Micropropagation of Al-Taif Rose: Effects of Medium Constituents and Light on In Vitro Rooting and Acclimatization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Effect of Auxin Type and Concentration on In Vitro Rooting of Al-Taif Rose
2.3. Effect of Medium Salt Strength and Sucrose Concentration on In Vitro Rooting of Al-Taif Rose
2.4. Effect of Sucrose Concentration and Light Spectra on In Vitro Rooting of Al-Taif Rose
2.5. Effect of Light Intensity and AC on In Vitro Rooting of Al-Taif Rose
2.6. Acclimatization of Al-Taif Rose Plantlets
2.7. DNA Extraction and ISSR-PCR Amplification
2.8. Experimental Design, Data Recording, and Statistical Analysis
3. Results and Discussion
3.1. Effect of Auxin Type and Concentration on the In Vitro Rooting Behavior of Al-Taif Rose Microshoots
3.2. Effect of Medium Salt Strength, Sucrose Concentration, and Light Spectrum on the In Vitro Rooting of Al-Taif Rose Microshoots
3.3. Effect of Light Intensity and Activated Charcoal on In Vitro Rooting of Al-Taif Rose Microshoots
3.4. Acclimatization of Micropropagated Al-Taif Rose Plantlets
3.5. Genetic Fidelity of Micropropagated Al-Taif Rose Plantlets
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ozkan, G.; Sagdic, O.; Baydar, N.G.; Baydar, H. Antioxidant and antibacterial activities of Rosa damascena flower extracts. Food Sci. Technol. Int. 2004, 10, 277–281. [Google Scholar] [CrossRef]
- Achuthan, C.R.; Babu, B.H.; Padikkala, J. Antioxidant and hepatoprotective effects of Rosa damascena. Pharm. Biol. 2003, 41, 357–361. [Google Scholar] [CrossRef]
- Mahmood, N.; Piacente, S.; Pizza, C.; Burke, A.; Khan, A.; Hay, A. The anti-HIV activity and mechanisms of action of pure compounds isolated from Rosa damascene. Biochem. Biophys. Res. Commun. 1996, 229, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Ginova, A.; Tsvetkov, I.; Kondakova, V. Rosa damascena Mill.—An overview for evaluation of propagation methods. Bulg. J. Agric. Sci. 2012, 18, 545–556. [Google Scholar]
- Bahaffi, S.O. Volatile oil composition of Taif rose. J. Saudi Chem. Soc. 2005, 9, 401–406. [Google Scholar]
- Kürkçüoglu, M.; Abdel-Megeed, A.; Başer, K. The composition of Taif rose oil. J. Essent. Oil Res. 2013, 25, 364–367. [Google Scholar] [CrossRef]
- Bazaid, S.A. Protein and DNA fragments variation in relation to low temperature in four Rosa hybirida cultivars in Taif, Saudi Arabia. J. Egypt. Acad. Dev. 2004, 5, 77–90. [Google Scholar]
- George, E.F.; Debergh, P.C. Micropropagation: Uses and methods. In Plant Propagation by Tissue Culture, 3rd ed.; George, E.F., Hall, M.A., De Klerk, G.J., Eds.; Spinger: Dordrecht, The Netherlands, 2008; pp. 29–64. [Google Scholar]
- Pospisilova, J.; Ticha, I.; Kadleck, P.; Haisel, D.; Plazakova, S. Acclimatization of micropropagated plants to ex vitro conditions. Biol. Plant. 1999, 42, 481–497. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Murthy, H.N.; Ammar, M.H.; Alghamdi, S.S.; Al-Suhaibani, N.A.; Alsadon, A.A.; Paek, K.Y. In vitro rooting of leguminous plants: Difficulties, alternatives, and strategies for improvement. Hortic. Environ. Biotechnol. 2016, 57, 311–322. [Google Scholar] [CrossRef]
- Van Huylenbroeck, J.; Piqueras, A.; Debergh, P. Photosynthesis and carbon metabolism in leaves formed prior and during ex vitro acclimatization of micropropagated plants. Plant Sci. 1998, 134, 21–30. [Google Scholar] [CrossRef]
- Diaz, L.P.; Namur, J.J.; Bollati, S.A.; Arce, O.E.A. Acclimatization of Phalaenopsis and Cattleya obtained by micropropagation. Rev. Colomb. Biotecnol. 2010, 12, 27–40. [Google Scholar]
- Pati, P.K.; Rath, S.P.; Sharma, M.; Sood, A.; Ahuja, P.S. In vitro propagation of rose—A review. Biotechnol. Adv. 2006, 24, 94–114. [Google Scholar] [CrossRef] [PubMed]
- Kirichenko, E.B.; Kuzmina, T.A.; Kataeva, N.V. Factors in optimizing the multiplication of ornamental and essential oil roses in vitro. Byulleten Gl. Bot. Sada 1991, 159, 61–67. [Google Scholar]
- Horan, I.; Walker, S.; Roberts, A.V.; Mottley, J.; Simpkins, I. Micropropagation of roses: The benefits of pruned mother-plantlets at stage-II and a greenhouse environment at stage III. J. Hort. Sci. 1995, 70, 799–806. [Google Scholar]
- Huettman, C.A.; Preece, J.E. Thidiazuron: A potent cytokinin for woody plant tissue culture. Plant Cell Tissue Org. Cult. 1993, 33, 105–119. [Google Scholar] [CrossRef]
- Podwyszynska, M. Rooting of micropropagated shoot (Cell Tissue and Organ culture). In Encyclopedia of Rose Science; Roberts, A.V., Debener, T., Gudin, S., Eds.; Elsevier Press: Amsterdam, The Netherlands, 2003; pp. 66–76. [Google Scholar]
- Hasegawa, P.M. Factors affecting shoot and root initiation from cultured rose shoot tips. J. Am. Soc. Hortic. Sci. 1980, 105, 216–220. [Google Scholar] [CrossRef]
- Al-Ali, A.M.; Dewir, Y.H.; Al-Obeed, R.S. Influence of cytokinins, dark incubation and air-Lift bioreactor culture on axillary shoot proliferation of Al-Taif rose (Rosa damascena trigintipetala (Diek) R. Keller). Horticulturae 2023, 9, 1109. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant 1962, 15, 473–495. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Al-Ali, A.M.; Rihan, H.Z.; Alshahrani, T.; Alwahibi, M.S.; Almutairi, K.F.; Naidoo, Y.; Fuller, M.P. Effects of artificial light spectra and sucrose on the leaf pigments, growth, and rooting of blackberry (Rubus fruticosus) microshoots. Agronomy 2023, 13, 89. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. Isolation of plant DNA from fresh tissue. Focus 1990, 12, 13–15. [Google Scholar]
- Alsemaan, T. Micro-propagation of Damask rose (Rosa damascena Mill.) cv. Almarah. Int. J. Agric. Res. 2013, 8, 172–177. [Google Scholar] [CrossRef]
- Mirshahi, H.; Mahdinezhad, N.; Soloki, M.; Samiei, L. Effect of plant growth adjuvants on direct regeneration of Mohammadi flower (Rosa damascena Mill.) using thin cell layering technique. Acta Sci. Pol. Hortorum Cultus. 2020, 19, 167–177. [Google Scholar] [CrossRef]
- Khosh-Khui, M.; Sink, K.C. Micropropagation of new and old world species. J. Hort. Sci. 1982, 57, 315–319. [Google Scholar] [CrossRef]
- Jabbarzadeh, Z.; Khosh-Khui, M. Factors affecting tissue culture of Damask rose (Rosa damascene Mill.). Sci. Hortic. 2005, 105, 475–482. [Google Scholar] [CrossRef]
- Kumar, A.; Sood, A.; Palni, U.; Gupta, A.; Palni, L.M. Micropropagation of Rosa damascena Mill. from mature bushes using thidiazuron. J. Hortic. Sci. Biotechnol. 2001, 76, 30–34. [Google Scholar] [CrossRef]
- Bhoomsiri, C.; Masomboon, N. Multiple shoot induction and plant regeneration of Rosa damascena Mill. Silpakorn Univ. Int. J. 2003, 3, 229–239. [Google Scholar]
- Kornova, K.; Mihailova, J.; Stefanova, A. Propagation of Rosa Kazanlika Top. (Rosa damascena var. Trigintipetala) using the in vitro method. Sci. Work. 2001, 46, 61–66. [Google Scholar]
- Kornova, K.; Michailova, J.; Astadjov, N. Application of in vitro techniques for propagation of Rosa kazanlika Top. (Rosa damascena var. trigintipetala). Biotechnol. Biotechnol. Equip. 2000, 14, 78–81. [Google Scholar] [CrossRef]
- Mamaghani, B.A.; Ghorbanli, M.; Assareh, M.H.; Zare, A.G. In vitro propagation of three Damask roses accessions. Iran. J. Plant Physiol. 2010, 1, 85–94. [Google Scholar]
- Noodezh, H.M.; Moieni, A.; Baghizadeh, A. In vitro propagation of the Damask rose (Rosa damascena Mill.). Vitr. Cell. Dev. Biol.-Plant 2012, 48, 530–538. [Google Scholar] [CrossRef]
- Kornova, K.M.; Michailova, J. Study of the in vitro rooting of Kazanlak oil-bearing rose (Rosa damascena Mill.). J. Essent. Oil Res. 1994, 6, 485–492. [Google Scholar] [CrossRef]
- Pati, P.K.; Sharma, M.; Sood, A.; Ahuja, P.S. Direct shoot regeneration from leaf explants of Rosa damascena Mill. Vitr. Cell. Dev. Biol.-Plant 2004, 40, 192–195. [Google Scholar] [CrossRef]
- Pati, P.K.; Sharma, M.; Sood, A.; Ahuja, P.S. Micropropagation of Rosa damascena and R. bourboniana in liquid cultures. In Liquid Systems for In Vitro Mass Propagation of Plants; Hvoslef-Eide, A.K., Preil, W., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2005; Volume III, pp. 373–385. [Google Scholar]
- Nak-Udom, N.; Kanchanapoom, K.; Kanchanapoom, K. Micropropagation from cultured nodal explants of rose (Rosa hybrida L. cv.‘Perfume Delight’). Songklanakarin J. Sci. Technol. 2009, 31, 583–586. [Google Scholar]
- Nizamani, F.; Nizamani, G.S.; Nizamani, M.R.; Ahmed, S.; Ahmed, N. Propagation of rose (Rosa hybrida L.) under tissue culture technique. Int. J. Biol. Res. 2016, 1, 23–27. [Google Scholar]
- Pawlicki, N.; Welander, M. Influence of carbohydrate source, auxin concentration and time of exposure on adventitious rooting of the apple rootstock Jork 9. Plant Sci. 1995, 106, 167–176. [Google Scholar] [CrossRef]
- Hasançebi, S.; Turgut Kara, N.; Çakir, Ö.; Ari, S. Micropropagation and root culture of Turkish endemic Astragalus chrysochlorus (Leguminosae). Turk. J. Bot. 2011, 35, 203–210. [Google Scholar] [CrossRef]
- Aasim, M.; Day, S.; Rezai, F.; Hajyzadeh, M.; Mahmud, S.T.; Ozcan, S. In vitro shoot regeneration from pre-conditioned explants of chickpea (Cicer arietinum L.) cv. Gokce. Afr. J. Biotechnol. 2011, 10, 2020–2023. [Google Scholar]
- Vinterhalter, D.; Grubisic, D.; Vinterhalter, B.; Konjevic, R. Light controlled root elongation in in vitro cultures of Dracaena fragrans Ker-Gawl. Plant Cell Tissue Org. Cult. 1990, 22, 1–6. [Google Scholar] [CrossRef]
- Mohamed, S.J.; Rihan, H.Z.; Aljafer, N.; Fuller, M.P. The Impact of Light Spectrum and Intensity on the Growth, Physiology, and Antioxidant Activity of Lettuce (Lactuca sativa L.). Plants 2021, 10, 2162. [Google Scholar] [CrossRef]
- Skirvin, R.M.; Chu, M.C. The effect of light quality on root development on in vitro grown miniature roses. Hortic Sci. 1984, 19, 575. [Google Scholar]
- Skirvin, R.M.; Chu, M.C.; Young, H.J. Rose. In Handbook of Plant Cell Culture; Ammirato, P.V., Sharp, W.R., Evans, D.A., Eds.; McGraw Hill Publishing Co., Ltd.: New York, NY, USA, 1990; Volume 5, pp. 716–743. [Google Scholar]
- Kumar, A.; Palni, L.M.S.; Nandi, S.K. The effect of light source and gelling agent on micropropagation of Rosa damascena Mill. and Rhynchostylis retusa (L.) Bl. J. Hortic. Sci. Biotechnol. 2003, 78, 786–792. [Google Scholar] [CrossRef]
- Pawłowska, B.; Szewczyk-Taranek, B.; Dziedzic, E.; Żupnik, M. Rooting response under LED systems in Rosa canina in vitro cultures. Acta Hortic. 2017, 1155, 519–524. [Google Scholar] [CrossRef]
- Al-Rekaby, L.S. Response of Two Rosa sp. to light quality in vitro. Iraqi J. Sci. 2023, 64, 5064–5072. [Google Scholar] [CrossRef]
- Chen, M.; Blankenship, R.E. Expanding the solar spectrum used by photosynthesis. Trends Plant Sci. 2011, 16, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.C.; Lin, C.C. Red light-emitting diode light irradiation improves root and leaf formation in difficult-to-propagate Protea cynaroides L. plantlets in vitro. HortScience 2012, 47, 1490–1494. [Google Scholar] [CrossRef]
- Budiarto, K. Spectral quality affects morphogenesis on Anthurium plantlet during in vitro culture. Agrivita 2010, 32, 234–240. [Google Scholar]
- Kurilčik, A.; Miklušytė-Čanova, R.; Dapkūnienė, S.; Žilinskaitė, S.; Kurilčik, G.; Tamulaitis, G.; Duchovskis, P.; Žukauskas, A. In vitro culture of Chrysanthemum plantlets using light-emitting diodes. Cent. Eur. J. Biol. 2008, 3, 161–167. [Google Scholar] [CrossRef]
- Bressan, P.H.; Kim, Y.J.; Hyndman, S.E.; Hasegawa, P.M.; Bressan, R.A. Factors affecting in vitro propagation of rose. J. Am. Soc. Hortic. Sci. 1982, 107, 979–990. [Google Scholar] [CrossRef]
- Thomas, T.D. The role of activated charcoal in plant tissue culture. Biotechnol. Adv. 2008, 26, 618–631. [Google Scholar] [CrossRef]
- Siddique, I.; Anis, M. In vitro shoot multiplication and plantlet regeneration from nodal explants of Cassia angustifolia (Vahl.): A medicinal plant. Acta Physiol. Plant 2007, 29, 233–238. [Google Scholar] [CrossRef]
- Druart, P.; Kevers, C.; Boxus, P.; Gaspar, T. In vitro promotion of root formation by apple shoots through darkness effect on endogenous phenols and peroxidases. Z. Pflanzen. Physiol. 1982, 108, 429–436. [Google Scholar] [CrossRef]
- Rout, G.R.; Samantaray, S.; Mottley, J.; Das, P. Biotechnology of the rose: A review of recent progress. Sci. Hortic. 1999, 81, 201–228. [Google Scholar] [CrossRef]
- Jabbarzadeh, Z.; Khosh-khui, M.; Salehi, H.; Saberivand, A. Inter simple sequence repeat (ISSR) markers as reproducible and specific tools for genetic diversity analysis of rose species. Afr. J. Biotechnol. 2010, 9, 6091–6095. [Google Scholar]
- Wu, K.; Jones, R.; Dannaeberger, L.; Scolnik, P.A. Detection of microsatellite polymorphisms without cloning. Nucleic Acids Res. 1994, 22, 3257–3258. [Google Scholar] [CrossRef] [PubMed]
- Senapati, S.K.; Aparajita, S.; Rout, G.R. An assessment of genetic fidelity of in vitro grown plantlets of rose (Rosa hybrida) through molecular markers. Afr. J. Biotechnol. 2012, 11, 16532–16538. [Google Scholar]
- Asadi, A.; Shooshtari, L. Assessment of somaclonal variation in micropropagation of Damask Rose (Rosa damascena Mill.) using molecular markers. MGj 2021, 15, 327–335. [Google Scholar]
No | Primer Code | Sequence 5′ → 3′ |
---|---|---|
1 | ISSR-UBC 818 | CACACACACACACACAG |
2 | ISSR-UBC 840 | GAGAGAGAGAGAGAGAYT |
3 | ISSR-UBC 836 | AGAGAGAGAGAGAGAGYA |
4 | ISSR-UBC 814 | CTCTCTCTCTCTCTCTCTA |
5 | ISSR-UBC 842 | GAGAGAGAGAGAGAGAYG |
Auxin Type | Concentration (mg L−1) | Rooting (%) | Number of Roots/Explant | Length of the Main Root/Explant (cm) | Fresh Weight/Explant (g) |
---|---|---|---|---|---|
Control | 0.0 | 0 f | 0.0 e | 0.0 f | 0.119 bcd |
2,4-D | 0.05 | 0 f | 0.0 e | 0.0 f | 0.091 cd |
0.1 | 22 d | 2.0 a | 0.2 f | 0.151 abc | |
0.2 | 11 e | 1.0 d | 0.2 f | 0.045 d | |
0.4 | 0 f | 0.0 e | 0.0 f | 0.075 cd | |
IAA | 0.05 | 22 d | 1.5 bc | 1.6 bc | 0.121 bcd |
0.1 | 11 e | 1.0 d | 1.0 d | 0.105 cd | |
0.2 | 22 d | 1.0 d | 0.3 ef | 0.154 abc | |
0.4 | 0 f | 0.0 e | 0.0 f | 0.104 cd | |
IBA | 0.05 | 22 d | 2.0 a | 1.1 cd | 0.130 abcd |
0.1 | 33 c | 1.3 bcd | 0.4 ef | 0.121 bcd | |
0.2 | 44 b | 1.3 cd | 0.5 ef | 0.215 a | |
0.4 | 11 e | 1.0 d | 1.7 b | 0.150 abc | |
NAA | 0.05 | 11 e | 1.0 d | 0.4 ef | 0.200 ab |
0.1 | 11 e | 2.0 a | 2.5 a | 0.121 bcd | |
0.2 | 56 a | 1.4 bcd | 0.7 de | 0.092 cd | |
0.4 | 56 a | 1.8 ab | 0.4 ef | 0.156 abc | |
p-values | |||||
Auxin type | <0.0001 *** | <0.0001 *** | <0.0001 *** | 0.0272 * | |
Auxin concentration | <0.0001 *** | <0.0001 *** | <0.0001 *** | 0.1164 NS | |
Auxin type × auxin concentration | <0.0001 *** | <0.0001 *** | <0.0001 *** | 0.1353 NS |
Medium Salt Strength | Sucrose Concentration (g L−1) | Rooting (%) | Number of Roots/Explant | Length of the Main Root/Explant (cm) | Fresh Weight/Explant (g) |
---|---|---|---|---|---|
Full strength | 20 | 0 e | 0.0 d | 0.00 b | 0.117 d |
Control (30) | 56 cd | 1.8 c | 0.70 b | 0.132 cd | |
40 | 44 d | 3.3 a | 0.75 b | 0.129 cd | |
60 | 67 c | 3.2 a | 1.00 b | 0.165 bcd | |
80 | 67 c | 3.2 a | 0.95 b | 0.141 bcd | |
Half strength | 20 | 33 d | 1.7 c | 0.65 b | 0.195 b |
30 | 33 d | 1.3 c | 0.50 b | 0.144 bcd | |
40 | 44 d | 2.0 b | 1.43 a | 0.183 b | |
60 | 78 b | 3.5 a | 1.65 a | 0.279 a | |
80 | 89 a | 3.0 ab | 1.87 a | 0.174 b | |
p-values | |||||
Medium salt strength | 0.0051 ** | 0.3479 NS | 0.0001 *** | <0.0001 *** | |
Sucrose concentration | <0.0001 *** | <0.0001 *** | 0.0020 ** | 0.0313 * | |
Medium salt strength × sucrose concentration | 0.0142 * | 0.0008 *** | 0.0735 NS | 0.0070 ** |
Sucrose Concentration (g L−1) | Light Spectra | Rooting (%) | Number of Roots/Plantlet | Length of the Main Root/Plantlet | Shoot Length (cm) | Fresh Weight/Plantlet (g) |
---|---|---|---|---|---|---|
60 | Fluorescent | 73 d | 3.56 bc | 1.29 d | 4.41 d | 0.292 d |
Cool white + warm white (1:1) | 73 d | 4.56 abc | 2.92 ab | 4.81 cd | 0.324 bc | |
Blue + red (2:1) | 83 cd | 4.77 ab | 1.38 cd | 5.13 bc | 0.332 bc | |
Blue + red (1:2) | 88 bc | 4.56 abc | 1.03 d | 4.94 bcd | 0.297 cd | |
80 | Fluorescent | 94 ab | 5.44 ab | 1.60 bcd | 5.78 a | 0.420 a |
Cool white + warm white (1:1) | 100 a | 3.11 c | 2.82 ab | 5.46 ab | 0.290 d | |
Blue + red (2:1) | 83 cd | 3.78 bc | 2.62 abc | 4.54 cd | 0.305 bcd | |
Blue + red (1:2) | 90 abc | 5.78 a | 3.69 a | 5.78 a | 0.408 a | |
p-values | ||||||
Sucrose concentrations | <0.0001 *** | 0.4272 NS | 0.0467 * | <0.0007 *** | <0.0001 *** | |
Light spectra | 0.0206 * | 0.3859 NS | <0.0014 ** | 0.1520 NS | 0.0001 *** | |
Sucrose concentrations × LEDs | <0.0001 *** | 0.0068 ** | <0.0192 * | <0.0005 *** | <0.0001 *** |
Primer Code | Total Bands | Monomorphic Bands | Polymorphic Bands | Polymorphism (%) |
---|---|---|---|---|
ISSR-UBC 818 | 9 | 9 | 0 | 0 |
ISSR-UBC 840 | 8 | 8 | 0 | 0 |
ISSR-UBC 836 | 4 | 4 | 0 | 0 |
ISSR-UBC 814 | 3 | 3 | 0 | 0 |
ISSR-UBC 842 | 4 | 3 | 1 | 25 |
Total | 28 | 27 | 1 | 1.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Ali, A.M.; Dewir, Y.H.; Al-Obeed, R.S. Micropropagation of Al-Taif Rose: Effects of Medium Constituents and Light on In Vitro Rooting and Acclimatization. Agronomy 2024, 14, 1120. https://doi.org/10.3390/agronomy14061120
Al-Ali AM, Dewir YH, Al-Obeed RS. Micropropagation of Al-Taif Rose: Effects of Medium Constituents and Light on In Vitro Rooting and Acclimatization. Agronomy. 2024; 14(6):1120. https://doi.org/10.3390/agronomy14061120
Chicago/Turabian StyleAl-Ali, Ali Mohsen, Yaser Hassan Dewir, and Rashid Sultan Al-Obeed. 2024. "Micropropagation of Al-Taif Rose: Effects of Medium Constituents and Light on In Vitro Rooting and Acclimatization" Agronomy 14, no. 6: 1120. https://doi.org/10.3390/agronomy14061120
APA StyleAl-Ali, A. M., Dewir, Y. H., & Al-Obeed, R. S. (2024). Micropropagation of Al-Taif Rose: Effects of Medium Constituents and Light on In Vitro Rooting and Acclimatization. Agronomy, 14(6), 1120. https://doi.org/10.3390/agronomy14061120