Effect of Taro Corm Mucilage and Black Seed Oil as Edible Coatings on the Shelf-Life and Quality of Fresh Guava
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Extraction of Taro Mucilage
2.3. Preparation of Edible Coating Solution
2.4. Treatments of Samples
2.5. Physicochemical Properties
2.5.1. Weight Loss
2.5.2. Color Change
2.5.3. Firmness
2.5.4. pH
2.5.5. Total Soluble Solid (TSS)
2.5.6. Titratable Acidity
2.5.7. DPPH Radical Scavenging Activity
2.5.8. Total Phenolic Content
2.5.9. Vitamin C
2.5.10. Chlorophyll Content
2.5.11. Malondialdehyde (MDA)
2.5.12. Microbial Analysis
2.5.13. Statistical Analysis
3. Results and Discussion
3.1. Weight Loss and Firmness
3.2. pH Value, Total Soluble Solids (TSS), and Titratable Acidity
3.3. Color Changes
3.4. Antioxidant Activity and Total Phenolic Content (TPC)
3.5. Chlorophyll Content, Vitamin C Content, and Malondialdehyde (MDA)
3.6. Microbial Analysis
3.7. Visual Observation of Shelf-Life
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, M.; Kapoor, S.; Dhumal, S.; Tkaczewska, J.; Changan, S.; Saurabh, V.; Mekhemar, M.; Rais, N.; Satankar, V.; Pandiselvam, R.; et al. Guava (Psidium guajava L.) Seed: A Low-Volume, High-Value Byproduct for Human Health and the Food Industry. Food Chem. 2022, 386, 132694. [Google Scholar] [CrossRef] [PubMed]
- Yadav, A.; Kumar, N.; Upadhyay, A.; Fawole, O.A.; Mahawar, M.K.; Jalgaonkar, K.; Chandran, D.; Rajalingam, S.; Zengin, G.; Kumar, M.; et al. Recent Advances in Novel Packaging Technologies for Shelf-Life Extension of Guava Fruits for Retaining Health Benefits for Longer Duration. Plants 2022, 11, 547. [Google Scholar] [CrossRef] [PubMed]
- Gaund, M.; Ram, D.; Rawat, A.S.; Kumar, A. Response of Foliar Application of Micronutrients and Plant Growth Regulator on Yield and Economic Feasibility of Guava (Psidium guajava L.) CV. Shweta and Lalit. Pharma Innov. J. 2022, 11, 1752–1756. [Google Scholar]
- Jiang, B.; Zhong, S.; Yu, H.; Chen, P.; Li, B.; Li, D.; Liu, C.; Feng, Z. Covalent and Noncovalent Complexation of Phosvitin and Gallic Acid: Effects on Protein Functionality and In Vitro Digestion Properties. J. Agric. Food Chem. 2022, 70, 11715–11726. [Google Scholar] [CrossRef] [PubMed]
- Otálora González, C.M.; Schelegueda, L.I.; Pizones Ruiz-Henestrosa, V.M.; Campos, C.A.; Basanta, M.F.; Gerschenson, L.N. Cassava Starch Films with Anthocyanins and Betalains from Agroindustrial By-Products: Their Use for Intelligent Label Development. Foods 2022, 11, 3361. [Google Scholar] [CrossRef] [PubMed]
- González, A.; Gastelú, G.; Barrera, G.N.; Ribotta, P.D.; Igarzabal, C.I.Á. Preparation and Characterization of Soy Protein Films Reinforced with Cellulose Nanofibers Obtained from Soybean By-Products. Food Hydrocoll. 2019, 89, 758–764. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, W.; Tian, B.; Li, D.; Liu, C.; Jiang, B.; Feng, Z. Preparation and Characterization of Coating Based on Protein Nanofibers and Polyphenol and Application for Salted Duck Egg Yolks. Foods 2020, 9, 449. [Google Scholar] [CrossRef] [PubMed]
- Tosif, M.M.; Najda, A.; Klepacka, J.; Bains, A.; Chawla, P.; Kumar, A.; Sharma, M.; Sridhar, K.; Gautam, S.P.; Kaushik, R. A Concise Review on Taro Mucilage: Extraction Techniques, Chemical Composition, Characterization, Applications, and Health Attributes. Polymers 2022, 14, 1163. [Google Scholar] [CrossRef]
- Biswas, A.; Ahmed, T.; Rana, M.R.; Hoque, M.M.; Ahmed, M.F.; Sharma, M.; Sridhar, K.; Ara, R.; Inbaraj, B.S. Fabrication and Characterization of ZnO Nanoparticles-Based Biocomposite Films Prepared Using Carboxymethyl Cellulose, Taro Mucilage, and Black Cumin Seed Oil for Evaluation of Antioxidant and Antimicrobial Activities. Agronomy 2023, 13, 147. [Google Scholar] [CrossRef]
- Rahim, M.A.; Shoukat, A.; Khalid, W.; Ejaz, A.; Itrat, N.; Majeed, I.; Koraqi, H.; Imran, M.; Nisa, M.U.; Nazir, A.; et al. A Narrative Review on Various Oil Extraction Methods, Encapsulation Processes, Fatty Acid Profiles, Oxidative Stability, and Medicinal Properties of Black Seed (Nigella sativa). Foods 2022, 11, 2826. [Google Scholar]
- Duan, J.; Zhang, S. Application of Chitosan Based Coating in Fruit and Vegetable Preservation: A Review. J. Food Process. Technol. 2013, 4, 227. [Google Scholar] [CrossRef]
- Králová, K.; Jampilek, J. Metal-and Metalloid-Based Nanofertilizers and Nanopesticides for Advanced Agriculture. In Inorganic Nanopesticides and Nanofertilizers: A View from the Mechanisms of Action to Field Applications; Springer International Publishing: Berlin/Heidelberg, Germany, 2022; p. 295. [Google Scholar]
- López-Diaz, A.S.; Méndez-Lagunas, L.L. Mucilage-Based Films for Food Applications. Food Rev. Int. 2022, 1–30. [Google Scholar] [CrossRef]
- Morsy, M.K.; Abdelmonem, M.A.; Trinetta, V. Effect of Antimicrobial Washes, Essential Oil Vapor Phase, and Antimicrobial Pullulan Coating in Reducing Escherichia coli O157: H7 and Salmonella Typhimurium on Strawberries. Food Prot. Trends 2021, 41, 464–475. [Google Scholar] [CrossRef]
- Ahmed, A.; Ali, S.W.; Imran, A.; Afzaal, M.; Arshad, M.S.; Nadeem, M.; Mubeen, Z.; Ikram, A. Formulation of Date Pit Oil-Based Edible Wax Coating for Extending the Storage Stability of Guava Fruit. J. Food Process. Preserv. 2020, 44, e14336. [Google Scholar] [CrossRef]
- Rana, R.; Islam, A.; Sabuz, A.A.; Hasan, M.; Ara, R. Effect of Blanching Pretreatments on the Physicochemical and Drying Characteristics of Chui Jhal (Piper chaba H.) Stem. Int. J. Food Sci. Agric. 2020, 4, 482–491. [Google Scholar] [CrossRef]
- Formiga, A.S.; Junior, J.S.P.; Pereira, E.M.; Cordeiro, I.N.F.; Mattiuz, B.-H. Use of Edible Coatings Based on Hydroxypropyl Methylcellulose and Beeswax in the Conservation of Red Guava ‘Pedro Sato’. Food Chem. 2019, 290, 144–151. [Google Scholar] [CrossRef]
- El-Gioushy, S.F.; Abdelkader, M.F.M.; Mahmoud, M.H.; Abou El Ghit, H.M.; Fikry, M.; Bahloul, A.M.E.; Morsy, A.R.; Abdelaziz, A.M.R.A.; Alhaithloul, H.A.S.; Hikal, D.M.; et al. The Effects of a Gum Arabic-Based Edible Coating on Guava Fruit Characteristics during Storage. Coatings 2022, 12, 90. [Google Scholar] [CrossRef]
- Peasura, N.; Sinchaipanit, P. The Impact of Sweetener Type on Physicochemical Properties, Antioxidant Activity and Rheology of Guava Nectar during Storage Time. Beverages 2022, 8, 24. [Google Scholar] [CrossRef]
- Anjum, M.A.; Akram, H.; Zaidi, M.; Ali, S. Effect of Gum Arabic and Aloe Vera Gel Based Edible Coatings in Combination with Plant Extracts on Postharvest Quality and Storability of ‘Gola’ Guava Fruits. Sci. Hortic. 2020, 271, 109506. [Google Scholar] [CrossRef]
- Guntarti, A.; Ahda, M.; Nabilla, H.; Susanti, H. The Storage Effect against Vitamin C Content in Crystal Guava (Psidium guajava L.) Juice. J. Sci. Islam. Repub. Iran 2021, 32, 39–42. [Google Scholar]
- Etemadipoor, R.; Ramezanian, A.; Dastjerdi, A.M.; Shamili, M. The Potential of Gum Arabic Enriched with Cinnamon Essential Oil for Improving the Qualitative Characteristics and Storability of Guava (Psidium guajava L.) Fruit. Sci. Hortic. 2019, 251, 101–107. [Google Scholar] [CrossRef]
- Madhav, J.V.; Sethi, S.; Sharma, R.R.; Nagaraja, A.; Varghese, E. Influence of Lipid and Polysaccharide Based Edible Coatings on Quality of Guava Fruits during Storage. Indian J. Hortic. 2020, 77, 173–178. [Google Scholar] [CrossRef]
- Hossain, M.A.; Das, R.; Yasin, M.; Kabir, H.; Ahmed, T. Potentials of two lactobacilli in probiotic fruit juice development and evaluation of their biochemical and organoleptic stability during refrigerated storage. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2022, 23, 131–140. [Google Scholar]
- Kaur, G.; Kapoor, S.; Gandhi, N. Foods with Edible Coatings: Science, Shelf Life, and Quality. In Shelf Life and Food Safety; CRC Press: Boca Raton, FL, USA, 2020; pp. 321–350. [Google Scholar]
- Pachacama, A.; Nicole, L. Aplicación de Recubrimientos Comestibles Activos a Base de Alginato Como Un Método Alternativo de Conservación Para La Industria Alimentaria. Bachelor’s Thesis, UCE, Quito, Ecuador, 2021. [Google Scholar]
- Liguori, G.; Gaglio, R.; Greco, G.; Gentile, C.; Settanni, L.; Inglese, P. Effect of Opuntia Ficus-Indica Mucilage Edible Coating on Quality, Nutraceutical, and Sensorial Parameters of Minimally Processed Cactus Pear Fruits. Agronomy 2021, 11, 1963. [Google Scholar] [CrossRef]
- Arroyo, B.J.; Bezerra, A.C.; Oliveira, L.L.; Arroyo, S.J.; de Melo, E.A.; Santos, A.M.P. Antimicrobial Active Edible Coating of Alginate and Chitosan Add ZnO Nanoparticles Applied in Guavas (Psidium guajava L.). Food Chem. 2020, 309, 125566. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Rhim, J.-W. Chitosan-Based Biodegradable Functional Films for Food Packaging Applications. Innov. Food Sci. Emerg. Technol. 2020, 62, 102346. [Google Scholar] [CrossRef]
- Oluwaseun, A.C.; Charles Oluwaseun, A.; Funsho Samuel, O.; Emmanuel Sunday, A. Effects of Opuntia Cactus Mucilage Extract and Storage under Evaporative Coolant System on the Shelf Life of Carica Papaya Fruits. J. Agrobiotechnol. 2014, 5, 49–66. [Google Scholar]
- Del-Valle, V.; Hernández-Muñoz, P.; Guarda, A.; Galotto, M.J. Development of a Cactus-Mucilage Edible Coating (Opuntia ficus indica) and Its Application to Extend Strawberry (Fragaria ananassa) Shelf-Life. Food Chem. 2005, 91, 751–756. [Google Scholar] [CrossRef]
- Khatri, D.; Panigrahi, J.; Prajapati, A.; Bariya, H. Attributes of Aloe Vera Gel and Chitosan Treatments on the Quality and Biochemical Traits of Post-Harvest Tomatoes. Sci. Hortic. 2020, 259, 108837. [Google Scholar] [CrossRef]
- Treviño-Garza, M.Z.; Correa-Cerón, R.C.; Ortiz-Lechuga, E.G.; Solis-Arévalo, K.K.; Castillo-Hernández, S.L.; Gallardo-Rivera, C.T.; Arévalo Niño, K. Effect of Linseed (Linum usitatissimum) Mucilage and Chitosan Edible Coatings on Quality and Shelf-Life of Fresh-Cut Cantaloupe (Cucumis melo). Coatings 2019, 9, 368. [Google Scholar] [CrossRef]
- Nagata, C.L.P.; Andrade, L.A.; Pereira, J. Optimization of Taro Mucilage and Fat Levels in Sliced Breads. J. Food Sci. Technol. 2015, 52, 5890–5897. [Google Scholar] [CrossRef]
- Arabpoor, B.; Yousefi, S.; Weisany, W.; Ghasemlou, M. Multifunctional Coating Composed of Eryngium campestre L. Essential Oil Encapsulated in Nano-Chitosan to Prolong the Shelf-Life of Fresh Cherry Fruits. Food Hydrocoll. 2021, 111, 106394. [Google Scholar] [CrossRef]
- Treviño-Garza, M.Z.; García, S.; Heredia, N.; Alanís-Guzmán, M.G.; Arévalo-Niño, K. Layer-by-Layer Edible Coatings Based on Mucilages, Pullulan and Chitosan and Its Effect on Quality and Preservation of Fresh-Cut Pineapple (Ananas comosus). Postharvest Biol. Technol. 2017, 128, 63–75. [Google Scholar] [CrossRef]
- Kozlu, A.; Elmaci, Y. Quince Seed Mucilage as Edible Coating for Mandarin Fruit; Determination of the Quality Characteristics during Storage. J. Food Process. Preserv. 2020, 44, e14854. [Google Scholar] [CrossRef]
- Wang, S.Y.; Gao, H. Effect of Chitosan-Based Edible Coating on Antioxidants, Antioxidant Enzyme System, and Postharvest Fruit Quality of Strawberries (Fragaria x aranassa Duch.). LWT-Food Sci. Technol. 2013, 52, 71–79. [Google Scholar] [CrossRef]
- Coelho, D.G.; ANDRADE, M.T.D.E.; MÉLO, D.F.D.E.; Ferreira-Silva, S.L.; Simões, A.; Nascimento, D.O. Application of antioxidants and edible starch coating to reduce browning of minimally-processed cassava1. Rev. Caatinga 2017, 30, 503–512. [Google Scholar] [CrossRef]
- Ali, M.R.; Parmar, A.; Niedbała, G.; Wojciechowski, T.; Abou El-Yazied, A.; El-Gawad, H.G.A.; Nahhas, N.E.; Ibrahim, M.F.M.; El-Mogy, M.M. Improved Shelf-Life and Consumer Acceptance of Fresh-Cut and Fried Potato Strips by an Edible Coating of Garden Cress Seed Mucilage. Foods 2021, 10, 1536. [Google Scholar] [CrossRef] [PubMed]
- Wijerathne, P.; Chandrajith, V.G.G.; Navaratne, S.B.; Kodagoda, K. Analysis of Chlorophyll Degradation of Leafy Vegetables and Green Chilies by Coating with Terminalia Arjuna (Kumbuk) Plant Mucilages. J. Pharmacogn. Phytochem. 2018, 7, 2278–4136. [Google Scholar]
- Noshad, M.; Rahmati-Joneidabad, M.; Badvi, Z. Effects of Natural Mucilage as an Edible Coating on Quality Improvement of Freshly-Cut Apples. Nutr. Food Sci. Res. 2019, 6, 21–27. [Google Scholar] [CrossRef]
- Xing, Y.; Li, X.; Xu, Q.; Yun, J.; Lu, Y.; Tang, Y. Effects of Chitosan Coating Enriched with Cinnamon Oil on Qualitative Properties of Sweet Pepper (Capsicum annuum L.). Food Chem. 2011, 124, 1443–1450. [Google Scholar] [CrossRef]
- Khaliq, G.; Mohamed, M.T.M.; Ghazali, H.M.; Ding, P.; Ali, A. Influence of Gum Arabic Coating Enriched with Calcium Chloride on Physiological, Biochemical and Quality Responses of Mango (Mangifera indica L.) Fruit Stored under Low Temperature Stress. Postharvest Biol. Technol. 2016, 111, 362–369. [Google Scholar] [CrossRef]
- Huang, Q.; Qian, X.; Jiang, T.; Zheng, X. Effect of Chitosan and Guar Gum Based Composite Edible Coating on Quality of Mushroom (Lentinus edodes) during Postharvest Storage. Sci. Hortic. 2019, 253, 382–389. [Google Scholar] [CrossRef]
- Kumar, P.; Sethi, S.; Sharma, R.R.; Srivastav, M.; Varghese, E. Effect of Chitosan Coating on Postharvest Life and Quality of Plum during Storage at Low Temperature. Sci. Hortic. 2017, 226, 104–109. [Google Scholar] [CrossRef]
- de Aquino, A.B.; Blank, A.F.; de Aquino Santana, L.C.L. Impact of Edible Chitosan--Cassava Starch Coatings Enriched with Lippia Gracilis Schauer Genotype Mixtures on the Shelf Life of Guavas (Psidium guajava L.) during Storage at Room Temperature. Food Chem. 2015, 171, 108–116. [Google Scholar] [CrossRef]
- Rodrigues, F.J.; Cedran, M.F.; Garcia, S. Influence of Linseed Mucilage Incorporated into an Alginate-Base Edible Coating Containing Probiotic Bacteria on Shelf-Life of Fresh-Cut Yacon (Smallanthus sonchifolius). Food Bioprocess Technol. 2018, 11, 1605–1614. [Google Scholar] [CrossRef]
Parameters | Value (g/100 g) |
---|---|
Mean ± SD, N = 3 | |
Moisture | 60 ± 2 |
Ash | 2 ± 1 |
Fat | 0.50 ± 0.07 |
Dietary fibers | 7.56 ± 0.52 |
Protein | 3.24 ± 0.23 |
Carbohydrate | 31.87 ± 1.64 |
Treatments | Taro Mucilage (TM, %) | Chitosan (%) | Black Seed Oil (BSO, %) | Glycerol (%) |
---|---|---|---|---|
T1 | 1 | - | 0.5 | 0.75 |
T2 | 5 | - | 0.5 | 0.75 |
T3 | - | - | 0.5 | 0.75 |
T4 | - | 1 | 0.5 | 0.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shanta, S.S.; Ahmed, T.; Jubayer, M.F.; Sharma, M.; Sridhar, K.; Hoque, M.M.; Rana, M.R.; Inbaraj, B.S. Effect of Taro Corm Mucilage and Black Seed Oil as Edible Coatings on the Shelf-Life and Quality of Fresh Guava. Agronomy 2023, 13, 538. https://doi.org/10.3390/agronomy13020538
Shanta SS, Ahmed T, Jubayer MF, Sharma M, Sridhar K, Hoque MM, Rana MR, Inbaraj BS. Effect of Taro Corm Mucilage and Black Seed Oil as Edible Coatings on the Shelf-Life and Quality of Fresh Guava. Agronomy. 2023; 13(2):538. https://doi.org/10.3390/agronomy13020538
Chicago/Turabian StyleShanta, Sumaiya Sultana, Tanvir Ahmed, Md Fahad Jubayer, Minaxi Sharma, Kandi Sridhar, Md Mozammel Hoque, Md Rahmatuzzaman Rana, and Baskaran Stephen Inbaraj. 2023. "Effect of Taro Corm Mucilage and Black Seed Oil as Edible Coatings on the Shelf-Life and Quality of Fresh Guava" Agronomy 13, no. 2: 538. https://doi.org/10.3390/agronomy13020538
APA StyleShanta, S. S., Ahmed, T., Jubayer, M. F., Sharma, M., Sridhar, K., Hoque, M. M., Rana, M. R., & Inbaraj, B. S. (2023). Effect of Taro Corm Mucilage and Black Seed Oil as Edible Coatings on the Shelf-Life and Quality of Fresh Guava. Agronomy, 13(2), 538. https://doi.org/10.3390/agronomy13020538