Vermicomposting as a Valorization Solution to the Winery Sector By-Products
Abstract
:1. Introduction
2. The Role of Earthworms in Organic Waste Transformation
3. Vineyard and Wine Sector By-Products
3.1. Pruning Residues
3.2. Leaves and Grape Stems
3.3. Grape Marc
3.4. Wine Lees
3.5. Vinasse
4. Vermicomposting as a Strategy to Valorize Vine and Wine By-Products
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Presentation|OIV. Available online: https://www.oiv.int/who-we-are/presentation (accessed on 9 August 2023).
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards Integral Utilization of Grape Pomace from Winemaking Process: A Review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Moral, R.; Paredes, C.; Pérez-Espinosa, A.; Moreno-Caselles, J.; Pérez-Murcia, M.D. Agrochemical Characterisation of the Solid By-Products and Residues from the Winery and Distillery Industry. Waste Manag. 2008, 28, 372–380. [Google Scholar] [CrossRef]
- Mateo, J.J.; Maicas, S. Valorization of Winery and Oil Mill Wastes by Microbial Technologies. Food Res. Int. 2015, 73, 13–25. [Google Scholar] [CrossRef]
- Carrilho, E.N.V.M.; Labuto, G.; Kamogawa, M.Y. Chapter 2—Destination of Vinasse, a Residue from Alcohol Industry: Resource Recovery and Prevention of Pollution. In Environmental Materials and Waste; Prasad, M.N.V., Shih, K., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 21–43. ISBN 978-0-12-803837-6. [Google Scholar]
- Kharayat, Y. Distillery Wastewater: Bioremediation Approaches. J. Integr. Environ. Sci. 2012, 9, 69–91. [Google Scholar] [CrossRef]
- Regulation (EU) No 1308/2013 of the European Parliament and of the Council of 17 December 2013 Establishing a Common Organisation of the Markets in Agricultural Products and Repealing Council Regulations (EEC) No 922/72, (EEC) No 234/79, (EC) No 1037/2001 and (EC) No 1234/2007. 2013, Volume 347. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32013R1308 (accessed on 9 August 2023).
- Bustamante, M.A.; Moral, R.; Paredes, C.; Vargas-García, M.C.; Suárez-Estrella, F.; Moreno, J. Evolution of the Pathogen Content during Co-Composting of Winery and Distillery Wastes. Bioresour. Technol. 2008, 99, 7299–7306. [Google Scholar] [CrossRef]
- Devesa-Rey, R.; Vecino, X.; Varela-Alende, J.L.; Barral, M.T.; Cruz, J.M.; Moldes, A.B. Valorization of Winery Waste vs. the Costs of Not Recycling. Waste Manag. 2011, 31, 2327–2335. [Google Scholar] [CrossRef]
- Jesus, M.; Romaní, A.; Mata, F.; Domingues, L. Current Options in the Valorisation of Vine Pruning Residue for the Production of Biofuels, Biopolymers, Antioxidants, and Bio-Composites Following the Concept of Biorefinery: A Review. Polymers 2022, 14, 1640. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues Machado, A.; Atatoprak, T.; Santos, J.; Alexandre, E.M.C.; Pintado, M.E.; Paiva, J.A.P.; Nunes, J. Potentialities of the Extraction Technologies and Use of Bioactive Compounds from Winery By-Products: A Review from a Circular Bioeconomy Perspective. Appl. Sci. 2023, 13, 7754. [Google Scholar] [CrossRef]
- Rodrigues, R.P.; Gando-Ferreira, L.M.; Quina, M.J. Increasing Value of Winery Residues through Integrated Biorefinery Processes: A Review. Molecules 2022, 27, 4709. [Google Scholar] [CrossRef] [PubMed]
- Gouvinhas, I.; Barros, A. Winery By-Products as Source of Bioactive Compounds for Pharmaceutical and Cosmetic Industries. In Innovation in the Food Sector Through the Valorization of Food and Agro-Food By-Products; Novo de Barros, A., Gouvinhas, I., Eds.; IntechOpen: Rijeka, Croatia, 2021; ISBN 978-1-83880-683-5. [Google Scholar]
- Iqbal, A.; He, L.; Ali, I.; Ullah, S.; Khan, A.; Khan, A.; Akhtar, K.; Wei, S.; Zhao, Q.; Zhang, J.; et al. Manure combined with chemical fertilizer increases rice productivity by improving soil health, post-anthesis biomass yield, and nitrogen metabolism. PLoS ONE 2020, 15, e0238934. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Liu, S.; Cui, D.; Ding, X. Interaction between Nitrogen Fertilizer and Biochar Fertilization on Crop Yield and Soil Chemical Quality in a Temperate Region. J. Agric. Sci. 2021, 159, 106–115. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, C.; Su, Y.; Peng, W.; Lu, R.; Liu, Y.; Huang, H.; He, X.; Yang, M.; Zhu, S. Soil Acidification Caused by Excessive Application of Nitrogen Fertilizer Aggravates Soil-Borne Diseases: Evidence from Literature Review and Field Trials. Agric. Ecosyst. Environ. 2022, 340, 108176. [Google Scholar] [CrossRef]
- Chojnacka, K.; Moustakas, K.; Witek-Krowiak, A. Bio-Based Fertilizers: A Practical Approach towards Circular Economy. Bioresour. Technol. 2020, 295, 122223. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.u; De Castro, F.; Aprile, A.; Benedetti, M.; Fanizzi, F.P. Vermicompost: Enhancing Plant Growth and Combating Abiotic and Biotic Stress. Agronomy 2023, 13, 1134. [Google Scholar] [CrossRef]
- Kanagaraj, R.; Guru, M.; Kannan, D.P. A Study on Yield and Gut Flora Diversity on Vermicomposting of Bio-Waste Using Eisenia Fetida. Asian J. Biol. Sci. 2023, 16, 294–301. [Google Scholar] [CrossRef]
- Swati, A.; Hait, S. Fate and Bioavailability of Heavy Metals during Vermicomposting of Various Organic Wastes—A Review. Process Saf. Environ. Prot. 2017, 109, 30–45. [Google Scholar] [CrossRef]
- Hernandez, O.L.; Calderín, A.; Huelva, R.; Martínez-Balmori, D.; Guridi, F.; Aguiar, N.O.; Olivares, F.L.; Canellas, L.P. Humic Substances from Vermicompost Enhance Urban Lettuce Production. Agron. Sustain. Dev. 2015, 35, 225–232. [Google Scholar] [CrossRef]
- Canellas, L.P.; Canellas, N.O.A.; da Silva, R.M.; Spaccini, R.; Mota, G.P.; Olivares, F.L. Biostimulants Using Humic Substances and Plant-Growth-Promoting Bacteria: Effects on Cassava (Manihot Esculentus) and Okra (Abelmoschus Esculentus) Yield. Agronomy 2023, 13, 80. [Google Scholar] [CrossRef]
- Yatoo, A.M.; Ali, M.N.; Baba, Z.A.; Hassan, B. Sustainable Management of Diseases and Pests in Crops by Vermicompost and Vermicompost Tea. A Review. Agron. Sustain. Dev. 2021, 41, 7. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Mousavi, A.; Souri, M.K.; Sahebani, N. Can Vermicompost and Biochar Control Meloidogyne Javanica on Eggplant? Nematology 2021, 23, 1053–1064. [Google Scholar] [CrossRef]
- Nogales, R.; Cifuentes, C.; Benítez, E. Vermicomposting of Winery Wastes: A Laboratory Study. J. Environ. Sci. Health Part B 2005, 40, 659–673. [Google Scholar] [CrossRef] [PubMed]
- Amaya-Chantaca, D.; Flores-Gallegos, A.C.; Iliná, A.; Aguilar, C.N.; Verma, D.K.; Baranwal, D.; Chávez-González, M.L. Chapter 16—Wine Waste as a Potential Source of Bioactive Compounds. In Innovations in Fermentation and Phytopharmaceutical Technologies; Thatoi, H., Mohapatra, S., Das, S.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 361–380. ISBN 978-0-12-821877-8. [Google Scholar]
- Suthar, S. Vermicomposting Potential of Perionyx Sansibaricus (Perrier) in Different Waste Materials. Bioresour. Technol. 2007, 98, 1231–1237. [Google Scholar] [CrossRef]
- Bhat, S.A.; Singh, J.; Vig, A.P. Earthworms as Organic Waste Managers and Biofertilizer Producers. Waste Biomass Valorization 2018, 9, 1073–1086. [Google Scholar] [CrossRef]
- Domínguez, J. Earthworms and Vermicomposting. In Earthworms—The Ecological Engineers of Soil; IntechOpen: Rijeka, Croatia, 2018; ISBN 978-1-78923-397-1. [Google Scholar]
- Sharma, K.; Garg, V.K. Chapter 17—Solid-State Fermentation for Vermicomposting: A Step Toward Sustainable and Healthy Soil. In Current Developments in Biotechnology and Bioengineering; Pandey, A., Larroche, C., Soccol, C.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 373–413. ISBN 978-0-444-63990-5. [Google Scholar]
- Ghosh, M.; Chattopadhyay, G.N.; Baral, K. Transformation of Phosphorus during Vermicomposting. Bioresour. Technol. 1999, 69, 149–154. [Google Scholar] [CrossRef]
- Nagavallemma, K.P.; Wani, S.P.; Lacroix, S.; Padmaja, V.V.; Vineela, C.; Rao, M.B.; Sahrawat, K.L. Vermicomposting: Recycling Wastes into Valuable Organic Fertilizer. Global Theme on Agroecosystems Report No. 8. Available online: http://oar.icrisat.org/3677/ (accessed on 15 May 2023).
- Thakur, A.; Kumar, A.; Kumar, C.V.; Kiran, B.S.; Kumar, S.; Athokpam, V. A Review On Vermicomposting: By-Products And Its Importance. Plant Cell Biotechnol. Mol. Biol. 2021, 22, 156–164. [Google Scholar]
- Hajam, Y.A.; Kumar, R.; Kumar, A. Environmental Waste Management Strategies and Vermi Transformation for Sustainable Development. Environ. Chall. 2023, 13, 100747. [Google Scholar] [CrossRef]
- Nanni, A.; Parisi, M.; Colonna, M. Wine By-Products as Raw Materials for the Production of Biopolymers and of Natural Reinforcing Fillers: A Critical Review. Polymers 2021, 13, 381. [Google Scholar] [CrossRef]
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.A.; Garcia-Viguera, C. Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, E.; Çanakcı, M.; Topakcı, M.; Sönmez, S.; Ağsaran, B.; Alagöz, Z.; Çıtak, S.; Uras, D.S. Effect of Vineyard Pruning Residue Application on Soil Aggregate Formation, Aggregate Stability and Carbon Content in Different Aggregate Sizes. CATENA 2019, 183, 104219. [Google Scholar] [CrossRef]
- Gómez-Brandón, M.; Lazcano, C.; Lores, M.; Domínguez, J. Short-Term Stabilization of Grape Marc through Earthworms. J. Hazard. Mater. 2011, 187, 291–295. [Google Scholar] [CrossRef]
- Domínguez, J.; Martínez-Cordeiro, H.; Álvarez-Casas, M.; Lores, M. Vermicomposting Grape Marc Yields High Quality Organic Biofertiliser and Bioactive Polyphenols. Waste Manag. Res. 2014, 32, 1235–1240. [Google Scholar] [CrossRef] [PubMed]
- García-Sánchez, M.; Taušnerová, H.; Hanč, A.; Tlustoš, P. Stabilization of Different Starting Materials through Vermicomposting in a Continuous-Feeding System: Changes in Chemical and Biological Parameters. Waste Manag. 2017, 62, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Brandón, M.; Lores, M.; Martínez-Cordeiro, H.; Domínguez, J. Effectiveness of Vermicomposting for Bioconversion of Grape Marc Derived from Red Winemaking into a Value-Added Product. Environ. Sci. Pollut. Res. 2020, 27, 33438–33445. [Google Scholar] [CrossRef]
- Santana, N.A.; Jacques, R.J.S.; Antoniolli, Z.I.; Martínez-Cordeiro, H.; Domínguez, J. Changes in the Chemical and Biological Characteristics of Grape Marc Vermicompost during a Two-Year Production Period. Appl. Soil Ecol. 2020, 154, 103587. [Google Scholar] [CrossRef]
- Gómez-Brandón, M.; Fornasier, F.; de Andrade, N.; Domínguez, J. Influence of Earthworms on the Microbial Properties and Extracellular Enzyme Activities during Vermicomposting of Raw and Distilled Grape Marc. J. Environ. Manag. 2022, 319, 115654. [Google Scholar] [CrossRef] [PubMed]
- Romero, E.; Salido, A.; Cifuentes, C.; Fernández, J.-D.; Nogales, R. Effect of Vermicomposting Process on Pesticide Sorption Capability Using Agro-Industrial Wastes. Int. J. Environ. Anal. Chem. 2006, 86, 289–297. [Google Scholar] [CrossRef]
- Moldes, A.B.; Vázquez, M.; Domínguez, J.M.; Díaz-Fierros, F.; Barral, M.T. Negative Effect of Discharging Vinification Lees on Soils. Bioresour. Technol. 2008, 99, 5991–5996. [Google Scholar] [CrossRef] [PubMed]
- Sancho-Galán, P.; Amores-Arrocha, A.; Jiménez-Cantizano, A.; Palacios, V. Physicochemical and Nutritional Characterization of Winemaking Lees: A New Food Ingredient. Agronomy 2020, 10, 996. [Google Scholar] [CrossRef]
- Sousa, R.M.O.F.; Amaral, C.; Fernandes, J.M.C.; Fraga, I.; Semitela, S.; Braga, F.; Coimbra, A.M.; Dias, A.A.; Bezerra, R.M.; Sampaio, A. Hazardous Impact of Vinasse from Distilled Winemaking By-Products in Terrestrial Plants and Aquatic Organisms. Ecotoxicol. Environ. Saf. 2019, 183, 109493. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Masoero, G.; Tassone, S. Comparison of Nutritive Value and Fatty Acid Profile of the Pruning Residues of Six Grapevine (Vitis vinifera L.) Cultivars. Livest. Res. Rural Dev. 2017; 29, 194. [Google Scholar]
- Acquadro, S.; Appleton, S.; Marengo, A.; Bicchi, C.; Sgorbini, B.; Mandrone, M.; Gai, F.; Peiretti, P.G.; Cagliero, C.; Rubiolo, P. Grapevine Green Pruning Residues as a Promising and Sustainable Source of Bioactive Phenolic Compounds. Molecules 2020, 25, 464. [Google Scholar] [CrossRef]
- Wei, M.; Ma, T.; Ge, Q.; Li, C.; Zhang, K.; Fang, Y.; Sun, X. Challenges and Opportunities of Winter Vine Pruning for Global Grape and Wine Industries. J. Clean. Prod. 2022, 380, 135086. [Google Scholar] [CrossRef]
- Guerrero, R.F.; Biais, B.; Richard, T.; Puertas, B.; Waffo-Teguo, P.; Merillon, J.-M.; Cantos-Villar, E. Grapevine Cane’s Waste Is a Source of Bioactive Stilbenes. Ind. Crops Prod. 2016, 94, 884–892. [Google Scholar] [CrossRef]
- Çetin, E.S.; Altinöz, D.; Tarçan, E.; Göktürk Baydar, N. Chemical Composition of Grape Canes. Ind. Crops Prod. 2011, 34, 994–998. [Google Scholar] [CrossRef]
- Dávila, I.; Gordobil, O.; Labidi, J.; Gullón, P. Assessment of Suitability of Vine Shoots for Hemicellulosic Oligosaccharides Production through Aqueous Processing. Bioresour. Technol. 2016, 211, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Duca, D.; Toscano, G.; Pizzi, A.; Rossini, G.; Fabrizi, S.; Lucesoli, G.; Servili, A.; Mancini, V.; Romanazzi, G.; Mengarelli, C. Evaluation of the Characteristics of Vineyard Pruning Residues for Energy Applications: Effect of Different Copper-Based Treatments. J. Agric. Eng. 2016, 47, 22–27. [Google Scholar] [CrossRef]
- Rajha, H.; Boussetta, N.; Louka, N.; Maroun, R.; Vorobiev, E. A Comparative Study of Physical Pretreatments for the Extraction of Polyphenols and Proteins from Vine Shoots. Food Res. Int. 2014, 65, 462–468. [Google Scholar] [CrossRef]
- Jesus, M.S.; Genisheva, Z.; Romaní, A.; Pereira, R.N.; Teixeira, J.A.; Domingues, L. Bioactive Compounds Recovery Optimization from Vine Pruning Residues Using Conventional Heating and Microwave-Assisted Extraction Methods. Ind. Crops Prod. 2019, 132, 99–110. [Google Scholar] [CrossRef]
- Noviello, M.; Caputi, A.F.; Squeo, G.; Paradiso, V.M.; Gambacorta, G.; Caponio, F. Vine Shoots as a Source of Trans-Resveratrol and ε-Viniferin: A Study of 23 Italian Varieties. Foods 2022, 11, 553. [Google Scholar] [CrossRef]
- Jesus, M.S.; Romaní, A.; Genisheva, Z.; Teixeira, J.A.; Domingues, L. Integral Valorization of Vine Pruning Residue by Sequential Autohydrolysis Stages. J. Clean. Prod. 2017, 168, 74–86. [Google Scholar] [CrossRef]
- Viel, A.; Stellin, F.; Carlot, M.; Nadai, C.; Concheri, G.; Stevanato, P.; Squartini, A.; Corich, V.; Giacomini, A. Characteristics of Compost Obtained from Winemaking Byproducts. Waste Biomass Valorization 2018, 9, 2021–2029. [Google Scholar] [CrossRef]
- Devesa-Rey, R.; Díaz-Fierros, F.; Barral, M.T. Trace Metals in River Bed Sediments: An Assessment of Their Partitioning and Bioavailability by Using Multivariate Exploratory Analysis. J. Environ. Manag. 2010, 91, 2471–2477. [Google Scholar] [CrossRef] [PubMed]
- Simões, C.L.; Simoes, R.; Gonçalves, A.S.; Nunes, L.J.R. Environmental Analysis of the Valorization of Woody Biomass Residues: A Comparative Study with Vine Pruning Leftovers in Portugal. Sustainability 2023, 15, 14950. [Google Scholar] [CrossRef]
- Jiménez, L.; Angulo, V.; Ramos, E.; De la Torre, M.J.; Ferrer, J.L. Comparison of Various Pulping Processes for Producing Pulp from Vine Shoots. Ind. Crops Prod. 2006, 23, 122–130. [Google Scholar] [CrossRef]
- Mendívil, M.A.; Muñoz, P.; Morales, M.P.; Juárez, M.C.; García-Escudero, E. Chemical Characterization of Pruned Vine Shoots from La Rioja (Spain) for Obtaining Solid Bio-Fuels. J. Renew. Sustain. Energy 2013, 5, 033113. [Google Scholar] [CrossRef]
- Cebrián-Tarancón, C.; Sánchez-Gómez, R.; Cabrita, M.J.; García, R.; Zalacain, A.; Alonso, G.L.; Salinas, M.R. Winemaking with Vine-Shoots. Modulating the Composition of Wines by Using Their Own Resources. Food Res. Int. 2019, 121, 117–126. [Google Scholar] [CrossRef] [PubMed]
- Cebrián-Tarancón, C.; Fernández-Roldán, F.; Sánchez-Gómez, R.; Alonso, G.L.; Salinas, M.R. Pruned Vine-Shoots as a New Enological Additive to Differentiate the Chemical Profile of Wines. Food Res. Int. 2022, 156, 111195. [Google Scholar] [CrossRef]
- Fanzone, M.; Catania, A.; Assof, M.; Jofré, V.; Prieto, J.; Gil Quiroga, D.; Lacognata Sottano, J.; Sari, S. Application of Vine-Shoot Chips during Winemaking and Aging of Malbec and Bonarda Wines. Beverages 2021, 7, 51. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Masoero, G.; Tassone, S. Near Infrared Reflectance Spectroscopy (NIRS) Evaluation Of The Nutritive Value Of Leaf And Green Pruning Residues Of Grapevine (Vitis vinifera L.). In Grapevines at a Glance; Nova Science Publishers, Inc.: New York, NY, USA, 2019; pp. 67–89. ISBN 978-1-5361-6399-5. [Google Scholar]
- Peiretti, P.G.; Tassone, S. Nutritive Value Of Leaves And Pruning Residues Of Red And White Grapevine (Vitis vinifera L.) Varieties. In Grapevines at a Glance; Nova Science Publishers, Inc.: New York, NY, USA, 2020; pp. 111–126. ISBN 978-1-5361-6399-5. [Google Scholar]
- Xia, E.-Q.; Deng, G.-F.; Guo, Y.-J.; Li, H.-B. Biological Activities of Polyphenols from Grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.; Ramalhosa, E.; Pires, P.; Verdial, J.; Valentão, P.; Andrade, P.; Bento, A.; Pereira, J.A. Vitis vinifera Leaves towards Bioactivity. Ind. Crops Prod. 2013, 43, 434–440. [Google Scholar] [CrossRef]
- Cioffi, E.; Comune, L.; Piccolella, S.; Buono, M.; Pacifico, S. Quercetin 3-O-Glucuronide from Aglianico Vine Leaves: A Selective Sustainable Recovery and Accumulation Monitoring. Foods 2023, 12, 2646. [Google Scholar] [CrossRef]
- Bouderias, S.; Teszlák, P.; Jakab, G.; Kőrösi, L. Age- and Season-Dependent Pattern of Flavonol Glycosides in Cabernet Sauvignon Grapevine Leaves. Sci. Rep. 2020, 10, 14241. [Google Scholar] [CrossRef]
- Saadaoui, N.; Mathlouthi, A.; Zaiter, A.; El-Bok, S.; Mokni, M.; Harbi, M.; Ghanem-Boughanmi, N.; Dicko, A.; Ben-Attia, M. Phytochemical Profiling, Antioxidant Potential and Protective Effect of Leaves Extract of Tunisian Vitis vinifera Autochthonous Accessions against Acute CCl4-Injured Hepatotoxicity in Mice. Heliyon 2023, 9, e16377. [Google Scholar] [CrossRef] [PubMed]
- Deliorman Orhan, D.; Orhan, N.; Ozçelïk, B.; Ergun, F. Biological Activities of Vitis vinifera L. Leaves. Turk. J. Biol. 2009, 33, 341–348. [Google Scholar] [CrossRef]
- Monagas, M.; Garrido, I.; Bartolomé, B.; Gómez-Cordovés, C. Chemical Characterization of Commercial Dietary Ingredients from Vitis vinifera L. Anal. Chim. Acta 2006, 563, 401–410. [Google Scholar] [CrossRef]
- Monagas, M.; Hernández-Ledesma, B.; Gómez-Cordovés, C.; Bartolomé, B. Commercial Dietary Ingredients from Vitis vinifera L. Leaves and Grape Skins: Antioxidant and Chemical Characterization. J. Agric. Food Chem. 2006, 54, 319–327. [Google Scholar] [CrossRef]
- Maia, M.; Cavaco, A.R.; Laureano, G.; Cunha, J.; Eiras-Dias, J.; Matos, A.R.; Duarte, B.; Figueiredo, A. More than Just Wine: The Nutritional Benefits of Grapevine Leaves. Foods 2021, 10, 2251. [Google Scholar] [CrossRef]
- Sat, G.; Şengül, M.; Keles, F. Use of Grape Leaves in Canned Food. Pak. J. Nutr. 2002, 1, 257–262. [Google Scholar] [CrossRef]
- Blackford, M.; Comby, M.; Zeng, L.; Dienes-Nagy, Á.; Bourdin, G.; Lorenzini, F.; Bach, B. A Review on Stems Composition and Their Impact on Wine Quality. Molecules 2021, 26, 1240. [Google Scholar] [CrossRef] [PubMed]
- Ioannidou, S.P.; Margellou, A.G.; Petala, M.D.; Triantafyllidis, K.S. Pretreatment/Fractionation and Characterization of Winery Waste Streams within an Integrated Biorefinery Concept. Sustain. Chem. Pharm. 2022, 27, 100670. [Google Scholar] [CrossRef]
- Prozil, S.O.; Evtuguin, D.V.; Lopes, L.P.C. Chemical Composition of Grape Stalks of Vitis vinifera L. from Red Grape Pomaces. Ind. Crops Prod. 2012, 35, 178–184. [Google Scholar] [CrossRef]
- Maicas, S.; Mateo, J.J. Sustainability of Wine Production. Sustainability 2020, 12, 559. [Google Scholar] [CrossRef]
- Egüés, I.; Serrano, L.; Amendola, D.; De Faveri, D.M.; Spigno, G.; Labidi, J. Fermentable Sugars Recovery from Grape Stalks for Bioethanol Production. Renew. Energy 2013, 60, 553–558. [Google Scholar] [CrossRef]
- Ozdemir, I.; Şahin, M.; Orhan, R.; Erdem, M. Preparation and Characterization of Activated Carbon from Grape Stalk by Zinc Chloride Activation. Fuel Process. Technol. 2014, 125, 200–206. [Google Scholar] [CrossRef]
- Spigno, G.; De Faveri, D.M. Antioxidants from Grape Stalks and Marc: Influence of Extraction Procedure on Yield, Purity and Antioxidant Power of the Extracts. J. Food Eng. 2007, 78, 793–801. [Google Scholar] [CrossRef]
- Zouboulis, A.I.; Lazaridis, N.K.; Matis, K.A. Removal of Toxic Metal Ions from Aqueous Systems by Biosorptive Flotation. J. Chem. Technol. Biotechnol. 2002, 77, 958–964. [Google Scholar] [CrossRef]
- Gómez-Brandón, M.; Lores, M.; Insam, H.; Domínguez, J. Strategies for Recycling and Valorization of Grape Marc. Crit. Rev. Biotechnol. 2019, 39, 437–450. [Google Scholar] [CrossRef]
- Galanakis, C.M. Handbook of Grape Processing By-Products: Sustainable Solutions; Academic Press: Cambridge, MA, USA, 2017; ISBN 978-0-12-809871-4. [Google Scholar]
- Mendes, J.A.S.; Xavier, A.M.R.B.; Evtuguin, D.V.; Lopes, L.P.C. Integrated Utilization of Grape Skins from White Grape Pomaces. Ind. Crops Prod. 2013, 49, 286–291. [Google Scholar] [CrossRef]
- Amendola, D.; De Faveri, D.M.; Spigno, G. Grape Marc Phenolics: Extraction Kinetics, Quality and Stability of Extracts. J. Food Eng. 2010, 97, 384–392. [Google Scholar] [CrossRef]
- Schieber, A.; Stintzing, F.C.; Carle, R. By-Products of Plant Food Processing as a Source of Functional Compounds—Recent Developments. Trends Food Sci. Technol. 2001, 12, 401–413. [Google Scholar] [CrossRef]
- Fontana, A.R.; Antoniolli, A.; Bottini, R. Grape Pomace as a Sustainable Source of Bioactive Compounds: Extraction, Characterization, and Biotechnological Applications of Phenolics. J. Agric. Food Chem. 2013, 61, 8987–9003. [Google Scholar] [CrossRef]
- Domínguez, J.; Martínez-Cordeiro, H.; Lores, M. Earthworms and Grape Marc: Simultaneous Production of a High-Quality Biofertilizer and Bioactive-Rich Seeds; Morata, A., Loira, I., Eds.; InTech: Rijeka, Croatia, 2016. [Google Scholar]
- Domínguez, J.; Aira, M.; Gómez-Brandón, M. Vermicomposting: Earthworms Enhance the Work of Microbes. In Microbes at Work: From Wastes to Resources; Insam, H., Franke-Whittle, I., Goberna, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 93–114. ISBN 978-3-642-04043-6. [Google Scholar]
- Publications Office of the European Union. Council Regulation (EEC) No 337/79 of 5 February 1979 on the Common Organization of the Market in Wine, CELEX1. Available online: https://op.europa.eu/en/publication-detail/-/publication/c908ef22-1fb5-49ee-bb41-ab65eb608bad/language-en (accessed on 24 August 2023).
- Niculescu, V.-C.; Ionete, R.-E. An Overview on Management and Valorisation of Winery Wastes. Appl. Sci. 2023, 13, 5063. [Google Scholar] [CrossRef]
- Sharma, A.K.; Kumar, R.; Azad, Z.R.A.A.; Adsule, P.G. Use of Fine Wine Lees for Value Addition in Ice Cream. J. Food Sci. Technol. 2015, 52, 592–596. [Google Scholar] [CrossRef]
- Arboleda Meija, J.A.; Parpinello, G.P.; Versari, A.; Conidi, C.; Cassano, A. Microwave-Assisted Extraction and Membrane-Based Separation of Biophenols from Red Wine Lees. Food Bioprod. Process. 2019, 117, 74–83. [Google Scholar] [CrossRef]
- Zhu, Q.; Wu, J.; Wang, L.; Yang, G.; Zhang, X. Adsorption Characteristics of Pb2+ onto Wine Lees-Derived Biochar. Bull. Environ. Contam. Toxicol. 2016, 97, 294–299. [Google Scholar] [CrossRef]
- Delgado de la Torre, M.P.; Priego-Capote, F.; Luque de Castro, M.D. Characterization and Comparison of Wine Lees by Liquid Chromatography–Mass Spectrometry in High-Resolution Mode. J. Agric. Food Chem. 2015, 63, 1116–1125. [Google Scholar] [CrossRef]
- Canalejo, D.; Martínez-Lapuente, L.; Ayestarán, B.; Pérez-Magariño, S.; Guadalupe, Z. Potential Use of Grape and Wine Polysaccharide Extracts as Fining Agents to Modulate the Volatile Composition of Viura Wines. Food Chem. 2024, 430, 137047. [Google Scholar] [CrossRef]
- Bustos, G.; Moldes, A.B.; Cruz, J.M.; Domínguez, J.M. Formulation of Low-Cost Fermentative Media for Lactic Acid Production with Lactobacillus Rhamnosus Using Vinification Lees as Nutrients. J. Agric. Food Chem. 2004, 52, 801–808. [Google Scholar] [CrossRef]
- Bustamante, M.A.; Paredes, C.; Moral, R.; Moreno-Caselles, J.; Pérez-Espinosa, A.; Pérez-Murcia, M.D. Uses of Winery and Distillery Effluents in Agriculture: Characterisation of Nutrient and Hazardous Components. Water Sci. Technol. 2005, 51, 145–151. [Google Scholar] [CrossRef]
- Salgado, J.M.; Rodríguez, N.; Cortés, S.; Domínguez, J.M. Improving Downstream Processes to Recover Tartaric Acid, Tartrate and Nutrients from Vinasses and Formulation of Inexpensive Fermentative Broths for Xylitol Production. J. Sci. Food Agric. 2010, 90, 2168–2177. [Google Scholar] [CrossRef]
- Liu, J.G.; Wang, Q.H.; Ma, H.Z.; Wang, S. Effect of Pretreatment Methods on L-Lactic Acid Production from Vinasse Fermentation. Adv. Mater. Res. 2010, 113–116, 1302–1305. [Google Scholar] [CrossRef]
- Santos, M.; Diánez, F.; de Cara, M.; Tello, J.C. Possibilities of the Use of Vinasses in the Control of Fungi Phytopathogens. Bioresour. Technol. 2008, 99, 9040–9043. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Bayo, J.D.; Nogales, R.; Romero, E. Winery Vermicomposts to Control the Leaching of Diuron, Imidacloprid and Their Metabolites: Role of Dissolved Organic Carbon Content. J. Environ. Sci. Health Part B 2015, 50, 190–200. [Google Scholar] [CrossRef] [PubMed]
- Kolbe, A.R.; Aira, M.; Gómez-Brandón, M.; Pérez-Losada, M.; Domínguez, J. Bacterial Succession and Functional Diversity during Vermicomposting of the White Grape Marc Vitis vinifera v. Albariño. Sci. Rep. 2019, 9, 7472. [Google Scholar] [CrossRef] [PubMed]
- Oyege, I.; Balaji Bhaskar, M.S. Effects of Vermicompost on Soil and Plant Health and Promoting Sustainable Agriculture. Soil Syst. 2023, 7, 101. [Google Scholar] [CrossRef]
- Domínguez, J.; Sanchez-Hernandez, J.C.; Lores, M. 3—Vermicomposting of Winemaking By-Products. In Handbook of Grape Processing By-Products; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 55–78. ISBN 978-0-12-809870-7. [Google Scholar]
- Gómez Brandón, M.; Aira, M.; Kolbe, A.R.; de Andrade, N.; Pérez-Losada, M.; Domínguez, J. Rapid Bacterial Community Changes during Vermicomposting of Grape Marc Derived from Red Winemaking. Microorganisms 2019, 7, 473. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Hernandez, J.C.; Cares, X.A.; Domínguez, J. Exploring the Potential Enzymatic Bioremediation of Vermicompost through Pesticide-Detoxifying Carboxylesterases. Ecotoxicol. Environ. Saf. 2019, 183, 109586. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Brandón, M.; Martínez-Cordeiro, H.; Domínguez, J. Changes in the Nutrient Dynamics and Microbiological Properties of Grape Marc in a Continuous-Feeding Vermicomposting System. Waste Manag. 2021, 135, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Losada, M.; Narayanan, D.B.; Kolbe, A.R.; Ramos-Tapia, I.; Castro-Nallar, E.; Crandall, K.A.; Domínguez, J. Comparative Analysis of Metagenomics and Metataxonomics for the Characterization of Vermicompost Microbiomes. Front. Microbiol. 2022, 13, 854423. [Google Scholar] [CrossRef]
- Paradelo, R.; Moldes, A.B.; Barral, M.T. Properties of Slate Mining Wastes Incubated with Grape Marc Compost under Laboratory Conditions. Waste Manag. 2009, 29, 579–584. [Google Scholar] [CrossRef]
- Částková, T.; Hanč, A. Change of the Parameters of Layers in a Large-Scale Grape Marc Vermicomposting System with Continuous Feeding. Waste Manag. Res. 2019, 37, 826–832. [Google Scholar] [CrossRef]
- Gómez-Brandón, M.; Aira, M.; Santana, N.; Pérez-Losada, M.; Domínguez, J. Temporal Dynamics of Bacterial Communities in a Pilot-Scale Vermireactor Fed with Distilled Grape Marc. Microorganisms 2020, 8, 642. [Google Scholar] [CrossRef]
- Yu, H.; Xie, B.; Khan, R.; Shen, G. The Changes in Carbon, Nitrogen Components and Humic Substances during Organic-Inorganic Aerobic Co-Composting. Bioresour. Technol. 2019, 271, 228–235. [Google Scholar] [CrossRef]
- Yatoo, A.M.; Rasool, S.; Ali, S.; Majid, S.; Rehman, M.U.; Ali, M.N.; Eachkoti, R.; Rasool, S.; Rashid, S.M.; Farooq, S. Vermicomposting: An Eco-Friendly Approach for Recycling/Management of Organic Wastes. In Bioremediation and Biotechnology: Sustainable Approaches to Pollution Degradation; Hakeem, K.R., Bhat, R.A., Qadri, H., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 167–187. ISBN 978-3-030-35691-0. [Google Scholar]
- Moinard, V.; Redondi, C.; Etiévant, V.; Savoie, A.; Duchene, D.; Pelosi, C.; Houot, S.; Capowiez, Y. Short- and Long-Term Impacts of Anaerobic Digestate Spreading on Earthworms in Cropped Soils. Appl. Soil Ecol. 2021, 168, 104149. [Google Scholar] [CrossRef]
- Palaniveloo, K.; Amran, M.A.; Norhashim, N.A.; Mohamad-Fauzi, N.; Peng-Hui, F.; Hui-Wen, L.; Kai-Lin, Y.; Jiale, L.; Chian-Yee, M.G.; Jing-Yi, L.; et al. Food Waste Composting and Microbial Community Structure Profiling. Processes 2020, 8, 723. [Google Scholar] [CrossRef]
- Brito, L.M. Compostagem, Fertilização do Solo e Substratos; Publindústria: Porto, Portugal, 2017. [Google Scholar]
- Enebe, M.C.; Erasmus, M. Vermicomposting Technology—A Perspective on Vermicompost Production Technologies, Limitations and Prospects. J. Environ. Manag. 2023, 345, 118585. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Zhang, Y.; Huang, K. Quality of Vermicompost and Microbial Community Diversity Affected by the Contrasting Temperature during Vermicomposting of Dewatered Sludge. Int. J. Environ. Res. Public Health 2020, 17, 1748. [Google Scholar] [CrossRef]
- Rosado, D.; Lores, M.; Ramos-Tapia, I.; Crandall, K.A.; Pérez-Losada, M.; Domínguez, J. Integrated Fertilization with Bagasse Vermicompost Changes the Microbiome of Mencía Must and Wine. Fermentation 2022, 8, 357. [Google Scholar] [CrossRef]
- Rosado, D.; Ramos-Tapia, I.; Crandall, K.A.; Pérez-Losada, M.; Domínguez, J. Grapevine Treatment with Bagasse Vermicompost Changes the Microbiome of Albariño Must and Wine and Improves Wine Quality. OENO One 2022, 56, 219–230. [Google Scholar] [CrossRef]
- Boix-Fayos, C.; de Vente, J. Chalenges and Potential Pathways Towards Sustainable Agriculture within the European Green Deal. Agric. Syst. 2023, 207, 103634. [Google Scholar] [CrossRef]
- Panda, A.K.; Mishra, R.; Dutta, J.; Wani, Z.A.; Pant, S.; Siddiqui, S.; Alamri, S.A.; Alrumman, S.A.; Alkahtani, M.A.; Bisht, S.S. Impact of Vermicomposting on Greenhouse Gas Emission: A Short Review. Sustainability 2022, 14, 11306. [Google Scholar] [CrossRef]
- Cuadros-Casanova, I.; Cristiano, A.; Biancolini, D.; Cimatti, M.; Sessa, A.A.; Mendez Angarita, V.Y.; Dragonetti, C.; Pacifici, M.; Rondinini, C.; Di Marco, M. Opportunities and Challenges for Common Agricultural Policy Reform to Support the European Green Deal. Conserv. Biol. 2023, 37, e14052. [Google Scholar] [CrossRef]
By-Product | pH | C:N | EC (mS m−1) | Organic Matter (%) | References |
---|---|---|---|---|---|
Pruning residues | 5.21–5.83 | 72.80–73.00 | 2.24–2.46 | 93.50% | [37] |
Grape stalk | 4.40 | ND | 4.44 | 92.00 | [3] |
Grape marc | 3.76–7.77 | 14.37–27.57 | 0.28–1.34 | 90.63–95.30 | [38,39,40,41,42,43] |
Spent grape marc | 4.82–6.40 | 25.00–35.00 | 3.00 | ND | [25,44] |
Lees | 3.45–4.0 | 23.00 | 0.04–5.59 | 72.00–75.90 | [3,45,46] |
Vinasse | 3.88 | 19.34 | 6.36 | ND | [47] |
By-Product(s) | Experimental Layout (Species, Duration, Reactors) | Evaluated Parameters | Main Findings | Ref. |
---|---|---|---|---|
Spent grape marc, vinasse biosolids, lees cakes, and vine shoots | Eisenia andrei (10 g/treatment); 16 wks; 1 L plastic containers | Earthworm density and biomass; enzyme activities; chemical analysis; phytotoxicity of the initial substrates and end-products | ↓ C:N ratios, conductivity, phenolic compound content, phytotoxicity; ↑ pH, humic acids, and nutrient contents | [25] |
Vine shoots, spent grape marc, lees cake, and biosolids vinasse | Eisenia andrei (1500); 8 mos; 2 m2 beds | Chemical analysis, TEC; TOC; humic acids; fulvic acids; total N; TP; total lignin; sorption capability | ↑ pH, TEC, and HA; pesticide sorption capacity ↓ TOC, total lignin, and polyphenol contents, C:N ratio | [44] |
Spent grape marc, vine shoot, and biosolid vinasses | Eisenia andrei (1500); 6 mos; 2 m2 beds | Dissolved organic carbon concentration in the leachates; diuron and imidacloprid in leachates and in soil | ↓ pesticides and their metabolites leaching in soil columns | [107] |
Grape marc | Eisenia andrei (220 ± 14 g f.w.); 15 d; 2 L plastic containers | Final biomass; chemical analysis | ↓ abundance of bacterial and fungal phospholipid fatty acid biomarkers, microbial, protease, and cellulase activities and cellulose content | [38] |
Eisenia andrei (214 ± 26/m2); 112 d; Rectangular metal (4 × 1.5 × 1 m) vermireactor | Earthworm density; TP; chemical analysis | Polyphenol-free organic fertilizer | [39] | |
Eisenia andrei (7.1 ± 4.1 g); 240 d; Vertical vermireactors (40 × 40 × 18 cm) | Chemical analysis; microbial biomass and activities; phytotoxicity assay | Stabilization detected after 240 d; ↓ phytotoxic effects | [40] | |
Eisenia andrei (203 ± 28/m2); 112 d; Rectangular metal vermireactor (4 × 1.5 × 1 m; 6 m3) | Physicochemical analysis; microbiological analysis; TP | ↑ concentration of macro- and micronutrients; ↓ polyphenol content and microbial activity | [41] | |
Eisenia andrei (273 ± 28/m2); 91 d; Rectangular metal vermireactor (4 m× 1.5 m × 1 m) | Earthworm density and biomass; microbial identification | ↑ bacterial diversity taxonomic and phylogenetic | [111] | |
Eisenia andrei (297 ± 20/m2); 91 d; Vermireactor (4 m × 1.5 m × 1 m) | Earthworm density and biomass; microbial identification | ↑ taxonomic and, phylogenetic α-diversity, cellulose metabolism, plant hormone synthesis, and antibiotic synthesis | [108] | |
Eisenia andrei (10.000/m2); Vermireactors (6 m2) | Physicochemical analysis; basal respiration; carboxylesterase activity; sensitivity of carboxylesterase activity to pesticides; determination of pesticide residues | Pesticide-sensitive carboxylesterases; inhibited carboxylesterase activity; vermicompost degraded chlorpyrifos and enzymatically inactivated its toxic metabolite | [112] | |
Eisenia andrei (97 ± 20/m2); 2 yr; Metallic container (6 m3) | Chemical analysis; activity of 12 enzymes associated with the C, N, P, and S cycles | ↑ earthworm density; ↓ pH and electrical conductivity, organic matter, total C, dissolved organic N, P, K, and Cu contents; basal respiration; carboxylesterase, peroxidase, and catalase activities | [42] | |
Eisenia andrei (400/group); 42 wks; PVC modules (30 cm × 70 cm) | Chemical analysis; microbial biomass, activity, and identification | ↑ pH and content in macro- and micronutrients; ↓ total C and N and microbial biomass and activity in the grape marc | [113] | |
Eisenia andrei (1361 ± 415 g/m2); 63 days; Metal pilot-scale vermireactors (2 m × 50 cm × 1 m) | Chemical analysis; enzyme activity | ↓ basal respiration; suitable macro- and micronutrient content | [43] | |
Eisenia andrei (400 individuals); 21 and 63 d; Cylinders PVC (30 cm × 70 cm) | Microbial identification; metataxonomic analysis; metagenomic analysis | While fungi and bacteria are the main agents behind biochemical decomposition, earthworms are essential to the process of plant vermicomposting | [114] | |
Spent grape marc | Eisenia fetida (1000 individuals); 3 mos; One wood box | Chemical analysis | C:N ratio was higher in GMC than GMV; the pH was close to neutrality for both; the total Mg and P concentrations were similar; K concentration was higher for GMC, and the Ca concentration was higher for GMV | [115] |
Eisenia andrei (50 individuals); >12 mos; Windrow vermicomposting (2.5 m × 50 m) | Chemical analysis; phospholipid fatty acid analysis | ↑ N-NH4+, dissolved organic carbon, and N-NH4+/N-NO3− contents in the top layers; ↑ microbial biomass and earthworm biomass in the upper layer | [116] | |
Eisenia andrei (10.923 ± 1783/m2); 42 d; Rectangular metal vermireactor (4 m × 1.5 m × 1 m) | Microbial identification | Dominance of Proteobacteria and Bacteroidetes in the bacterial microbiome; ↑ richness and taxonomic diversity of bacterial communities | [117] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nascimento-Gonçalves, E.; Azevedo, T.; Lopes, H.; Sousa, J.R.; Oliveira, P.A.; Roboredo, M.; Coimbra, A.M.; Morais, M.C. Vermicomposting as a Valorization Solution to the Winery Sector By-Products. Agronomy 2024, 14, 1111. https://doi.org/10.3390/agronomy14061111
Nascimento-Gonçalves E, Azevedo T, Lopes H, Sousa JR, Oliveira PA, Roboredo M, Coimbra AM, Morais MC. Vermicomposting as a Valorization Solution to the Winery Sector By-Products. Agronomy. 2024; 14(6):1111. https://doi.org/10.3390/agronomy14061111
Chicago/Turabian StyleNascimento-Gonçalves, Elisabete, Tiago Azevedo, Henda Lopes, João Ricardo Sousa, Paula Alexandra Oliveira, Marta Roboredo, Ana Maria Coimbra, and Maria Cristina Morais. 2024. "Vermicomposting as a Valorization Solution to the Winery Sector By-Products" Agronomy 14, no. 6: 1111. https://doi.org/10.3390/agronomy14061111
APA StyleNascimento-Gonçalves, E., Azevedo, T., Lopes, H., Sousa, J. R., Oliveira, P. A., Roboredo, M., Coimbra, A. M., & Morais, M. C. (2024). Vermicomposting as a Valorization Solution to the Winery Sector By-Products. Agronomy, 14(6), 1111. https://doi.org/10.3390/agronomy14061111