Application Progress of UAV-LARS in Identification of Crop Diseases and Pests
Abstract
:1. Introduction
2. UAV-LARS System
2.1. RGB Imaging RS System
2.2. Thermal Imaging RS System
2.3. Multispectral Imaging RS System
2.4. Hyperspectral Imaging RS System
2.5. LiDAR Imaging RS System
3. Application of UAV-LARS in Monitoring of Crop Diseases and Pests
3.1. Data Source and Processing
3.2. Application Progress in Monitoring Wheat Diseases and Pests
3.3. Application Progress in Monitoring Cotton Diseases and Pests
3.4. Application Progress in Monitoring Rice Diseases and Pests
4. Discussion on Methods for Monitoring and Identifying Crop Diseases and Pests
5. Existing Problems and Outlook
5.1. Insufficient Development of UAV-LARS
5.2. Complex Processing of UAV RS Data
5.3. Poor Universality of Disease and Pest Monitoring Models
5.4. Ineffective Results of Disease and Pest Monitoring
Funding
Conflicts of Interest
References
- Carvajal, Y.M.; Cardwell, K.; Nelson, A.; Garrett, K.A.; Giovani, B.; Saunders, D.G.O.; Kamoun, S.; Legg, J.P.; Verdier, V.; Lessel, J. A global surveillance system for crop diseases. Science 2019, 364, 1237–1239. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.H.; Li, Z.H.; Zhu, H.T. The use of UAV remote sensing technology to identify crop stress: A review. J. Geo-Inf. Sci. 2019, 21, 512–523. [Google Scholar] [CrossRef]
- Lin, J.Y. Development status of agricultural UAV and its application in rice production. Fujian Agric. Mach. 2020, 2, 9. [Google Scholar]
- Yan, L.J. Discussion on Mechanization Technology of UAV Plant Protection. Agric. Technol. Equip. 2020, 12, 52–53. [Google Scholar]
- Lan, Y.B.; Chen, S.D.; Deng, J.Z.; Zhou, Z.Y.; Ou, Y.F. Development Situation and Problem Analysis of Plant Protection Unmanned Aerial Vehicle in China. J. South China Agric. Univ. 2019, 40, 217–225. [Google Scholar]
- Chen, H.B.; Lan, Y.B.; Fritz, B.K.; Hoffmann, W.C.; Liu, S.B. Review of Agricultural Spraying Technologies for Plant Protection Using Unmanned Aerial Vehicle (UAV). Int. J. Agric. Biol. Eng. 2021, 14, 38–49. [Google Scholar] [CrossRef]
- Zhang, K.; Zhao, L.; Cui, J.Y.; Mao, P.J.; Yuan, B.H.; Liu, Y.Y. Design and Implementation of Evaluation Method for Spraying Coverage Region of Plant Protection UAV. Agronomy 2023, 13, 1631. [Google Scholar] [CrossRef]
- He, X.K. Research Progress and Developmental Recommendations on Precision Spraying Technology and Equipment in China. Smart Agric. 2020, 2, 133–146. [Google Scholar]
- Zheng, J.Q.; Xun, Y.L. Development and Prospect in Environment-friendly Pesticide Sprayers. Trans. Chin. Soc. Agric. Mach. 2021, 52, 1–16. [Google Scholar]
- Zhou, Z.Y.; Zhang, Y.; Luo, X.W.; Lan, Y.B.; Xue, X.Y. Technology Innovation Development Strategy on Agricultural Aviation Industry for Plant Protection in China. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2013, 29, 1–10, (In Chinese with English Abstract). [Google Scholar]
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A compilation of UAV applications for precision agriculture. Comput. Netw. 2020, 172, 107148. [Google Scholar] [CrossRef]
- Sishodla, R.P.; Ray, R.L.; Singh, S.K. Applications of remote sensing in precision agriculture: A review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Francesconi, S.; Harfouche, A.; Maesano, M.; Balestra, G.M. UAV-Based Thermal, RGB Imaging and Gene Expression Analysis Allowed Detection of Fusarium Head Blight and Gave New Insights into the Physiological Responses to the Disease in Durum Wheat. Front. Plant Sci. 2021, 12, 628575. [Google Scholar]
- McCabe, M.F.; Houborg, R.; Lucieer, A. High-resolution sensing for precision agriculture: From Earth-observing satellites to unmanned aerial vehicles. Remote Sens. Agric. Ecosyst. Hydrol. 2016, 9998, 999811. [Google Scholar]
- Khaliq, A.; Comba, L.; Biglia, A.; Ricauda Aimonino, D.; Chiaberge, M.; Gay, P. Comparison of satellite and UAV-based multispectral imagery for vineyard variability assessment. Remote Sens. 2019, 11, 436. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar]
- Araus, J.L.; Cairns, J.E. Field high-throughput phenotyping: The new crop breeding frontier. Trends Plant Sci. 2014, 19, 52–61. [Google Scholar]
- Zhang, H.D.; Wang, L.Q.; Tian, T.; Yin, J.H. A Review of Unmanned Aerial Vehicle Low-Altitude Remote Sensing (UAV-LARS) Use in Agricultural Monitoring in China. Remote Sens. 2021, 13, 1221. [Google Scholar] [CrossRef]
- Xie, C.Q.; Yang, C. A review on plant high-throughput phenotyping traits using UAV-based sensors. Comput. Electron. Agric. 2020, 178, 105731. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Zhang, J.; Zhang, D.Y.; Zhou, X.G.; Liu, X.H.; Xie, J. Comparison between the Effects of Visible Light and Multispectral Sensor Based on Low-Altitude Remote Sensing Platform in the Evaluation of Rice Sheath Blight. Spectrosc. Spectr. Anal. 2019, 39, 1192–1198. [Google Scholar]
- Zhang, D.Y.; Zhou, X.G.; Zhang, J.; Lan, Y.B.; Xu, C.; Dong, L. Detection of rice sheath blight using an unmanned aerial system with high-resolution color and multispectral imaging. PLoS ONE 2018, 13, e0187470. [Google Scholar] [CrossRef]
- Dehkordi, R.H.; El Jarroudi, M.; Kouadio, L.; Meersmans, J.; Beyer, M. Monitoring Wheat Leaf Rust and Stripe Rust in Winter Wheat Using High-Resolution UAV-Based Red-Green-Blue Imagery. Remote Sens. 2020, 12, 3696. [Google Scholar] [CrossRef]
- Gao, D.M.; Sun, Q.; Hu, B.; Zhang, S. A Framework for Agricultural Pest and Disease Monitoring Based on Internet-of-Things and Unmanned Aerial Vehicles. Sensors 2020, 20, 1487. [Google Scholar] [CrossRef]
- Dong, J.H.; Yang, X.D.; Gao, L.; Wang, B.S.; Wang, L. Information extraction of winter wheat lodging area based on UAV remote sensing image. Heilongjiang Agric. Sci. 2016, 10, 147–152. [Google Scholar]
- Zheng, E.G.; Tian, Y.F.; Chen, T. Region extraction of corn lodging in UAV images based on deep learning. J. Henan Agric. Sci. 2018, 47, 155–160. [Google Scholar]
- Sugiura, R.; Tsuda, S.; Tamiya, S.; Itoh, A.; Nishiwaki, K.; Murakami, N.; Shibuya, Y.; Hirafuji, M.; Nuske, S. Field phenotyping system for the assessment of potato late blight resistance using RGB imagery from an unmanned aerial vehicle. Biosyst. Eng. 2016, 148, 1–10. [Google Scholar] [CrossRef]
- Tetila, E.C.; Machado, B.B.; Belete, N.A.D.; Guimaraes, D.A.; Pistori, H. Identification of soybean foliar diseases using unmanned aerial vehicle images. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2190–2194. [Google Scholar] [CrossRef]
- Liu, Z.; Wan, W.; Huang, J.Y.; Han, Y.W.; Wang, J.Y. Progress on key parameters inversion of crop growth based on unmanned aerial vehicle remote sensing. Trans. Chin. Soc. Agric. Eng. 2018, 34, 60–71. [Google Scholar]
- Messina, G.; Modica, G. Applications of UAV Thermal Imagery in Precision Agriculture: State of the Art and Future Research Outlook. Remote Sens. 2020, 12, 1491. [Google Scholar]
- Gerhards, M.; Schlerf, M.; Rascher, U.; Udelhoven, T.; Juszczak, R.; Alberti, G.; Miglietta, F.; Inoue, Y. Analysis of airborne optical and thermal imagery for detection of water stress symptoms. Remote Sens. 2018, 10, 1139. [Google Scholar] [CrossRef]
- Bian, J.; Zhang, Z.; Chen, J.; Chen, H.; Cui, C.; Li, X.; Chen, S.; Fu, Q. Simplified Evaluation of Cotton Water Stress Using High Resolution Unmanned Aerial Vehicle Thermal Imagery. Remote Sens. 2019, 11, 267. [Google Scholar] [CrossRef]
- Crusiol, L.G.T.; Nanni, M.R.; Furlanetto, R.H.; Sibaldelli, R.N.R.; Cezar, E.; Mertz-Henning, L.M.; Nepomuceno, A.L.; Neumaier, N.; Farias, J.R.B. UAV-based thermal imaging in the assessment of water status of soybean plants. Int. J. Remote Sens. 2020, 41, 3243–3265. [Google Scholar]
- Parisi, E.I.; Suma, M.; Güleç Korumaz, A.; Rosina, E.; Tucci, G. Aerial platforms (uav) surveys in the vis and tir range. Appl. Archaeol. Agric. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 945–952. [Google Scholar]
- Bellvert, J.; Marsal, J.; Girona, J.; Gonzalez-Dugo, V.; Fereres, E.; Ustin, S.L.; Zarco-Tejada, P.J. Airborne thermal imagery to detect the seasonal evolution of crop water status in peach, nectarine and Saturn peach orchards. Remote Sens. 2016, 8, 39. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A review on UAV-based applications for precision agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef]
- Xavier, T.W.F.; Souto, R.N.V.; Statella, T.; Galbieri, R.; Santos, E.S.; Suli, G.S.; Zeilhofer, P. Identification of Ramularia Leaf Blight Cotton Disease Infection Levels by Multispectral, Multiscale UAV Imagery. Drones 2019, 3, 33. [Google Scholar] [CrossRef]
- Liu, T.; Shi, T.Z.; Zhang, H.; Wu, C. Detection of Rise Damage by Leaf Folder (Cnaphalocrocis medinalis) Using Unmanned Aerial Vehicle Based Hyperspectral Data. Sustainability 2020, 12, 9343. [Google Scholar] [CrossRef]
- Maes, W.H.; Steppe, K. Perspectives for Remote Sensing with Unmanned Aerial Vehicles in Precision Agriculture. Trends Plant Sci. 2019, 24, 152–164. [Google Scholar]
- Elarab, M.; Ticlavilca, A.M.; Torres-Rua, A.F.; Maslova, I.; McKee, M. Estimating chlorophyll with thermal and broadband multispectral high resolution imagery from an unmanned aerial system using relevance vector machines for precision agriculture. Int. J. Appl. Earth Obs. Geoinf. 2015, 43, 32–42. [Google Scholar]
- Maimaitijiang, M.; Ghulam, A.; Sidike, P.; Hartling, S.; Maimaitiyiming, M.; Peterson, K.; Shavers, E.; Fishman, J.; Peterson, J.; Kadam, S.; et al. Unmanned aerial system (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine. ISPRS J. Photogramm. Remote Sens. 2017, 134, 43–58. [Google Scholar]
- Zheng, H.B.; Zhou, X.; He, J.Y.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.X.; Tian, Y.C. Early Season Detection of Rice Plants Using RGB, NIR-G-B and Multispectral Images from Unmanned Aerial Vehicle (UAV). Comput. Electron. Agric. 2020, 169, 105223. [Google Scholar] [CrossRef]
- Bohnenkamp, D.; Behmann, J.; Mahlein, A. In-Field Detection of Yellow Rust in Wheat on the Ground Canopy and UAV Scale. Remote Sens. 2019, 11, 2495. [Google Scholar] [CrossRef]
- Zhu, Y.H. Monitoring and Classification of Wheat Take-All in Field Based on UAV Hyperspectral Image. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2018. [Google Scholar]
- Mahlein, A.; Rumpf, T.; Welke, P.; Dehne, H.; Plümer, L.; Steiner, U.; Oerke, E. Development of spectral indices for detecting and identifying plant diseases. Remote Sens. Environ. 2013, 128, 21–30. [Google Scholar] [CrossRef]
- Chen, T.T.; Yang, W.G.; Zhang, H.J.; Zhu, B.Y.; Zeng, R.E.; Wang, X.Y.; Wang, S.B.; Wang, L.D.; Qi, H.X.; Lan, Y.B.; et al. Early detection of bacterial wilt in peanut plants through leaf-level hyperspectral and unmanned aerial vehicle data. Comput. Electron. Agric. 2020, 177, 105708. [Google Scholar] [CrossRef]
- Liang, H.; He, J.; Lei, J.J. Monitoring of Corn Canopy Blight Disease Based on UAV Hyperspectral Method. Spectrosc. Spectr. Anal. 2020, 40, 1965–1972. [Google Scholar]
- Abdulridha, J.; Ampatzidis, Y.; Roberts, P.; Kakarla, S.C. Detecting powdery mildew disease in squash at different stages using UAV-based hyperspectral imaging and artificial intelligence. Biosyst. Eng. 2020, 197, 135–148. [Google Scholar] [CrossRef]
- Yang, L.L.; Wang, Z.P.; Wu, C.C. Research on Large-scale Monitoring of Spider Mite Infestation in Xinjiang Cotton Field Based on Multi-source Data. Spectrosc. Spectr. Anal. 2021, 41, 3949–3956. [Google Scholar]
- Sun, R.L. Research on Remote Sensing Monitoring of Wheat Leaf Rust Based on Ground Hyperspectral and UAV Images. Master’s Thesis, Yangzhou University, Yangzhou, China, 2021. [Google Scholar]
- Yang, Q.; Su, Y.; Jin, S.; Kelly, M.; Hu, T.; Ma, Q.; Li, Y.; Song, S.; Zhang, J.; Xu, G.; et al. The Influence of Vegetation Characteristics on Individual Tree Segmentation Methods with Airborne LiDAR Data. Remote Sens. 2019, 11, 2880. [Google Scholar] [CrossRef]
- Li, P.; Shen, X.; Dai, J.; Cao, L. Comparisons and Accuracy Assessments of LiDAR-Based Tree Segmentation Approaches in Planted Forests. Sci. Silvae Sin. 2018, 54, 127–136. [Google Scholar]
- Liao, L.H.; Cao, L.; Xie, Y.J.; Luo, J.Z.; Wang, G.B. Phenotypic Traits Extraction and Genetic Characteristics Assessment of Eucalyptus Trials Based on UAV-Borne LiDAR and RGB Images. Remote Sens. 2022, 14, 765. [Google Scholar] [CrossRef]
- Camarretta, N.; Harrison, P.A.; Lucieer, A.; Potts, B.M.; Davidson, N.; Hunt, M. From Drones to Phenotype: Using UAV-LiDAR to Detect Species and Provenance Variation in Tree Productivity and Structure. Remote Sens. 2020, 12, 3184. [Google Scholar] [CrossRef]
- Walter, J.D.C.; Edwards, J.; McDonald, G.; Kuchel, H. Estimating Biomass and Canopy Height with LiDAR for Field Crop Breeding. Front. Plant Sci. 2019, 10, 1145. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S.; Kuska, M.T.; Bohnenkamp, D.; Brugger, A.; Alisaac, E.; Wahabzada, M.; Behmann, J.; Mahlein, A.K. Benefits of hyperspectral imaging for plant disease detection and plant protection: A technical perspective. J. Plant Dis. Protect. 2018, 125, 5–20. [Google Scholar]
- Vanegas, F.; Bratanov, D.; Powell, K.; Weiss, J.; Gonzalez, F. A Novel Methodology for Improving Plant Pest Surveillance in Vineyards and Crops Using UAV-Based Hyperspectral and Spatial Data. Sensors 2018, 18, 260. [Google Scholar] [CrossRef] [PubMed]
- Raza, S.E.; Prince, G.; Clarkson, J.P.; Rajpoot, N.M. Automatic Detection of Diseased Tomato Plants Using Thermal and Stereo Visible Light Images. PLoS ONE 2015, 10, e0123262. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Liu, X.; Liu, L.; Guan, L. Evaluating the Performance of the SCOPE Model in Simulating Canopy Solar-induced Chlorophyll Fluorescence. Remote Sens. 2018, 10, 250. [Google Scholar] [CrossRef]
- Han, Y.; Tarakey, B.A.; Hong, S.J.; Kim, S.Y.; Kim, E.; Lee, C.H.; Kim, G. Calibration and Image Processing of Aerial Thermal Image for UAV Application in Crop Water Stress Estimation. J. Sens. 2021, 2021, 14. [Google Scholar] [CrossRef]
- Liu, T.; Li, R.; Zhong, X.C.; Jiang, M.; Jin, X.L.; Zhou, P.; Liu, S.P.; Sun, C.M.; Guo, W.S. Estimates of Rice Lodging Using Indices Derived from UAV Visible and Thermal Infrared Images. Agric. For. Meteorol. 2018, 252, 144–154. [Google Scholar] [CrossRef]
- Sagan, V.; Maimaitijiang, M.; Sidike, P.; Eblimit, K.; Peterson, K.T.; Hartling, S.; Esposito, F.; Khanal, K.; Newcomb, M.; Pauli, D.; et al. UAV-Based High Resolution Thermal Imaging for Vegetation Monitoring, and Plant Phenotyping Using ICI 8640 P, FLIR Vue Pro R 640, and thermoMap Cameras. Remote Sens. 2019, 11, 330. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, W.J.; Gonzalez-Moreno, P.; Luke, B.; Dong, Y.Y.; Zheng, Q.; Ma, H.Q.; Liu, L.Y. Wavelet-based rust spectral feature set (WRSFs): A novel spectral feature set based on continuous wavelet transformation for tracking progressive host-pathogen interaction of yellow rust on wheat. Remote Sens. 2018, 10, 525. [Google Scholar] [CrossRef]
- Calderon, R.; Navas-Cortes, J.A.; Lucena, C.; Zarco-Tejada, P.J. High-resolution Airborne Hyperspectral and Thermal Imagery for Early, Detection of Verticillium Wilt of Olive Using Fluorescence, Temperature and Narrow-band Spectral Indices. Remote Sens. Environ. 2013, 139, 231–245. [Google Scholar] [CrossRef]
- Calderon, R.; Montes-Borrego, M.; Landa, B.B.; Navas-Cortes, J.A.; Zarco-Tejada, P.J. Detection of Downy Mildew of Opium Poppy Using High-resolution Multi-spectral and Thermal Imagery Acquired with an Unmanned Aerial Vehicle. Precis. Agric. 2014, 15, 639–661. [Google Scholar] [CrossRef]
- Chen, X.X. Detection of Sclerotinia Stem Rot of Oilseed Rape by Using Image-Based Low-Altitude Remote Sensing Technology. Master’s Thesis, Zhejiang University, Hangzhou, China, 2017. [Google Scholar]
- Cao, F.; Liu, F.; Guo, H.; Kong, W.W.; Zhang, C.; He, Y. Fast Detection of Sclerotinia sclerotiorum on Oilseed Rape Leaves Using Low-Altitude Remote Sensing Technology. Sensors 2018, 18, 4464. [Google Scholar] [CrossRef] [PubMed]
- Dang, L.M.; Wang, H.X.; Li, Y.F.; Min, K.; Kwak, J.T.; Lee, O.N.; Park, H.; Moon, H. Fusarium wilt of Radish Detection Using RGB and near Infrared Images from Unmanned Aerial Vehicles. Remote Sens. 2020, 12, 2863. [Google Scholar] [CrossRef]
- Dammer, K.H.; Garz, A.; Hobart, M.; Schirrmann, M. Combined UAV-and Tractor-based Stripe Rust Monitoring in Winter Wheat under Field Conditions. Agron. J. 2022, 114, 651–661. [Google Scholar] [CrossRef]
- Yang, C.; Yan, G.; Du, S.M.; Li, X.D. Application Review of Unmanned Aerial Vehicle Remote Sensing Technology Wheat Production. Henan Sci. 2021, 39, 1598–1602. [Google Scholar]
- Yang, G.F.; He, Y.; Feng, X.P.; Li, X.Y.; Zhang, J.N.; Yu, Z.Y. Methods and New Research Progress of Remote Sensing Monitoring of Crop Disease and Pest Stress Using Unmanned Aerial Vehicle. Smart Agric. 2022, 4, 1–16. [Google Scholar]
- Shi, Y.; Huang, W.J.; Luo, J.H.; Huang, L.S.; Zhou, X.F. Detection and Discrimination of Pests and Diseases in Winter Wheat Based on Spectral Indices and Kernel Discriminant Analysis. Comput. Electron. Agric. 2017, 141, 171–180. [Google Scholar] [CrossRef]
- Xie, Y.P.; Chen, F.N.; Zhang, J.C.; Zhou, B.; Wang, H.J.; Wu, K.H. Study on Monitoring of Common Diseases of Crops Based on Hyperspectral Technology. Spectrosc. Spectr. Anal. 2018, 38, 2233–2240. [Google Scholar]
- Zhang, J.C.; Huang, Y.B.; Pu, R.L.; Gonzalez-Moreno, P.; Yuan, L.; Wu, K.; Huang, W. Monitoring plant diseases and pests through Remote Sensing technology: A review. Comput. Electron. Agric. 2019, 165, 104943. [Google Scholar] [CrossRef]
- Li, Z.X. Design and Implementation of Monitoring System for wheat Take-All Disease Based on UAV Remote. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2016. [Google Scholar]
- Liu, W.; Yang, G.Q.; Xu, F.; Qiao, H.B.; Fan, J.R.; Song, Y.L. Comparisons of Detection of Wheat stripe Rust Using Hyper-spectrometer and UAV Aerial Photography. Acta Phytopathol. Sin. 2018, 48, 223–227. [Google Scholar] [CrossRef]
- Fu, W. Research of Wheat Take-all-disease Based on UAV Remote Sensing Monitoring. Master’s Thesis, Henan Agricultural University, Zhengzhou, China, 2015. [Google Scholar]
- Bhandari, M.; Ibrahim, A.M.H.; Xue, Q.W.; Jung, J.H.; Chang, A.J.; Rudd, J.C.; Maeda, M.; Rajan, N.; Neely, H.; Landivar, J. Assessing winter wheat foliage disease severity using aerial imagery acquired from small Unmanned Aerial Vehicle (UAV). Comput. Electron. Agric. 2020, 176, 105665. [Google Scholar] [CrossRef]
- Guo, W.; Zhu, Y.H.; Wang, H.F.; Zhang, J.; Dong, P.; Qiao, H.B. Monitoring Model of Winter Wheat Take-all Based on UAV Hyperspectral Imaging. Trans. Chin. Soc. Agric. Mach. 2019, 50, 162–169. [Google Scholar]
- Khan, I.H.; Liu, H.Y.; Li, W.; Cao, A.Z.; Wang, X.; Liu, H.Y.; Cheng, T.; Tian, Y.C.; Zhu, Y.; Cao, W.X.; et al. Early Detection of Powdery Mildew Disease and Accurate Quantification of Its Severity Using Hyperspectral Images in Wheat. Remote Sens. 2021, 13, 3612. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef]
- Gewali, U.B.; Monteiro, S.T.; Saber, E. Machine learning based hyperspectral image analysis: A survey. arXiv 2018, arXiv:1802.08701. [Google Scholar]
- Guo, A.T.; Huang, W.J.; Dong, Y.Y.; Ye, H.C.; Ma, H.Q.; Liu, B.; Wu, W.B.; Ren, Y.; Ruan, C.; Geng, Y. Wheat Yellow Rust Detection Using UAV-Based Hyperspectral Technology. Remote Sens. 2021, 13, 123. [Google Scholar] [CrossRef]
- Xiao, Y.X.; Dong, Y.Y.; Huang, W.J.; Liu, L.Y.; Ma, H.Q. Wheat Fusarium Head Blight Detection Using UAV-Based Spectral and Texture Features in Optimal Window Size. Remote Sens. 2021, 13, 2437. [Google Scholar] [CrossRef]
- Su, B.F.; Liu, Y.L.; Huang, Y.C.; Wei, R.; Cao, X.F.; Han, D.J. Analysis for Stripe Rust Dynamics in Wheat Population Using UAV Remote Sensing. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2021, 37, 127–135. [Google Scholar]
- Su, J.Y.; Liu, C.J.; Coombes, M.; Hu, X.P.; Wang, C.H.; Xu, X.M.; Li, Q.D.; Guo, L.; Chen, W.H. Wheat Yellow Rust Monitoring by Learning from Multispectral UAV Aerial Imagery. Comput. Electron. Agric. 2018, 155, 157–166. [Google Scholar] [CrossRef]
- Su, J.Y.; Liu, C.J.; Hu, X.P.; Xu, X.M.; Guo, L.; Chen, W.H. Spatio-temporal monitoring of wheat yellow rust using UAV multispectral imagery. Comput. Electron. Agric. 2019, 167, 105035. [Google Scholar] [CrossRef]
- Hu, Y.G. Monitoring of Wheat Scab Based on Multi-Source Remote Sensing Data. Master’s Thesis, Anhui University, Hefei, China, 2021. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, W.J.; Zhou, X.F. Evaluation of Wavelet Spectral Features in Pathological Detection and Discrimination of Yellow Rust and Powdery Mildew in Winter Wheat with Hyperspectral Reflectance Data. J. Appl. Remote Sens. 2017, 11, 026025. [Google Scholar] [CrossRef]
- Liang, D.; Yang, Q.Y.; Huang, W.J.; Peng, D.L.; Zhao, J.L.; Huang, L.S.; Zhang, D.Y.; Song, X.Y. Estimation of Leaf Area Index Based on Wavelet Transform and Support Vector Machine Regression in Winter Wheat. Infrared Laser Eng. 2015, 44, 335–340. [Google Scholar]
- Ma, H.Q.; Huang, W.J.; Dong, Y.Y.; Liu, L.Y.; Guo, A.T. Using UAV-Based Hyperspectral Imagery to Detect Winter Wheat Fusarium Head Blight. Remote Sens. 2021, 13, 3024. [Google Scholar] [CrossRef]
- Zhu, N.Y.; Liu, X.; Liu, Z.Q.; Hu, K.; Wang, Y.K.; Tan, J.L.; Huang, M.; Zhu, Q.B.; Ji, X.S.; Jiang, Y.N.; et al. Deep Learning for Smart Agriculture: Concepts, Tools, Applications, and Opportunities. Int. J. Agric. Biol. Eng. 2018, 11, 32–44. [Google Scholar] [CrossRef]
- Lv, S.P.; Li, D.H.; Xian, R.H. Research Status of Deep Learning in Agriculture of China. Comput. Eng. Appl. 2019, 55, 24–33. [Google Scholar]
- Paoletti, M.E.; Haut, J.M.; Plaza, J.; Plaza, A. Deep Learning Classifiers for Hyperspectral Imaging: A Review. ISPRS J. Photogramm. Remote Sens. 2019, 158, 279–317. [Google Scholar] [CrossRef]
- Ma, L.; Liu, Y.; Zhang, X.L.; Ye, Y.X.; Yin, G.F.; Johnson, B.A. Deep learning in Remote Sensing applications: A Meta-analysis and Review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [Google Scholar] [CrossRef]
- Zhang, T.X.; Xu, Z.Y.; Su, J.Y.; Yang, Z.F.; Liu, C.J.; Chen, W.H.; Li, J.Y. Ir-UNet: Irregular Segmentation U-Shape Network for Wheat Yellow Rust Detection by UAV Multispectral Imagery. Remote Sens. 2021, 13, 3892. [Google Scholar] [CrossRef]
- Zhang, T.X.; Yang, Z.F.; Xu, Z.Y.; Li, J.Y. Wheat Yellow Rust Severity Detection by Efficient DF-UNet and UAV Multispectral Imagery. IEEE Sens. J. 2022, 22, 9057–9068. [Google Scholar] [CrossRef]
- Huang, H.S.; Deng, J.Z.; Lan, Y.B.; Yang, A.Q.; Zhang, L.; Wen, S.; Zhang, H.H.; Zhang, Y.L.; Deng, Y.S. Detection of Helminthosporium Leaf Blotch Disease Based on UAV Imagery. Appl. Sci. 2019, 9, 558. [Google Scholar] [CrossRef]
- Liu, L.Y.; Dong, Y.Y.; Huang, W.J.; Du, X.P.; Ma, H.Q. Monitoring Wheat Fusarium Head Blight Using Unmanned Aerial Vehicle Hyperspectral Imagery. Remote Sens. 2020, 12, 3811. [Google Scholar] [CrossRef]
- Cao, Z.; Wang, G.B. Research Progress of the Application of Unmanned Aerial Vehicle in Cotton Fieldmanagement. China South. Agric. Mach. 2021, 52, 83–84. [Google Scholar]
- Wang, T.Y.; Thomasson, J.A.; Yang, C.H.; Isakeit, T.; Nichols, R.L. Automatic Classification of Cotton Root Rot Disease Based on UAV Remote Sensing. Remote Sens. 2020, 12, 1310. [Google Scholar] [CrossRef]
- Huang, H.S.; Deng, J.Z.; Lan, Y.B.; Yang, A.; Deng, X.L.; Zhang, L.; Wen, S.; Jiang, Y.; Suo, G.Y.; Chen, P.C. A two-stage Classification Approach for the Detection of Spider Mite-infested Cotton Using UAV Multispectral Imagery. Remote Sens. Lett. 2018, 9, 933–941. [Google Scholar] [CrossRef]
- Guo, W.; Qiao, H.B.; Zhao, H.Q.; Zhang, J.J.; Pei, P.C.; Liu, Z.L. Cotton Aphid Damage Monitoring Using UAV Hyperspectral Data Based on Derivative of Ratio Spectroscopy. Spectrosc. Spectr. Anal. 2021, 41, 1543–1550. [Google Scholar]
- Song, Y. Identification of Verticillium Wilt in Cotton and Estimation of Yield Loss Based on UAV Multi-spectral Remote Sensing. Master’s Thesis, Shihezi University, Shihezi, China, 2021. [Google Scholar]
- Cui, M.N.; Dai, J.G.; Wang, S.H.; Zhang, G.S.; Xue, J.L. Research on ldentification Method of Mite Infection Cotton Based on of UAV Multi-spectral Image. Xinjiang Agric. Sci. 2018, 55, 1457–1466. [Google Scholar]
- Wang, T.; Thomasson, J.A.; Isakeit, T.; Yang, C.H.; Nichols, R.L. A Plant-by-Plant Method to Identify and Treat Cotton Root Rot Based on UAV Remote Sensing. Remote Sens. 2020, 12, 2453. [Google Scholar] [CrossRef]
- Wang, T.Y.; Thomasson, J.A.; Yang, C.H.; Isakeit, T.; Nichols, R.L.; Collett, R.M.; Han, X.Z.; Bagnall, C. Unmanned aerial vehicle Remote Sensing to delineate cotton root rot. J. Appl. Remote Sens. 2020, 14, 034522. [Google Scholar] [CrossRef]
- Dilixiti, Y.M.M.; Zhou, J.P.; Xu, Y.; Fan, X.P.; Yalikun, S.W.T. Cotton Pest Monitoring Based on Logistic Algorithm and Remote Sensing Image. J. South China Agric. Univ. 2022, 43, 87–95. [Google Scholar]
- Ding, Y.; Zhang, Y.; Wang, A.F.; Meng, M.; Shen, H. Monitoring of Bacterial Streak Disease in Rice Based on UAV Hyperspectral Method. Geomat. Spat. Inf. Technol. 2022, 45, 44–47. [Google Scholar]
- Lee, K.D.; Kim, S.M.; An, H.Y. ChanWon, P.; Hong, S.Y.; So, K.H.; SangIl, N. Yearly Estimation of Rice Growth and Bacterial Leaf Blight Inoculation Effect Using UAV Imagery. J. Korean Soc. Agric. Eng. 2020, 62, 75–86. [Google Scholar]
- Wang, Z.; Chu, G.K.; Zhang, H.J.; Liu, S.X.; Huang, X.C.; Gao, F.R.; Zhang, C.Q.; Wang, J.X. Identification of Diseased Empty Rice Panicles Based on Haar-like Feature of UAV Optical Image. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2018, 34, 73–82. [Google Scholar]
- Shen, M.; Yu, X. Research and Implementation of Unmanned Aerial Vehicle Search for Crop Diseasesbased on Machine Vision: Taking Rice Sheath Blight as an Example. Wirel. Internet Technol. 2019, 16, 112–114. [Google Scholar]
- Wei, L.L.; Luo, Y.S.; Xu, L.Z.; Zhang, Q.; Cai, Q.B.; Shen, M.J. Deep Convolutional Neural Network for Rice Density Prescription Map at Ripening Stage Using Unmanned Aerial Vehicle-Based Remotely Sensed Images. Remote Sens. 2022, 14, 46. [Google Scholar] [CrossRef]
- Harshadkumar, B.P.; Jitesh, P.S.; Vipul, K.D. Detection and Classification of Rice Plant Diseases. Intell. Decis. Technol. 2018, 11, 357–373. [Google Scholar]
- Rahman, C.R.; Arko, P.S.; Ali, M.E.; Khan, M.A.I.; Apon, S.H.; Nowrin, F.; Abu, W. Identification and recognition of rice diseases and pests using convolutional neural networks. Biosyst. Eng. 2020, 194, 112–120. [Google Scholar] [CrossRef]
- Stroppiana, D.; Villa, P.; Sona, G.; Ronchetti, G.; Candiani, G.; Pepe, M.; Busetto, L.; Migliazzi, M.; Boschetti, M. Early season weed mapping in rice crops using multi-spectral UAV data. Int. J. Remote Sens. 2018, 39, 5432–5452. [Google Scholar] [CrossRef]
- Huang, H.S.; Deng, J.Z.; Lan, Y.B.; Yang, A.Q.; Deng, X.L.; Wen, S.; Zhang, H.H.; Zhang, Y.L. Accurate Weed Mapping and Prescription Map Generation Based on Fully Convolutional Networks Using UAV Imagery. Sensors 2018, 18, 3299. [Google Scholar] [CrossRef]
- Lan, Y.B.; Huang, K.H.; Yang, C.; Lei, L.C.; Ye, J.H.; Zhang, J.L.; Zeng, W.; Zhang, Y.L.; Deng, J.Z. Real-Time Identification of Rice Weeds by UAV Low-Altitude Remote Sensing Based on Improved Semantic Segmentation Model. Remote Sens. 2021, 13, 4370. [Google Scholar] [CrossRef]
- Yang, Y. The Key Diagnosis Technology of Rice Blast Based on Hyperspectral Image. Ph.D. Thesis, Zhejiang University, Hangzhou, China, 2012. [Google Scholar]
- Verma, T.; Dubey, S. Impact of Color Spaces and Feature Sets in Automated Plant Diseases Classifier: A Comprehensive Review Based on Rice Plant Images. Arch. Comput. Methods Eng. 2020, 27, 1611–1632. [Google Scholar] [CrossRef]
- Liu, L.Y. Research on the Methods of Wheat Fusarium Head Blight and Powderymildew Monitoring Using Remote Sensing Technologv at Different Scales. Ph.D. Thesis, University of the Chinese Academy of Sciences, Beijing, China, 2020. [Google Scholar] [CrossRef]
- Ma, H.Q. Dynamic Monitoring of Major Wheat Diseases Based on Multi-source and Multitemporal Remote Sensing Analysis. Ph.D. Thesis, Nanjing University of Information Engineering, Nanjing, China, 2020. [Google Scholar] [CrossRef]
- Zhang, J.C.; Pu, R.L.; Lin, Y.; Huang, W.J.; Nie, C.W.; Yang, G.J. Integrating Remotely Sensed and Meteorological Observations to Forecast Wheat PowderyMildew at a Regional Scale. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 7, 4328–4339. [Google Scholar] [CrossRef]
- Lin, Y.B.; Bao, Z.Y.; Zhang, H.B.; Zhang, Y.T.; Liang, X. Habitat monitoring to evaluate crop disease and pest distributions based on multisource satellite remote sensing imagery. Optic 2017, 145, 66–73. [Google Scholar]
- Lan, Y.; Deng, X.; Zeng, G. Advances in diagnosis of crop diseases, pests and weeds by UAV remote sensing. Smart Agric. 2019, 1, 1–19. [Google Scholar]
- Yao, H.; Qin, R.; Chen, X. Unmanned aerial vehicle for remote sensing applications—A review. Remote Sens. 2019, 11, 1443. [Google Scholar] [CrossRef]
- Awais, M.; Li, W.; Cheema, M.J.M.; Hussain, S.; AlGarni, T.S.; Liu, C.C.; Ali, A. Remotely sensed identification of canopy characteristics using UAV-based imagery under unstable environmental conditions. Environ. Technol. Innov. 2021, 22, 101465. [Google Scholar] [CrossRef]
- Rubio, H.J.; Gupta, A.; Ong, Y.S. Data-driven risk Assessment and Multicriteria Optimization of UAV Operations. Aerosp. Sci. Technol. 2018, 77, 510–523. [Google Scholar] [CrossRef]
- Wang, C.W.; Chen, Y.C.; Xiao, Z.P.; Zeng, X.M.; Tang, S.H.; Lin, F.; Zhang, L.X.; Meng, X.L.; Liu, S.Q. Cotton Blight Identification with Ground Framed Canopy Photo-assisted Multispectral UAV Images. Agronomy 2023, 13, 1222. [Google Scholar] [CrossRef]
Types of Coercion | UAV-LARS System | Sensitive Features | Optimal Algorithm | GSD/cm | References |
---|---|---|---|---|---|
WLR | DJI Inspire 1 DJI Inspire 2 DJI Phantom 4 Pro | Bands: Red CIs: VEG, VARI, MGRVI, NDRDI, GLI, GI, NDI, NDVI | BPNN, LR | <1 | [22,49,77] |
take-all | UVA + CCD digital camera AZUP-T8 + UHD 185 | CIs: DSI, RSI, NDSI TFs: First and Second Moment of HSV | LR, SVM, RBF, PLSR | ≤1 | [76,78] |
WSR | M100 + The RedEdge camera S1000 + The RedEdge camera UVA + UHD185 | Bands: Red, NIR, Red-edge CIs: SIPI, PRI, PSRI, MSR, DVIRE, GVI, NDVI, RVI, NIDVI, OSAVI TFs: VAR2, CON2, … | LR, PLSR, RF, SVM, UNet | 1~2.5 | [75,82,84,85,95] |
FHB | M600 + Cubero S185 Firefly SE + The RedEdge camera S1000 + UHD185 | Bands: 478 nm, 650 nm, 702 nm, … CIs: PSRI, ARI, NRI, MCARI, PRI, PhRI, PSRI, RVSI TFs: Mean, Variance, Homogeneity, … | LR, SVM, RF, ETC, BPNN | 4 | [83,87,90,98] |
Types of Coercion | UAV-LARS System | Sensitive Features | Optimal Algorithm | GSD/cm | References |
---|---|---|---|---|---|
HLB, RLB, VM | DJI Phantom 4 The MK Okto XL UAV + The TetraCam ADC camera | Bands: R550, R656, R800 CIs: NGRDI, NGBDI, ExG, ExR, ExGR, GLI, DVI, … TFs: Color histogram, LBPH Others: DCnor values | Logistic regression, RF, SVM, CNN, Multiple LR | 3.4~25 | [36,97,103] |
CRR | The Lancaster UAV + The 1J3 camera The Tuffwing Mapper UAV + The RedEdge camera DJI M100 + The RedEdge camera | Bands: Green, Red, NIR | Logistic regression, KMSVM, KMSEG, Maximum likelihood | 2.5~7.64 | [100,105,106] |
Pest stress | DJI M100 + The ADC-Lite camera DJI S1000 + The Micro MCA12 Snap camera DJI M600 + The RedEdge camera AZUP-T8 + UHD 185 | Bands: NIR, Red, Green, R514, R566, R698 CIs: NDVI, EVI, GNDVI, DVI, RGI, ACI, MACI, GRVI, TVI, RDVI, SAVI TFs: LBPH Others: DR514, DR566, DR698, | Logistic regression, SVM, CNN, Transferred AlexNet, Simple LR, PLSR, | 1~4 | [101,102,104,107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Zhang, Y.; Lan, Y.; Deng, J.; Zhang, Q.; Zhang, Z.; Li, Z.; Liu, L.; Huang, X.; Ma, J. Application Progress of UAV-LARS in Identification of Crop Diseases and Pests. Agronomy 2023, 13, 2232. https://doi.org/10.3390/agronomy13092232
Zhao G, Zhang Y, Lan Y, Deng J, Zhang Q, Zhang Z, Li Z, Liu L, Huang X, Ma J. Application Progress of UAV-LARS in Identification of Crop Diseases and Pests. Agronomy. 2023; 13(9):2232. https://doi.org/10.3390/agronomy13092232
Chicago/Turabian StyleZhao, Gaoyuan, Yali Zhang, Yubin Lan, Jizhong Deng, Qiangzhi Zhang, Zichao Zhang, Zhiyong Li, Lihan Liu, Xu Huang, and Junjie Ma. 2023. "Application Progress of UAV-LARS in Identification of Crop Diseases and Pests" Agronomy 13, no. 9: 2232. https://doi.org/10.3390/agronomy13092232
APA StyleZhao, G., Zhang, Y., Lan, Y., Deng, J., Zhang, Q., Zhang, Z., Li, Z., Liu, L., Huang, X., & Ma, J. (2023). Application Progress of UAV-LARS in Identification of Crop Diseases and Pests. Agronomy, 13(9), 2232. https://doi.org/10.3390/agronomy13092232