Scion/Rootstock Interaction Studies for Quality Traits in Mango (Mangifera indica L.) Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Orchard and Plant Materials
2.2. Fruit Yield
2.3. Physical Fruit Quality Analysis
2.4. DNA Extraction and PCR Analysis
2.5. Data Scoring and Statistical Analysis
3. Results
3.1. Effects of Scion, Rootstock and Interaction on Fruit Yield
3.2. Effects of Scion, Rootstock, and Interaction on Fruit Quality at Ripening
3.3. Effects of Scion, Rootstock, and Interaction on PLW and Respiration Rate during Storage
3.4. Effects of Scion, Rootstock, and Interaction on Fruit Quality during Storage
3.5. Respiration Rate
3.6. Cluster Analysis and Principal Component Analysis
3.7. Genetic Characterization of Mango Rootstocks and Scion/Rootstock Combinations Using Shelf-Life-Specific Markers
4. Discussion
4.1. Yield and Yield Efficiency
4.2. Storage Study
4.2.1. Physico-Chemical Parameters Analysis in Scion/Rootstock Combinations
4.2.2. Comparative Cluster Analysis for Physico-Chemical Parameters and Molecular Analysis
4.3. Marker–Trait Association Study in Scion/Rootstock Combinations
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, B.P.; Jayaswal, P.K.; Singh, B.; Singh, P.K.; Kumar, V.; Mishra, S.; Singh, N.K. Natural allelic diversity in OsDREB1F gene in the Indian wild rice germplasm led to ascertain its association with drought tolerance. Plant Cell Rep. 2015, 34, 993–1004. [Google Scholar] [CrossRef] [PubMed]
- Lal, S.; Singh, A.K.; Singh, S.K.; Srivastav, M.; Singh, B.P.; Sharma, N.; Singh, N.K. Association analysis for pomological traits in mango (Mangifera indica L.) by genic-SSR markers. Trees 2017, 31, 1391–1409. [Google Scholar] [CrossRef]
- APEDA-Agricultural and Processed Food Products Export Development Authority. Products-Fresh Fruits and Vegetable: Mango; Ministry of Commerce and Industry, Government of India: New Delhi, India, 2020; Volume 2020. [Google Scholar]
- Bally, I.S.; Bombarely, A.; Chambers, A.H.; Cohen, Y.; Dillon, N.L.; Innes, D.J.; Yan, H. The ‘Tommy Atkins’ mango genome reveals candidate genes for fruit quality. BMC Plant Biol. 2021, 21, 108. [Google Scholar] [CrossRef] [PubMed]
- Taher, M.A.; Loa, A.A.; Gouda, M.; Limam, S.A.; Abdelkader, M.F.; Osman, S.O.; Hikal, D.M. Impacts of gum arabic and polyvinylpyrrolidone (PVP) with salicylic acid on peach fruit (Prunus persica) shelf-life. Molecules 2022, 27, 2595. [Google Scholar] [CrossRef] [PubMed]
- Dayal, V.; Dubey, A.K.; Singh, S.K.; Sharma, R.M.; Dahuja, A.; Kaur, C. Growth, yield and physiology of mango (Mangifera indica L.) cultivars as affected by polyembryonic rootstocks. Sci. Hortic. 2016, 199, 186–197. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, L.; Wu, R. Plant grafting: How genetic exchange promotes vascular reconnection. New Phytol. 2017, 214, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Tietel, Z.; Srivastava, S.; Fait, A.; Tel-Zur, N.; Carmi, N.; Raveh, E. Impact of scion/rootstock reciprocal effects on metabolomics of fruit juice and phloem sap in grafted Citrus reticulata. PLoS ONE 2020, 15, 227192. [Google Scholar] [CrossRef]
- Vahdati, K.; Sarikhani, S.; Arab, M.M.; Leslie, C.A.; Dandekar, A.M.; Aleta, N.; Mehlenbacher, S.A. Advances in rootstock breeding of nut trees: Objectives and strategies. Plants 2021, 10, 2234. [Google Scholar] [CrossRef]
- Srivastava, S.; Singh, R.K.; Pathak, G.; Goel, R.; Asif, M.H.; Sane, A.P.; Sane, V.A. Comparative transcriptome analysis of unripe and mid-ripe fruit of Mangifera indica (var. “Dashehari”) unravels ripening associated genes. Sci. Rep. 2016, 6, 32557. [Google Scholar] [CrossRef] [Green Version]
- Pradeepkumara, N.; Sharma, P.K.; Munshi, A.D.; Behera, T.K.; Bhatia, R.; Kumari, K.; Dey, S.S. Fruit transcriptional profiling of the contrasting genotypes for shelf-life reveals the key candidate genes and molecular pathways regulating post-harvest biology in cucumber. Genomics 2022, 114, 110273. [Google Scholar] [CrossRef]
- Tsaballa, A.; Athanasiadis, C.; Pasentsis, K.; Ganopoulos, I.; Nianiou-Obeidat, I.; Tsaftaris, A. Molecular studies of inheritable grafting induced changes in pepper (Capsicum annuum) fruit shape. Sci. Hortic. 2013, 149, 2–8. [Google Scholar] [CrossRef]
- Dubey, A.K.; Sharma, R.M. Effect of rootstocks on tree growth, yield, quality and leaf mineral composition of lemon (Citrus limon (L.) Burm.). Sci. Hortic. 2016, 200, 131–136. [Google Scholar] [CrossRef]
- Dubey, A.K.; Sharma, R.M.; Kumar, A. Long term performance of mango varieties on five polyembryonic rootstocks under subtropical conditions: Effect on vigour, yield, fruit quality and nutrient acquisition. Sci. Hortic. 2021, 280, 109944. [Google Scholar] [CrossRef]
- Jukic-Spika, M.; Dumicic, G.; Brkic-Bubola, K.; Soldo, B.; Goreta, B.S.; Vuletin-Selak, G.; Zanic, K. Modification of the sensory profile and volatile aroma compounds of tomato fruits by the scion× rootstock interactive effect. Front. Plant Sci. 2021, 11, 2303. [Google Scholar] [CrossRef]
- Albacete, A.; Martínez-Andújar, C.; Martínez-Pérez, A.; Thompson, A.J.; Dodd, I.C.; Pérez-Alfocea, F. Unravelling rootstock × scion interactions to improve food security. J. Exp. Bot. 2015, 66, 2211–2226. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.K.; Varshney, R.K. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 2000, 113, 163–185. [Google Scholar] [CrossRef]
- A.O.A.C. Offical Methods of Analysis. Association of official Analytical Chemists International; A.O.A.C.: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Prasad, K.; Sharma, R.R.; Srivastav, M. Postharvest treatment of antioxidant reduces lenticels discolouration and improves cosmetic appeal of mango (Mangifera indica L.) fruits without impairing quality. J. Food Sci. Technol. 2016, 53, 2995–3001. [Google Scholar] [CrossRef] [Green Version]
- Doyle, J.J.; Doyle, J.L. A rapid total DNA preparation procedure from fresh plant tissue. Focus 1987, 12, 13–15. [Google Scholar]
- Temnykh, S.; DeClerck, G.; Lukashova, A.; Lipovich, L.; Cartinhour, S.; McCouch, S. Computational and experimental analysis of microsatellites in rice (Oryza sativa L.). Genome Res. 2001, 11, 1441–1452. [Google Scholar] [CrossRef] [Green Version]
- Metsalu, T.; Vilo, J. Clust Vis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015, 43, 566–570. [Google Scholar] [CrossRef]
- Jombart, T. Adegenet: An R package for the multivariate analysis of genetic markers. Bioinformatics 2008, 24, 1403–1405. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Spencer, V.M. Power marker: An integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Earl, D.A.; Von-Holdt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Yu, J.; Pressoir, G.; Briggs, W.H.; Bi, I.V.; Yamasaki, M.; Doebley, J.F.; Buckler, E.S. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 2006, 38, 203–208. [Google Scholar] [CrossRef]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef]
- Reddy, Y.T.N.; Kurian, R.M.; Ramachander, P.R.; Singh, G.; Kohli, R.R. Long-term effects of rootstocks on growth and fruit yielding patterns of ‘Alphonso’ mango (Mangifera indica L.). Sci. Hortic. 2003, 97, 95–108. [Google Scholar] [CrossRef]
- Smith, M.W.; Bright, J.D.; Hoult, M.D.; Renfree, R.A.; Maddern, T.; Coombes, N. Field evaluation of 64 rootstocks for growth and yield of ‘Kensington Pride’ mango. Hortscience 2008, 43, 1720–1725. [Google Scholar] [CrossRef] [Green Version]
- Hoda, M.N.; Singh, S.; Singh, J. Evaluation of mango (Mangifera indica) cultivars for quality attributes. Indian J. Agric. Sci. 2003, 73, 504–506. [Google Scholar]
- Singh, S.K.; Singh, S.K.; Sharma, R.R.; Patel, V.B. Influence of pruning intensity on flowering, fruit yields and floral malformation in three mango cultivars planted under high density. Indian J. Hortic. 2010, 67, 84–89. [Google Scholar]
- Aung, A.M.M. Evaluation of Postharvest Quality of Mango Genotype During Storage. Master’s Thesis, Indian Agricultural Research Institute, New Delhi, India, 2019. [Google Scholar]
- Prasad, K.; Sharma, R.R.; Srivastav, M.; Asrey, R. Relationship between lenticel discoloration and biochemical and quality attributes in mango (Mangifera indica L.) fruit. Acta Physiol. Plant. 2020, 42, 178. [Google Scholar] [CrossRef]
- Shankar, S. Influence of Polyembryonic Rootstocks on Quality of Mango Cultivars during Storage. Master’s Thesis, Indian Agricultural Research Institute, New Delhi, India, 2019. [Google Scholar]
- Sinha, S.; Ramanjini, G.P.H.; Kumar, S.; Mallikarjuna, N.M. Shelf-Life Evaluation in Selected Tomato (Solanum lycopersicum L) F7 Recombinant Inbred Lines (RILs). Austin J. Biotechnol. Bioeng. 2014, 1, 4. [Google Scholar]
- Pawar, P.; Gowda, P.H.; Ramegowda, R.P. Phenotypic evaluation and molecular characterization of alc/vaibhav recombinant inbred population of tomato for yield, shelf-life and fruit quality parameters. Int. J. Agric. Res. 2016, 8, 25–36. [Google Scholar]
- Iwata, H.; Hayashi, T.; Terakami, S.; Takada, N.; Saito, T.; Yamamoto, T. Genomic prediction of trait segregation in a progeny population: A case study of Japanese pear (Pyrus pyrifolia). BMC Genet. 2013, 14, 81. [Google Scholar] [CrossRef]
- Tsaballa, A.; Xanthopoulou, A.; Madesis, P.; Tsaftaris, A.; Nianiou-Obeidat, I. Vegetable grafting from a molecular point of view: The involvement of epigenetics in rootstock-scion interactions. Front. Plant Sci. 2021, 23, 2129. [Google Scholar] [CrossRef]
Rootstock/Scion | Pusa Arunima | Pusa Surya | Amrapali | Dashehari | Mallika | Mean |
---|---|---|---|---|---|---|
No. of Fruit/Plant | ||||||
K-5 | 50.7 ± 2.89 | 11.7 ± 2.10 | 143.3 ± 7.64 | 240.0 ± 5.77 | 260.0 ± 5.8 | 141.1 |
Kurukkan | 75.0 ± 3.46 | 43.3 ± 2.92 | 213.3 ± 5.35 | 251.7 ± 6.12 | 180.0 ± 4.9 | 152.7 |
Olour | 86.7 ± 3.94 | 50.7 ± 3.24 | 223.3 ± 5.22 | 193.3 ± 5.92 | 330.0 ± 6.4 | 176.8 |
Mean | 70.8 | 35.2 | 193.3 | 228.3 | 256.7 | 156.9 |
LSD (p ≤ 0.05) | Variety (V) | Rootstock (R) | V × R | |||
29.3 | 22.7 | 50.8 | ||||
Yield/tree (kg) | ||||||
K-5 | 13.1 ± 1.31 | 5.0 ± 1.12 | 20.1 ± 1.16 | 36.0 ± 2.08 | 63.5 ± 3.18 | 27.5 |
Kurukkan | 27.1 ± 1.21 | 18.4 ± 1.42 | 29.4 ± 1.86 | 38.3 ± 2.38 | 52.5 ± 2.88 | 33.2 |
Olour | 22.8 ± 1.56 | 20.2 ± 1.22 | 38.2 ± 1.18 | 30.4 ± 2.22 | 90.9 ± 3.32 | 40.5 |
Mean | 21.0 | 14.5 | 29.2 | 34.9 | 69.0 | 33.7 |
LSD (p ≤ 0.05) | Variety (V) | Rootstock (R) | V × R | |||
8.2 | 6.4 | 14.2 | ||||
Yield efficiency (kg/m3) | ||||||
K-5 | 0.11 ± 0.04 | 0.08 ± 0.01 | 0.38 ± 0.03 | 0.68 ± 0.08 | 0.17 ± 0.01 | 0.28 |
Kurukkan | 0.14 ± 0.05 | 0.15 ± 0.02 | 0.23 ± 0.01 | 1.84 ± 0.09 | 0.21 ± 0.02 | 0.51 |
Olour | 0.09 ± 0.02 | 0.13 ± 0.1 | 0.41 ± 0.04 | 0.41 ± 0.06 | 0.16 ± 0.01 | 0.24 |
Mean | 0.11 | 0.12 | 0.34 | 0.98 | 0.18 | 0.35 |
Variety (V) | Rootstock (R) | V × R | ||||
LSD (p ≤ 0.05) | 0.54 | NS | 0.93 |
Rootstock/Scion | Pusa Arunima | Pusa Surya | Amrapali | Dashehari | Mallika | Mean |
---|---|---|---|---|---|---|
Fruit Weight (g) | ||||||
K-5 | 259.6 ± 5.8 | 425.9 ± 5.4 | 139.3 ± 6.7 | 244.2 ± 5.4 | 149.8 ± 4.1 | 243.7 |
Kurukkan | 360.0 ± 6.2 | 429.1 ± 7.6 | 136.8 ± 4.1 | 289.6 ± 6.4 | 152.4 ± 4.8 | 273.6 |
Olour | 261.8 ± 8.0 | 388.1 ± 6.2 | 170.1 ± 5.3 | 275.3 ± 6.1 | 157.2 ± 4.7 | 250.5 |
Mean | 293.8 | 414.4 | 148.7 | 269.7 | 153.1 | 255.9 |
LSD (p ≤ 0.05) | Variety (V) | Rootstock | V × R | |||
21.3 | 16.5 | 36.9 | ||||
Pulp % | ||||||
K-5 | 61.0 ± 1.47 | 59.0 ± 2.54 | 65.0 ± 1.92 | 55.4 ± 1.21 | 66.9 ± 2.54 | 61.5 |
Kurukkan | 66.6 ± 1.26 | 62.2 ± 1.92 | 61.7 ± 1.42 | 60.2 ± 1.24 | 65.9 ± 2.12 | 63.4 |
Olour | 60.7 ± 1.36 | 58.0 ± 1.23 | 69.0 ± 1.62 | 48.5 ± 1.94 | 70.3 ± 2.24 | 61.3 |
Mean | 62.8 | 59.7 | 65.3 | 54.7 | 67.7 | 62.1 |
LSD (p ≤ 0.05) | Variety (V) | Rootstock (R) | V × R | |||
5.1 | NS | 8.8 | ||||
Stone weight (g) | ||||||
K-5 | 49.0 ± 1.99 | 56.2 ± 1.57 | 31.2 ± 2.33 | 23.2 ± 1.04 | 44.0 ± 1.92 | 40.7 |
Kurukkan | 50.9 ± 1.31 | 56.2 ± 1.73 | 28.9 ± 1.03 | 28.5 ± 1.82 | 38.9 ± 2.12 | 40.7 |
Olour | 49.3 ± 2.10 | 55.2 ± 1.92 | 38.0 ± 1.94 | 24.0 ± 1.46 | 37.8 ± 1.96 | 40.9 |
Mean | 49.7 | 55.9 | 32.7 | 25.2 | 40.2 | 40.8 |
LSD (p ≤ 0.05) | Variety (V) | Rootstock (R) | V × R | |||
6.3 | NS | 11.0 | ||||
Pulp/stone ratio | ||||||
K-5 | 1.24 ± 0.11 | 1.07 ± 0.13 | 2.08 ± 0.21 | 2.39 ± 0.20 | 1.54 ± 0.11 | 1.67 |
Kurukkan | 1.30 ± 0.17 | 1.19 ± 0.12 | 2.14 ± 0.19 | 2.11 ± 0.17 | 1.70 ± 0.14 | 1.69 |
Olour | 1.23 ± 0.12 | 1.06 ± 0.19 | 1.83 ± 0.17 | 2.03 ± 0.16 | 1.87 ± 0.12 | 1.60 |
Mean | 1.20 | 1.11 | 2.02 | 2.18 | 1.70 | 1.65 |
Variety (V) | Rootstock (R) | V × R | ||||
LSD (p ≤ 0.05) | 0.20 | NS | 0.35 |
Scion/Rootstock | TSS (0B) | Acidity (% Citric Acid) | Peel Thickness (mm) | Respiration Rate (mL CO2kg−1 h−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 day | 3rd day | 6th day | 0 day | 3rd day | 6th day | 0 day | 3rd day | 6th day | 0 day | 3rd day | 6th day | |
Pusa Arunima | ||||||||||||
K-5 | 16.6 ± 0.30 | 17.8 ± 0.48 | 18.8 ± 0.32 | 0.29 ± 0.01 | 0.24 ± 0.02 | 0.19 ± 0.02 | 0.96 ± 0.03 | 0.94 ± 0.03 | 0.87 ± 0.02 | 43.5 ± 2.75 | 74.2 ± 1.59 | 143.5 ± 2.24 |
Kurukkan | 16.4 ± 0.21 | 17.3 ± 0.39 | 18.3 ± 0.26 | 0.32 ± 0.02 | 0.29 ± 0.01 | 0.22 ± 0.01 | 0.85 ± 0.02 | 0.78 ± 0.02 | 0.74 ± 0.02 | 45.4 ± 2.88 | 72.6 ± 2.12 | 139.9 ± 1.98 |
Olour | 17.0 ± 0.25 | 18.2 ± 0.40 | 18.8 ± 0.36 | 0.28 ± 0.02 | 0.23 ± 0.02 | 0.19 ± 0.02 | 1.32 ± 0.04 | 1.10 ± 0.02 | 0.92 ± 0.03 | 38.1 ± 2.40 | 56.9 ± 2.22 | 118.8 ± 1.92 |
Pusa Surya | ||||||||||||
K-5 | 18.1 ± 0.21 | 19.4 ± 0.29 | 20.3 ± 0.29 | 0.26 ± 0.02 | 0.20 ± 0.01 | 0.18 ± 0.02 | 0.94 ± 0.02 | 0.90 ± 0.03 | 0.82 ± 0.02 | 47.1 ± 2.82 | 77.6 ± 2.34 | 146.0 ± 2.52 |
Kurukkan | 20.0 ± 0.26 | 20.4 ± 0.36 | 20.8 ± 0.35 | 0.27 ± 0.01 | 0.24 ± 0.02 | 0.21 ± 0.01 | 0.81 ± 0.02 | 0.76 ± 0.02 | 0.68 ± 0.03 | 45.0 ± 2.75 | 76.8 ± 2.24 | 142.4 ± 2.32 |
Olour | 21.1 ± 0.32 | 21.7 ± 0.37 | 21.9 ± 0.32 | 0.30 ± 0.02 | 0.26 ± 0.02 | 0.17 ± 0.02 | 1.20 ± 0.03 | 0.98 ± 0.02 | 0.86 ± 0.02 | 42.0 ± 2.46 | 63.0 ± 2.44 | 130.5 ± 2.12 |
Amrapali | ||||||||||||
K-5 | 22.9 ± 0.58 | 23.9 ± 0.28 | 24.9 ± 0.29 | 0.27 ± 0.01 | 0.23 ± 0.03 | 0.17 ± 0.02 | 0.55 ± 0.04 | 0.50 ± 0.02 | 0.44 ± 0.03 | 50.6 ± 1.94 | 83.5 ± 2.16 | 166.2 ± 1.98 |
Kurukkan | 23.1 ± 0.40 | 23.8 ± 0.41 | 24.4 ± 0.29 | 0.24 ± 0.02 | 0.20 ± 0.01 | 0.17 ± 0.03 | 0.49 ± 0.02 | 0.44 ± 0.03 | 0.37 ± 0.02 | 49.1 ± 2.17 | 82.3 ± 1.80 | 160.3 ± 2.23 |
Olour | 20.2 ± 0.66 | 21.2 ± 0.38 | 25.4 ± 0.26 | 0.26 ± 0.02 | 0.24 ± 0.02 | 0.17 ± 0.02 | 0.79 ± 0.03 | 0.69 ± 0.02 | 0.62 ± 0.02 | 45.2 ± 2.32 | 77.2 ± 2.14 | 150.8 ± 2.25 |
Dashehari | ||||||||||||
K-5 | 21.5 ± 0.31 | 22.9 ± 0.40 | 23.6 ± 0.48 | 0.29 ± 0.02 | 0.22 ± 0.01 | 0.19 ± 0.01 | 0.53 ± 0.02 | 0.43 ± 0.02 | 0.38 ± 0.03 | 53.2 ± 1.46 | 89.3 ± 2.49 | 170.7 ± 1.85 |
Kurukkan | 22.4 ± 0.45 | 24.5 ± 0.39 | 24.5 ± 0.42 | 0.24 ± 0.01 | 0.19 ± 0.02 | 0.17 ± 0.02 | 0.48 ± 0.02 | 0.41 ± 0.02 | 0.36 ± 0.02 | 51.9 ± 1.46 | 88.2 ± 2.36 | 165.6 ± 1.95 |
Olour | 24.2 ± 0.36 | 24.9 ± 0.44 | 26.8 ± 0.38 | 0.24 ± 0.03 | 0.20 ± 0.01 | 0.17 ± 0.02 | 0.73 ± 0.03 | 0.63 ± 0.03 | 0.52 ± 0.03 | 50.5 ± 1.61 | 75.4 ± 2.12 | 154.4 ± 2.19 |
Mallika | ||||||||||||
K-5 | 25.1 ± 0.40 | 25.9 ± 0.29 | 27.0 ± 0.40 | 0.25 ± 0.01 | 0.19 ± 0.02 | 0.14 ± 0.03 | 0.59 ± 0.03 | 0.50 ± 0.03 | 0.45 ± 0.02 | 49.5 ± 2.74 | 82.5 ± 2.12 | 159.3 ± 2.52 |
Kurukkan | 25.8 ± 0.38 | 26.3 ± 0.28 | 27.4 ± 0.39 | 0.27 ± 0.02 | 0.22 ± 0.01 | 0.17 ± 0.01 | 0.51 ± 0.02 | 0.44 ± 0.02 | 0.39 ± 0.03 | 47.2 ± 3.11 | 80.9 ± 2.28 | 156.1 ± 2.98 |
Olour | 27.3 ± 0.34 | 28.0 ± 0.40 | 30.0 ± 0.36 | 0.30 ± 0.03 | 0.27 ± 0.02 | 0.19 ± 0.02 | 0.72 ± 0.02 | 0.67 ± 0.02 | 0.61 ± 0.02 | 46.3 ± 2.80 | 69.7 ± 2.48 | 142.2 ± 2.40 |
LSD (p ≤ 0.05) | ||||||||||||
Variety (V) | 0.35 | 0.32 | 0.30 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 2.00 | 2.05 | 2.30 |
Rootstock (R) | 0.27 | 0.25 | 0.23 | NS | 0.01 | 0.11 | 0.02 | 0.01 | 0.01 | 1.55 | 1.58 | 1.78 |
V × R | 0.62 | 0.56 | 0.52 | 0.02 | 0.02 | 0.03 | 0.04 | 0.03 | 0.31 | 3.47 | 3.55 | 3.99 |
Marker | MAF | Allele No | Gene Diversity | PIC |
---|---|---|---|---|
MSL-6 | 0.93 | 2.00 | 0.12 | 0.12 |
MSL-7 | 0.93 | 2.00 | 0.12 | 0.12 |
MSL-10 | 0.87 | 2.00 | 0.23 | 0.20 |
NMSLC-14 | 0.80 | 2.00 | 0.32 | 0.27 |
MSL-1 | 0.73 | 2.00 | 0.39 | 0.31 |
NMSLC-7 | 0.73 | 2.00 | 0.39 | 0.31 |
NMSLC-2 | 0.67 | 2.00 | 0.44 | 0.35 |
NMSLC-11 | 0.67 | 2.00 | 0.44 | 0.35 |
NMSLC-13 | 0.67 | 2.00 | 0.44 | 0.35 |
MSL-3 | 0.60 | 2.00 | 0.48 | 0.36 |
MSL-9 | 0.60 | 2.00 | 0.48 | 0.36 |
NMSLC-3 | 0.60 | 2.00 | 0.48 | 0.36 |
NMSLC-4 | 0.60 | 2.00 | 0.48 | 0.36 |
NMSLC-5 | 0.60 | 2.00 | 0.48 | 0.36 |
MSL-12 | 0.57 | 2.00 | 0.49 | 0.37 |
MSL-2 | 0.53 | 2.00 | 0.50 | 0.37 |
MSL-8 | 0.53 | 2.00 | 0.50 | 0.37 |
MSL-13 | 0.53 | 2.00 | 0.50 | 0.37 |
NMSLC-12 | 0.53 | 2.00 | 0.50 | 0.37 |
EXPM-7 | 0.53 | 2.00 | 0.50 | 0.37 |
NMSLC-9 | 0.50 | 2.00 | 0.50 | 0.38 |
EXPM-6 | 0.50 | 2.00 | 0.50 | 0.38 |
EXPM-4 | 0.47 | 3.00 | 0.56 | 0.46 |
NMSLC-10 | 0.43 | 3.00 | 0.61 | 0.52 |
Mean | 0.63 | 2.08 | 0.44 | 0.34 |
Trait | Marker | Marker_F | Marker R2 |
---|---|---|---|
Yield efficiency | NMSLC-12 | 79.1 | 0.85 |
Fruit wt. (g) | NMSLC-14 | 29.9 | 0.70 |
NMSLC-4 | 15.6 | 0.56 | |
TSS 0 day | NMSLC-4 | 18.3 | 0.59 |
NMSLC-14 | 8.99 | 0.42 | |
TSS 3 day | NMSLC-4 | 15.9 | 0.56 |
TSS 6 day | NMSLC-14 | 12.2 | 0.49 |
NMSLC-4 | 11.6 | 0.48 | |
Pulp% | NMSLC-5 | 11.4 | 0.48 |
MSL-7 | 10.9 | 0.47 | |
NMSLC-14 | 9.76 | 0.44 | |
NMSLC-2 | 8.42 | 0.40 | |
Peel thickness 0 day | NMSLC-4 | 8.54 | 0.40 |
Peel thickness 3 day | NMSLC-4 | 10.5 | 0.46 |
Peel thickness 6 day | NMSLC-4 | 11.1 | 0.48 |
Acidity 0 day | MSL-9 | 9.80 | 0.44 |
Acidity 6 day | MSL-10 | 10.5 | 0.43 |
Yield (kg/tree) | NMSLC-4 | 10.7 | 0.45 |
No. of fruit/plant | NMSLC-4 | 10.2 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shivran, M.; Sharma, N.; Dubey, A.K.; Singh, S.K.; Sharma, N.; Muthusamy, V.; Jain, M.; Singh, B.P.; Singh, N.; Kumar, N.; et al. Scion/Rootstock Interaction Studies for Quality Traits in Mango (Mangifera indica L.) Varieties. Agronomy 2023, 13, 204. https://doi.org/10.3390/agronomy13010204
Shivran M, Sharma N, Dubey AK, Singh SK, Sharma N, Muthusamy V, Jain M, Singh BP, Singh N, Kumar N, et al. Scion/Rootstock Interaction Studies for Quality Traits in Mango (Mangifera indica L.) Varieties. Agronomy. 2023; 13(1):204. https://doi.org/10.3390/agronomy13010204
Chicago/Turabian StyleShivran, Mukesh, Nimisha Sharma, Anil Kumar Dubey, Sanjay Kumar Singh, Neha Sharma, Vignesh Muthusamy, Maneesh Jain, Bikram Pratap Singh, Nisha Singh, Nirmal Kumar, and et al. 2023. "Scion/Rootstock Interaction Studies for Quality Traits in Mango (Mangifera indica L.) Varieties" Agronomy 13, no. 1: 204. https://doi.org/10.3390/agronomy13010204
APA StyleShivran, M., Sharma, N., Dubey, A. K., Singh, S. K., Sharma, N., Muthusamy, V., Jain, M., Singh, B. P., Singh, N., Kumar, N., Singh, N., Sethi, S., & Sharma, R. M. (2023). Scion/Rootstock Interaction Studies for Quality Traits in Mango (Mangifera indica L.) Varieties. Agronomy, 13(1), 204. https://doi.org/10.3390/agronomy13010204