015 a | 3.12 ± 0.7 a | 2.47 ± 0.09 a |
Field Experiment | ||||
Treatments | Zn (mg kg−1) | Cu (mg kg−1) | Fe (mg kg−1) | Mn (mg kg−1) |
C | 1.02 ± 0.06 c | 0.98 ± 0.19 c | 2.21 ± 0.02 b | 1.11 ± 0.09 d |
PH | 1.08 ± 0.08 c | 1.56 ± 0.02 bc | 2.51 ± 0.19 ab | 1.34 ± 0.05 cd |
AWB+PH | 1.42 ± 0.03 b | 1.81 ± 0.10 b | 3.49 ± 0.11 ab | 2.06 ± 0.03 c |
PLB+PH | 2.37 ± 0.02 a | 2.82 ± 0.08 a | 3.8 ± 0.16 a | 2.48 ± 0.07 a |
DWB+PH | 2.05 ± 0.041 ab | 2.15 ± 0.06 ab | 2.32 ± 0.09 ab | 2.18 ± 0.13 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aziz, M.A.; Wattoo, F.M.; Khan, F.; Hassan, Z.; Mahmood, I.; Anwar, A.; Karim, M.F.; Akram, M.T.; Manzoor, R.; Khan, K.S.; et al. Biochar and Polyhalite Fertilizers Improve Soil’s Biochemical Characteristics and Sunflower (Helianthus annuus L.) Yield. Agronomy 2023, 13, 483. https://doi.org/10.3390/agronomy13020483
Aziz MA, Wattoo FM, Khan F, Hassan Z, Mahmood I, Anwar A, Karim MF, Akram MT, Manzoor R, Khan KS, et al. Biochar and Polyhalite Fertilizers Improve Soil’s Biochemical Characteristics and Sunflower (Helianthus annuus L.) Yield. Agronomy. 2023; 13(2):483. https://doi.org/10.3390/agronomy13020483
Chicago/Turabian StyleAziz, Muhammad Abdullah, Fahad Masoud Wattoo, Faheem Khan, Zeshan Hassan, Imran Mahmood, Adeel Anwar, Muhammad Fazal Karim, Muhammad Tahir Akram, Rabia Manzoor, Khalid Saifullah Khan, and et al. 2023. "Biochar and Polyhalite Fertilizers Improve Soil’s Biochemical Characteristics and Sunflower (Helianthus annuus L.) Yield" Agronomy 13, no. 2: 483. https://doi.org/10.3390/agronomy13020483
APA StyleAziz, M. A., Wattoo, F. M., Khan, F., Hassan, Z., Mahmood, I., Anwar, A., Karim, M. F., Akram, M. T., Manzoor, R., Khan, K. S., & Majrashi, M. A. (2023). Biochar and Polyhalite Fertilizers Improve Soil’s Biochemical Characteristics and Sunflower (Helianthus annuus L.) Yield. Agronomy, 13(2), 483. https://doi.org/10.3390/agronomy13020483