Conservation Tillage Improves Soil Quality and Crop Yield in Hungary
Abstract
:1. Introduction
2. Basic Data for Soil Tillage Review in Relation to Hungary
2.1. Country Data
2.2. Long-Term Tillage Experiment
3. Tillage Modernization in Hungary
4. Conservation Tillage and Benefits
4.1. No-Till Farming vs. Strip Tillage
4.1.1. No-Till (Direct Drilling) System
4.1.2. Strip Tillage
4.2. Subsoiling vs. Tine Tillage
4.2.1. Subsoiling System
4.2.2. Tine Tillage System
4.3. Shallow Tillage—Disking Systems
4.4. Inversion Tillage—Ploughing Systems
5. Soil Tillage at Extreme Climate Conditions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Canell, R.Q. Reduced tillage in north-west Europe—A review. Soil Till. Res. 1985, 5, 129–177. [Google Scholar] [CrossRef]
- Blake, G.R. Objectives of soil tillage related to field operations and soil management. Neth. J. Agric. Sci. 1963, 11, 130–139. [Google Scholar] [CrossRef]
- Birkás, M. Tillage, impacts on soil and environment. In Encyclopedia of Agrophysics; Glinski, J., Horabik, J., Lipiec, J., Eds.; Springer: Dodrecht, The Netherlands, 2011; pp. 903–906. [Google Scholar]
- Birkás, M.; Dekemati, I.; Kende, Z.; Pósa, B. Review of soil tillage history and new challenges in Hungary. Hung. Geogr. Bull. 2017, 66, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Birkás, M.; Mesić, M.; Smutný, V. Soil conservation tillage in crop production. Contemp. Agric. 2015, 64, 248–254. [Google Scholar]
- Birkás, M.; Dekemati, I.; Kende, Z.; Radics, Z.; Szemők, A. A sokszántásos műveléstől a direktvetésig—Előrehaladás a talajművelésben (From the multi-ploughing soil tillage to direct drilling—Progress in soil tillage and soil conservation). Agrokémia És Talajt. 2018, 67, 253–268. [Google Scholar] [CrossRef]
- Cherháti, S. A Talajnak Mélyművelése Hazánkban (Deep Tillage of the Soil in Hungary); Könyvnyomda: Magyar-Óvár, Hungary, 1891. [Google Scholar]
- Birkás, M.; Jolánkai, M.; Gyuricza, C.; Percze, A. Tillage effects on compaction, earthworms and other soil quality indicators in Hungary. Soil Till. Res. 2004, 78, 185–196. [Google Scholar] [CrossRef]
- Milhoffer, S. Talajkimerülés (Soil Exhaustion); Könyves Kálmán Rt: Budapest, Hungary, 1987. [Google Scholar]
- Beke, L. Az eke alkonya (Dusk of the plough). Gazdasági Lapok 1922, 74, 137–138. [Google Scholar]
- Blascsok, F. Mi történjék az ekével? (What happen to the plough?). Köztelek 1923, 33, 327–328. [Google Scholar]
- Kerpely, K. Az Okszerű Talajművelés Szerepe a Szárazság Elleni Küzdelemben (The Role of Rational Soil Cultivation in Fight against Drought); Pátria Nyomda: Budapest, Hungary, 1910. [Google Scholar]
- Tokaji, I. A legutóbbi évek száraz időjárásának tanulságai (Evidence of the dry weather in the last years). Köztelek 1932, 42, 351–352. [Google Scholar]
- Gyárfás, J. Sikeres Gazdálkodás Szárazságban. A Magyar Dry Farming (Successful Farming in the Drought. The Hungarian Dry Farming); Pátria Nyomda: Budapest, Hungary, 1925. [Google Scholar]
- Campbell, H.W. Soil Culture Manual; Matenaers, F.F., Milwaukee, W., Eds.; Ruffy, P.K., Translator; Pátria Nyomda: Budapest, Hungary, 1907. [Google Scholar]
- Birkás, M. A Campbell-láz Magyarországon (1908–1914). A magyar gazdák és a dry farming (The Campbell’s boom in Hungary [1908–1914]. Hungarian farmers and the dry farming). Mezőgazdasági Technol. 2003, 44, 39–41. [Google Scholar]
- Birkás, M. Lessons drawn from the history of tillage. In Environmentally-Sound Adaptable Tillage; Birkás, M., Ed.; Akadémiai Kiadó: Budapest, Hungary, 2008; pp. 297–340. [Google Scholar]
- Baross, L. Tárcsásborona és szuperfoszfát (Disk harrow and superphosphate). Köztelek 1909, 19, 2108–2110. [Google Scholar]
- Manninger, G.A. A Talaj Sekély Művelése (The Shallow Soil Tillage); Mezőgazdasági Kiadó: Budapest, Hungary, 1957. [Google Scholar]
- Manninger, G.A. A kultivátor, mint egyetemes művelő-szerszám (The cultivator, as universal tillage tool). In A Tarlótól a Magágyig (from the Stubble to the Seedbed); Marschall, F., Ed.; Révai Nyomda: Budapest, Hungary, 1938; pp. 84–90. [Google Scholar]
- Kemenesy, E. A Korszerű Talajművelés Irányelvei (Directives of the Modern Soil Tillage); Pátria Nyomda: Budapest, Hungary, 1924. [Google Scholar]
- Cserháti, S. Általános Növénytermelés (General Agronomy); Czéh S. Könyvnyomda: Magyar-Óvár, Hungary, 1900. [Google Scholar]
- Sipos, S. A periódusos mélyítő művelés rendszere (Periodical deepening tillage). In Földműveléstan (Soil Management); Lőrincz, J., Ed.; Mezőgazdasági Kiadó: Budapest, Hungary, 1978; pp. 254–258. [Google Scholar]
- Birkás, M.; Kisić, I.; Mesić, M.; Jug, D.; Kende, Z. Climate induced soil deterioration and methods for mitigation. Agric. Cons. Sci. 2015, 80, 17–24. [Google Scholar]
- Birkás, M.; Jug, D.; Kende, Z.; Kisić, I.; Szemők, A. Soil tillage response to the climate threats—Revolution of the classic theories. Agric. Cons. Sci. 2018, 83, 1–9. [Google Scholar]
- Bottlik, L.; Csorba, S.; Gyuricza, C.; Kende, Z.; Birkás, M. Climate challenges and solutions in soil tillage. Appl. Ecol. Environ. Res. 2014, 12, 13–23. [Google Scholar] [CrossRef]
- Bogunovic, I.; Kovács, G.P.; Dekemati, I.; Kisić, I.; Balla, I.; Birkás, M. Long-term effect of soil conservation tillage on soil water content, penetration resistance, crumb ration and crusted area. Plant Soil Environ. 2019, 65, 442–448. [Google Scholar] [CrossRef] [Green Version]
- Dekemati, I.; Bogunovic, I.; Kisic, I.; Radics, Z.; Szemők, A.; Birkás, M. The effects of tillage-induced soil disturbance on soil quality condition. Polish J. Env. Studies 2019, 28, 3665–3673. [Google Scholar] [CrossRef] [PubMed]
- Dekemati, I.; Simon, B.; Vinogradov, S.; Birkás, M. Effect of various tillage treatments on soil physical properties, earthworm abundance and crop yield in Hungary. Soil Till. Res. 2019, 194, 104334. [Google Scholar] [CrossRef]
- Morris, N.L.; Miller, P.H.C.; Orson, J.H.; Froud-Williams, R.J. The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment—A review. Soil Till. Res. 2010, 108, 1–15. [Google Scholar] [CrossRef]
- Schertz, D.L. Conservation tillage: An analysis of acreage projections in the United States. J. Soil Water Conserv. 1988, 43, 256–258. [Google Scholar]
- Munkholm, L.J.; Schjønning, P.; Rasmussen, K.J. Non-inversion tillage effect on soil mechanical properties of humid sandy loam. Soil Till. Res. 2001, 62, 1–14. [Google Scholar] [CrossRef]
- Gyuricza, C.; Smutny, V.; Percze, A.; Pósa, B.; Birkás, M. Soil condition threats in two seasons of extreme weather conditions. Plant Soil Environ. 2015, 61, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, N.J.; Hu, Y.; Bloemertz, L.; He, J.; Li, H.; Greenwood, P. Conservation tillage and sustainable intensification of agriculture: Regional vs. global benefit analysis. Agric. Ecosys. Environ. 2016, 216, 155–165. [Google Scholar] [CrossRef]
- Reeves, D.W. The role of soil organic matter in maintain soil quality in continuous cropping systems. Soil Till. Res. 1997, 43, 131–167. [Google Scholar] [CrossRef]
- Qingjie, W.; Caiyuna, L.; Hongwena, L.; Jina, H.; Sarker, K.K.; Rasaily, R.G.; Zhonghuic, L.; Xiaodonga, Q.; Huia, L.; Mchugh, A.D.J. The effect of no-tillage with subsoiling on soil properties and maize yield: 12-year experiment on alkaline soils of Northest China. Soil Till. Res. 2014, 137, 43–49. [Google Scholar]
- Arvidsson, J.; Westlin, A.; Sörensson, F. Working depth in non-inversion tillage—Effects on soil physical properties and crop yield in Swedish field experiments. Soil Till. Res. 2013, 126, 259–266. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Till. Res. 2012, 118, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Slepetiene, A.; Slepetys, J. Status of humus in soil under various long-term tillage systems. Geoderma 2005, 127, 207–215. [Google Scholar] [CrossRef]
- Kader, M.A.; Senge, M.; Majid, M.A.; Ito, K. Recent advances in mulching materials and methods for modifying soil environment. Soil Till. Res. 2017, 168, 155–166. [Google Scholar] [CrossRef]
- Jug, D.; Brozović, B.; Đurđević, B.; Jug, I.; Lipiec, J.; Birkás, M.; Vukadinović, V. Effect of conservation tillage on crop productivity and nitrogen use efficiency. Soil Till. Res. 2019, 194, 104327. [Google Scholar] [CrossRef]
- KSH (Hungarian Central Statistical Office). 2021. Available online: https://www.ksh.hu/mezogazdasag (accessed on 1 April 2021).
- Stefanovits, P. Talajtan (Soil Science); Mezőgazdasági Kiadó: Budapest, Hungary, 1981. [Google Scholar]
- Dekemati, I.; Simon, B.; Bogunovic, I.; Kisic, I.; Kassai, K.; Kende, Z.; Birkás, M. Long term effects of ploughing and conservation tillage methods on earthworm abundance and crumb ratio. Agronomy 2020, 20, 1552. [Google Scholar] [CrossRef]
- Kende, Z.; Sallai, A.; Kassai, K.; Mikó, P.; Percze, A.; Birkás, M. The effects of tillage induced soil disturbance on weed infestation of winter wheat. Polish J. Environ. Studies 2017, 26, 1131–1138. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports; FAO: Rome, Italy, 2015; No. 106. [Google Scholar]
- Pethe, F. Magyar Szántóvető (The Hungarian Plough-Planter). Nemz. Gazda 1818, 5, 1–12. [Google Scholar]
- Sipos, S. Újabb adatok a mélyítő művelés hatékonyságához (New data for efficiency of deepening soil tillage). Talajtermékenység 1966, 1, 34–44. [Google Scholar]
- Szalai, T. A Talajművelési és Növénytermesztési Rendszerek Néhány Agronómiai Összefüggése a Fenntartható Földhasználat Kialakításához (Some Agronomic Coherence in Soil Tillage and Crop Production Systems for Development of Sustainable Soil Management). Ph.D. Thesis, Gödöllő Agricultural University, Gödöllő, Hungary, 1999. [Google Scholar]
- Kende, Z. Klímakár Eredetű Talajminőség Romlás és Kármegelőzés (Deterioration of Soil Quality due to Climate Change and Possible Prevention of Soil Damages). Ph.D. Thesis, Szent István University, Gödöllő, Hungary, 2019. [Google Scholar]
- Allen, R.; Fenster, C.R. Stubble-mulch equipment for soil and water conservation in the Great Plains. J. Soil Water Conserv. 1986, 41, 11–16. [Google Scholar]
- Guan, D.; Zhang, Y.; Al-Kaisi, M.M.; Wang, Q.; Zhang, M.; Li, Z. Tillage practices effect on root distribution and water use efficiency of winter wheat under rain-fed condition in the North China Plain. Soil Till. Res. 2015, 146, 286–295. [Google Scholar] [CrossRef]
- CTIC. Economic Benefits with Environmental Protection; Conservation Technology Information Center: Lafayette, IN, USA, 2000. [Google Scholar]
- Lal, R.; Reicosky, D.C.; Hanson, J.D. Evaluation of the plow over 10,000 years and the rationale for no-till farming. Soil Till. Res. 2007, 93, 1–12. [Google Scholar] [CrossRef]
- Nunes, M.R.; Karlen, D.L.; Denardin, J.E.; Cambardella, C.A. Corn root and soil health indicator response to no-till production practices. Agric. Ecosys. Environ. 2019, 285, 106607. [Google Scholar] [CrossRef]
- Győrffy, B.; Szabó, J.L. A zero, minimum és normal tillage vizsgálata tartamkísérletekben (Investigation of the zero, the minimum and the normal tillage in long-term trials). In Kukoricatermesztési Kísérletek; Kukoricatermesztési Kísérletek: Budapest, Hungary, 1965–1968; Akadémiai Kiadó: Budapest, Hungary, 1969; pp. 143–155. [Google Scholar]
- Győrffy, B. Hozzászólás “A talaj mélyművelése” vitaülésen (Notes to discussion of deep tillage of soils), MTA Agrártud. Oszt. Közl. 1964, 13, 362–370. [Google Scholar]
- Koltay, A. Talajművelés nélküli búzatermesztéss monokultúrában (Wheat production in monoculture, without tillage). Talajtermékenység 1974, 5, 11–17. [Google Scholar]
- Zsembeli, J.; Szűcs, L.; Tuba, G.; Czimbalmos, R. Nedvességtakarékos talajművelési rendszer fejlesztése Karcagon (Improvement of water conservation soil tillage systems in Karcag). In Környezetkímélő Talajművelési Rendszerek Magyarországon (Environmentally Conservation Tillage Systems in Hungary); Madarász, B., Ed.; MTA CSFK FTI: Budapest, Hungary, 2015; pp. 122–133. [Google Scholar]
- Birkás, M.; Szalai, T.; Nyárai, H.F.; Fenyves, T.; Percze, A. Kukorica direktvetéses tartamkísérletek eredményei barna erdőtalajon (Result of long-term trials on the direct drilling of maize in a brown forest soil). Növénytermelés 1997, 46, 413–430. [Google Scholar]
- Birkás, M.; Percze, A.; Gyuricza, C.; Szalai, T. Őszi búza direktvetés kísérletek eredményei barna erdőtalajon (Results of long-term trials on the direct drilling of winter wheat in a brown forest soil). Növénytermelés 1998, 47, 181–198. [Google Scholar]
- Gelybó, G.; Barcza, Z.; Dencső, M.; Potyó, I.; Kása, I.; Horel, Á.; Pokovai, K.; Birkás, M.; Kern, A.; Hollós, R.; et al. Effect of tillage and crop type on soil respiration in a long-term field experiment on chernozem soil under temperate climate. Soil Till. Res. 2022, 216, 105239. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Wortmann, C.S. Does occasional tillage undo the ecosystem services gained with no-till? A review. Soil Till. Res. 2020, 198, 104534. [Google Scholar] [CrossRef]
- Ferreira, C.D.R.; da Silva Neto, E.C.; Pereira, M.G.; Guedes, J.N.; Rosset, J.S.; Anjos, L.H.C. Dynamics of soil aggregation and organic carbon fractions over 23 years of no-till management. Soil Till. Res. 2020, 198, 104534. [Google Scholar] [CrossRef]
- Jabro, J.D.; Stevens, W.B.; Iversen, W.M.; Sainju, U.M.; Allen, B.L. Soil cone index and bulk density of a sandy loam under no-till and conventional tillage in a corn-soybean rotation. Soil Till. Res. 2021, 206, 104842. [Google Scholar] [CrossRef]
- Cannel, R.Q.; Hawes, J.D. Trends in tillage practices in relation to sustainable crop production with special reference to temperate climates. Soil Till. Res. 1994, 30, 245–282. [Google Scholar] [CrossRef]
- Holland, J.M. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agric. Ecosys. Environ. 2004, 103, 1–25. [Google Scholar] [CrossRef]
- Klik, A.; Rosner, J. Long-term experience with conservation tillage practices in Austria: Impacts on soil erosion processes. Soil Till. Res. 2020, 203, 104669. [Google Scholar] [CrossRef]
- Birkás, M. A direktvetés (Direct drilling). In Environmentally-Sound Adaptable Tillage; Birkás, M., Ed.; Akadémiai Kiadó: Budapest, Hungary, 2008; pp. 350–354. [Google Scholar]
- Jaskulska, I.; Romaneckas, K.; Jaskulski, D.; Galezewski, L.; Breza-Boruta, B.; Debska, B.; Lemanowicz, J. Soil properties after eight years of the use strip-till one-pass technology. Agronomy 2020, 10, 1596. [Google Scholar] [CrossRef]
- Luna, J.; Staben, M. Using Strip Tillage in Vegetable Production Systems in Western Oregon; Oregon State University: Corvallis, OR, USA, 2003. [Google Scholar]
- Smets, T.; Poesen, J.; Knapen, A. Spatial scale effects on the effectiveness of organic mulches in reducing soil erosion by water. Earth Sci. Rev. 2008, 89, 1–12. [Google Scholar] [CrossRef]
- Paul, P.L.C.; Bell, R.W.; Barrett-Lennard, E.G.; Kabir, E. Straw mulch and irrigation affect solute potential and sunflower yield in a heavy textured soil in the Ganges Delta. Agric. Water Manag. 2020, 239, 106211. [Google Scholar] [CrossRef]
- Mulumba, L.N.; Lal, R. Mulching effects on selected soil physical properties. Soil Till. Res. 2008, 98, 106–111. [Google Scholar] [CrossRef]
- Chen, Y.; Tessier, S. Techniques to diagnose plow and disk pans. Can. Agric. Eng. 1997, 39, 143–147. [Google Scholar]
- Birkás, M.; Szalai, T.; Gyuricza, C.; Gecse, M.; Bordás, K. Effects of the disk tillage on soil condition, crop yield and weed infestation. Rostl. Vyrob. 2002, 48, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Bilandžija, D.; Zgorelec, Ž.; Kisić, I. Influence of tillage systems on short-term soil CO2 emissions. Hung. Geogr. Bull. 2017, 66, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Tóth, E.; Gelybó, G.; Dencső, M.; Kása, I.; Birkás, M.; Horel, Á. Soil CO2 emissions in a long-term tillage treatment experiment. In Soil Management and Climate Change. Effects on Organic Carbon, Nitrogen Dynamics, and Greenhouse Gas Emissions; Munoz, M.A., Zornoza, R., Eds.; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2017; pp. 293–307. [Google Scholar]
- Madarász, B.; Jakab, G.; Szalai, Z.; Juhos, K.; Kotroczó, Z.; Tóth, A.; Ladányi, M. Long-term effects of conservation tillage on soil erosion in Central Europe: A random forest-based approach. Soil Till. Res. 2021, 209, 104959. [Google Scholar] [CrossRef]
- Ojha, R.B.; Deepa, D. Earthworms: “Soil and Ecosystem Engineers”—A review. World J. Agric. Res. 2014, 2, 257–260. [Google Scholar] [CrossRef] [Green Version]
- Gruber, S.; Pekrun, K.; Mohring, J.; Claepein, W. Long-term yield and weed response to conservation and stubble tillage in SW Germany. Soil Till. Res. 2012, 121, 49–56. [Google Scholar] [CrossRef]
- Bostrom, U. Type and time of autumn tillage with and without herbicides at reduced rates in southern Sweden 1. Yields and weed quantity. Soil Till. Res. 1999, 50, 271–281. [Google Scholar] [CrossRef]
- Han, H.; Ning, T.; Li, Z. Effects of tillage and weed management on the vertical distribution of microclimate and grain yield in a winter wheat field. Plant Soil Environ. 2013, 59, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Munkholm, L.J.; Heck, R.J.; Deen, B. Long-term rotation and tillage effects on soil structure and crop yield. Soil Till. Res. 2013, 127, 85–91. [Google Scholar] [CrossRef]
- OMSZ. (National Meteorological Service) Klimatológiai Forgatókönyvek a Nemzeti Éghajlatváltozási Stratégiához; Klímapolitika: Budapest, Hungary, 2006; pp. 1–42. [Google Scholar]
- Láng, I.; Csete, L.; Jolánkai, M. A globális klímaváltozás: Hazai hatások és válaszok. In Hungarian: The Global Climate Change: Effects and Answers in Hungary. A VAHAVA Jelentés; Szaktudás: Budapest, Hungary, 2007; pp. 199–202. [Google Scholar]
- NEMZETI ÉGHAJLATVÁLTOZÁS STRATÉGIA. Második Nemzeti Éghajlatváltozás Stratégia a 2018–2030 Közötti Időszakra Vonatkozó, 2050-ig Tartó Időszakra is Kitekintést Nyújtó (In Hungarian: National Climate Change Strategy); Innovációs és Technológia Minisztérium: Budapest, Hungary, 2018; p. 251. [Google Scholar]
- Birkás, M.; Antal, J.; Dorogi, I. Conventional and reduced tillage in Hungary—A review. Soil Till. Res. 1989, 13, 233–252. [Google Scholar] [CrossRef]
- Kalmár, T.; Bottlik, L.; Kisic, I.; Gyuricza, C.; Birkás, M. Soil protecting effect of the surface cover in extreme summer periods. Plant Soil Environ. 2013, 59, 404–409. [Google Scholar] [CrossRef] [Green Version]
Assessed Characteristics | Time after Conversion | No-Till Farming | Strip-Till Farming |
---|---|---|---|
Soil state | 1st year | Reflects the former condition | Loosened in the tilled strips |
2–3rd year | Settling | Good | |
After 6–8 yrs | Improved looseness | Very good | |
Soil structure | 1st year | Low ratio of crumbs | Reflects former management |
After 6–8 yrs | More crumbs in angular forms | Crumb formation in the strips | |
Soil surface | In years | Covered by stubble residues | Clean strips, covered untilled rows |
Weed infestation | 1st year After 6–8 yrs | Mostly high Easily manageable | Reflects former management Well manageable |
Earthworm abundance | 1st year | Quite low | Medium |
After 6–8 yrs | High | High in the untilled rows | |
Yield | 1st year | Decreasing | Good |
After 6–8 yrs | Stabilizing to moderated level | Very good | |
Adaptability to dry seasons | 1st year | Variable, mostly good | Good |
After 6–8 yrs | Good | Good | |
Adaptability to wet seasons | 1st year | Variable, sometimes low | Mostly good |
After 6–8 yrs | Good | Reflects the strip state |
Assessed Characteristics | Time after Conversion | Subsoiling | Tine Tillage |
---|---|---|---|
Soil state | 1st yr | Slightly improved | Reflects the former soil condition |
2–3rd yr | Moderately improved | Improved looseness | |
After 6–8 yrs | Well loosened | Good condition | |
Soil structure | 1st year | Cloddy surface | Reflects the former state |
After 6–8 yrs | Well crumbled in the tilled layer | Crumb formation in the tilled layer | |
Soil surface | In years | The cover ratio reflects stubble management | The cover ratio reflects stubble management |
Weed infestation | 1st year | High | High |
After 6–8 yrs | Continuously reduced | Continuously reduced | |
Earthworm abundance | 1st year | Moderate | Moderate |
After 6–8 yrs | Moderate to high | High | |
Yield | 1st year | Acceptable | Moderate |
After 6–8 yrs | Good, mostly high | Good, mostly high | |
Adaptability to dry seasons | 1st year | Good | Moderate |
After 6–8 yrs | Very good | Good | |
Adaptability to wet seasons | 1st year | Moderate | Moderate |
After 6–8 yrs | Mostly good | Very good |
Assessed Characteristics | Time after Conversion | Ploughing | Disk Tillage |
---|---|---|---|
Soil state | 1st yr | Good | Loosened top layer |
2–3rd yr | Plough pan occurrence | Disk pan occurrence | |
After 6–8 yrs | Deterioration | Disk pan extension | |
Soil structure | 1st year | Good | Medium crumb ratio |
After 6–8 yrs | Deterioration | High dust ratio | |
Soil surface | In years | Bare | Moderately covered |
Weed infestation | 1st year | Low | Faced former weed control |
After 6–8 yrs | Reflects weed management | High, hardly manageable | |
Earthworm abundance | 1st year | Medium | Reflects the water content and stubble residues |
After 6–8 yrs | Low | Medium to high | |
Yield | 1st year | Acceptable | Moderate |
After 6–8 yrs | Variable | Decreasing | |
Adaptability to dry seasons | 1st year | Moderate | Low |
After 6–8 yrs | Poor | Critical | |
Adaptability to wet seasons | 1st year | Moderate | Moderate, sometimes low |
After 6–8 yrs | Poor | Critical |
Tillage Systems | Main Advantages | Main Considerations |
---|---|---|
No-till farming | Low disturbance | Soil state improvement in long term |
Strip tillage | Deep loosened layer | Precedent factors require more attention |
Subsoiling | Deep loosened layer | Soil moisture content |
Tine tillage | Complex benefits | Chance for soil quality improvement |
Disk tillage | Good mixing | Depth of loosened layer |
Ploughing | Inverting (?) | Short- and long-term consequences |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovács, G.P.; Simon, B.; Balla, I.; Bozóki, B.; Dekemati, I.; Gyuricza, C.; Percze, A.; Birkás, M. Conservation Tillage Improves Soil Quality and Crop Yield in Hungary. Agronomy 2023, 13, 894. https://doi.org/10.3390/agronomy13030894
Kovács GP, Simon B, Balla I, Bozóki B, Dekemati I, Gyuricza C, Percze A, Birkás M. Conservation Tillage Improves Soil Quality and Crop Yield in Hungary. Agronomy. 2023; 13(3):894. https://doi.org/10.3390/agronomy13030894
Chicago/Turabian StyleKovács, Gergő Péter, Barbara Simon, István Balla, Boglárka Bozóki, Igor Dekemati, Csaba Gyuricza, Attila Percze, and Márta Birkás. 2023. "Conservation Tillage Improves Soil Quality and Crop Yield in Hungary" Agronomy 13, no. 3: 894. https://doi.org/10.3390/agronomy13030894
APA StyleKovács, G. P., Simon, B., Balla, I., Bozóki, B., Dekemati, I., Gyuricza, C., Percze, A., & Birkás, M. (2023). Conservation Tillage Improves Soil Quality and Crop Yield in Hungary. Agronomy, 13(3), 894. https://doi.org/10.3390/agronomy13030894