Selection of Agronomic Parameters and Construction of Prediction Models for Oleic Acid Contents in Rapeseed Using Hyperspectral Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Data Collection
2.2.1. Leaf Spectral Reflectance
2.2.2. Agronomic Parameters
2.3. Data Processing
2.3.1. Spectra Pretreatment
2.3.2. Association Analysis
2.3.3. Model Construction and Accuracy Evaluation
3. Results
3.1. Statistical Characteristics of Agronomic Parameters and Oleic Acid Content in Grains
3.2. Reflectance Spectral Characteristics of Leaves of Materials with Different Oleic Acid Contents
3.3. Correlation Analysis between Agronomic Parameters and Oleic Acid Content in Rapeseed
3.4. Correlation Analysis between Spectral Reflectance and Oleic Acid Content in Leaves
3.5. Construction and Verification of the Oleic Acid Content in Rapeseed Prediction Model Based on the Oleic Acid Content in Leaves
3.6. Construction and Verification of the Oleic Acid Content in the Leaf Estimation Model Based on Spectral Characteristic Bands
3.6.1. Sample Division
3.6.2. Independent Model
3.6.3. Blending Model
3.7. Construction and Verification of the Prediction Model Based on “Spectral Characteristic Band—Leaf Oleic Acid Content—Oleic Acid Content in Rapeseed”
4. Discussion
4.1. Oleic Acid Content in Leaves Can Be Used as a Sensitive Parameter for Spectral Prediction of Oleic Acid Content in Rapeseed
4.2. Mechanism of Spectral Response of Leaves of Materials with Different Oleic Acid Contents
4.3. The Effect of the Indirect Prediction Model Is Slightly Worse Than that of the Direct Estimation Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, J.; Xu, B.; Feng, H.K.; Jing, X.; Wang, J.J.; Ming, S.K.; Fu, Y.Q.; Song, X.Y. Monitoring nitrogen nutrition and grain protein content of rice based on ensemble learning. Spectrosc. Spectr. Anal. 2022, 42, 1956–1964. [Google Scholar] [CrossRef]
- Sun, J.F.; Wang, G.X.; Zhang, H.; Xia, L.M.; Zhao, W.P.; Guo, Y.M.; Sun, X. Detection of fat content in peanut kernels based on chemometrics and hyperspectral imaging technology. Infrared Phys. Technol. 2020, 105, 103226. [Google Scholar] [CrossRef]
- Li, S.M.; Wang, N.M.; Zhang, M.; Liu, C.; Wang, R. Establishment of near infrared analytic model for major fatty acids content of Brassica napus L. Guangdong Agric. Sci. 2014, 41, 16–21. [Google Scholar] [CrossRef]
- Wu, J.G.; Shi, C.H.; Zhang, H.Z. Study on developing calibration models of fat acid composition in intact rapeseed by near infrared reflectance spectroscopy. Spectrosc. Spectr. Anal. 2006, 26, 259–262. [Google Scholar] [CrossRef]
- Gao, J.Q.; Zhang, J.F.; Pu, H.M.; Qi, C.K.; Fu, S.Z. Analysis of oil, oleic acid and erucic acid contents in rapeseed by near infrared reflectance spectroscopy (NIRS). Jiangsu J. Agric. Sci. 2007, 23, 189–195. [Google Scholar] [CrossRef]
- Velasco, L.; Möllers, C.; Becker, H.C. Estimation of seed weight, oil content and fatty acid composition in intact single seeds of rapeseed (Brassica napus L.) by near-infrared reflectance spectroscopy. Euphytica 1999, 106, 79–85. [Google Scholar] [CrossRef]
- Li, J.G.; Xue, X.M.; Zhang, Z.H.; Wang, Z.H.; Yan, L.Y.; Chen, Y.N.; Wang, L.Y.; Kang, Y.P.; Huai, D.X.; Jiang, H.F.; et al. Establishment and applicant of near-infrared reflectance spectroscopy models for predicting main fatty acid contents of single seed in peanut. Acta Agron. Sin. 2019, 45, 1891–1898. [Google Scholar]
- Cantarelli, M.A.; Funes, I.G.; Marchevsky, E.J.; Camiña, J.M. Determination of oleic acid in sunflower seeds by infrared spectroscopy and multivariate calibration method. Talanta 2009, 80, 489–492. [Google Scholar] [CrossRef]
- Jiang, P.; Luo, Y.H.; Hu, W.W.; Liao, D.J. Research on optimal predicting model for the detection of internal quality by hyperspectral technology. J. Agric. Mech. Res. 2015, 37, 56–60. [Google Scholar] [CrossRef]
- Weinstock, B.A.; Janni, J.; Hagen, L.; Wright, S. Prediction of oil and oleic acid concentrations in individual corn (Zea mays L.) kernels using near-infrared reflectance hyperspectral imaging and multivariate analysis. Appl. Spectrosc. 2006, 60, 9–16. [Google Scholar] [CrossRef]
- Parsaeiana, M.; Shahabib, M.; Hassanpourc, H. The integration of image processing and artificial neural network to estimate four fatty acid contents of sesame oil. LWT 2020, 129, 109476. [Google Scholar] [CrossRef]
- Jin, Y.H.; Shi, N.; Wen, S.Y.; Chen, C.Y.; Lu, J.W.; Gao, Z.Q. Building hyperspectral model of oleic acid content in rapeseed of vegetable and oil type Brassica napus. J. South Agric. 2021, 52, 1674–1682. [Google Scholar] [CrossRef]
- Wang, Z.J.; Wang, J.H.; Liu, L.Y.; Huang, W.J.; Zhao, C.J.; Wang, C.Z. Prediction of grain protein content in winter wheat (Triticum aestivum L.) using plant pigment ratio (PPR). Field Crop. Res. 2004, 90, 311–321. [Google Scholar] [CrossRef]
- Xue, L.H.; Cao, W.X.; Yang, L.Z. Predicting grain yield and protein content in winter wheat at different N supply levels using canopy reflectance spectra. Pedosphere 2007, 17, 646–653. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, W.J.; Yang, K.M.; Tian, L.; Cui, L.; Yang, G.J.; Li, H.L. Estimation of leaf nitrogen and grain protein content by hyperspectral vegetation index in winter wheat. Sens. Lett. 2013, 11, 1115–1120. [Google Scholar] [CrossRef]
- Huang, W.J.; Wang, J.H.; Liu, L.Y.; Wang, Z.J.; Tan, C.W.; Song, X.Y.; Wang, J.D. Study on grain quality forecasting method and indicators by using hyperspectral data in wheat. Proc. SPIE 2005, 5655, 291–300. [Google Scholar] [CrossRef]
- Schierholt, A.; Becker, H.C. Influence of Oleic Acid Content on Yield in Winter Oilseed Rape. Crop Sci. 2011, 51, 1973–1979. [Google Scholar] [CrossRef]
- Gao, J.Q.; Pu, H.M.; Long, W.H.; Hu, M.L.; Qi, C.K. Dynamics of oleic acid contents in organs of high-oleic rapeseed lines. Chin. J. Oil Crop Sci. 2012, 34, 359–365. [Google Scholar]
- Miller, J.F.; Zimmerman, D.C.; Vick, B.A. Genetic Control of High Oleic Acid Content in Sunflower Oil1. Crop Sci. 1987, 27, 923–926. [Google Scholar] [CrossRef]
- Kinney, A.J.; Knowlton, S. Designer Oils: The High Oleic Acid Soybean. Genetic Modification in the Food Industry. In Genetic Modification in the Food Industry; Roller, S., Harlander, S., Eds.; Blackie: London, UK, 1998; pp. 193–213. [Google Scholar] [CrossRef]
- Villena, J.F.; Domínguez, E.; Stewart, D.; Heredia, A. Characterization and Biosynthesis of Non-Degradable Polymers in Plant Cuticles. Planta. 1999, 208, 181–187. Available online: http://www.jstor.org/stable/23385547 (accessed on 9 May 2023). [CrossRef]
- Wang, J.Q.; Chen, W.; Zeng, L.Q.; He, J.M.; Dong, Y.S.; Cun, S.X.; Li, G.Z. Effects of Δ12-Fatty Acid Desaturase Gene (fad2) Mutation on Epidermal Construct and Permeability of Brassica napus Leaf. J. Plant Physiol. Mol. Biol. 2003, 3, 192–198. [Google Scholar] [CrossRef]
Data Set | rmax | Wavelength of rmax | rmin | Wavelength of rmin | Number of Wavelength with p-Value < 0.05 | Number of Wavelength with p-Value < 0.01 |
---|---|---|---|---|---|---|
Original spectrum | 0.78 | 401 nm | −0.38 | 822 nm | 67 | 348 |
SG | 0.78 | 401 nm | −0.38 | 823 nm | 65 | 348 |
SNV | 0.94 | 996 nm | 0.02 | 668 nm | 13 | 560 |
MSC | 0.75 | 401 nm | −0.77 | 638 nm | 62 | 383 |
FD | 0.77 | 952 nm | −0.67 | 500 nm | 99 | 252 |
WT | 0.77 | 401 nm | −0.38 | 815 nm | 76 | 346 |
Sample Set | n | Max. | Min. | Mean | SD | CV |
---|---|---|---|---|---|---|
Training set | 46 | 87.52 | 80.94 | 84.38 | 1.18 | 1.39 |
Testing set | 24 | 86.61 | 82.02 | 84.70 | 1.13 | 1.34 |
Sample Set | n | Max. | Min. | Mean | SD | CV |
Training set | 52 | 6.59 | 3.41 | 5.11 | 0.72 | 14.0 |
Testing set | 18 | 5.72 | 4.43 | 4.98 | 0.43 | 8.64 |
Algorithm | Hyperparameters |
---|---|
MLR | Normalize = zscore, polynomial_degree = 3 |
RF | n_estimators = 100, max_features = 4, max_depth = 3 |
SVR | Kernel = rbf, C = 9.251, γ = scale |
KNN | K = 5, weights = uniform, leaf_size = 30, p = 2, metric = minkowski |
RR | k = 0.001 |
CatBoost | n_estimators = 1000, learning_rate = 0.024, max_depth = 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Tian, R.; Wen, S.; Guan, C. Selection of Agronomic Parameters and Construction of Prediction Models for Oleic Acid Contents in Rapeseed Using Hyperspectral Data. Agronomy 2023, 13, 2233. https://doi.org/10.3390/agronomy13092233
Lu J, Tian R, Wen S, Guan C. Selection of Agronomic Parameters and Construction of Prediction Models for Oleic Acid Contents in Rapeseed Using Hyperspectral Data. Agronomy. 2023; 13(9):2233. https://doi.org/10.3390/agronomy13092233
Chicago/Turabian StyleLu, Junwei, Rongcai Tian, Shuangya Wen, and Chunyun Guan. 2023. "Selection of Agronomic Parameters and Construction of Prediction Models for Oleic Acid Contents in Rapeseed Using Hyperspectral Data" Agronomy 13, no. 9: 2233. https://doi.org/10.3390/agronomy13092233
APA StyleLu, J., Tian, R., Wen, S., & Guan, C. (2023). Selection of Agronomic Parameters and Construction of Prediction Models for Oleic Acid Contents in Rapeseed Using Hyperspectral Data. Agronomy, 13(9), 2233. https://doi.org/10.3390/agronomy13092233