Fertilizers and Manures Enhance the Bioavailability of Soil Phosphorus Fractions in Karst Grassland
Abstract
:1. Introduction
2. Materials and Method
2.1. Site Description
2.2. Study Design
2.3. Soil Sample and Analysis
2.4. Statistical Analysis
3. Results
3.1. Soil Total Phosphorus
3.2. Soil Bioavailability of Phosphorus Fractions
3.3. Soil Biological Activity
3.4. The Relationship of Environmental Factors and Soil Bioavailability of Phosphorus Fractions
4. Discussion
4.1. Effect of Different Fertilizers on Soil Total Phosphorus
4.2. Effect of Different Fertilizers on the Soil Bioavailability of Phosphorus Fractions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elser, J.J.; Bracken, M.E.S.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef]
- Fu, D.; Wu, X.; Duan, C.; Zhao, L.; Li, B. Different life-form plants exert different rhizosphere effects on phosphorus biogeochemistry in subtropical mountainous soils with low and high phosphorus content. Soil Tillage Res. 2020, 199, 104516. [Google Scholar] [CrossRef]
- Hinsinger, P. Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: A review. Plant Soil 2001, 237, 173–195. [Google Scholar] [CrossRef]
- Cross, A.F.; Schlesinger, W.H. A literature review and evaluation of the. Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 1995, 64, 197–214. [Google Scholar] [CrossRef]
- Hedley, M.J.; Stewart, J.W.B.; Chauhan, B.S. Changes in Inorganic and Organic Soil Phosphorus Fractions Induced by Cultivation Practices and by Laboratory Incubations. Soil Sci. Soc. Am. J. 1982, 46, 970–976. [Google Scholar] [CrossRef]
- Tiessen, H.; Stewart, J.W.B.; Cole, C.V. Pathways of Phosphorus Transformations in Soils of Differing Pedogenesis. Soil Sci. Soc. Am. J. 1984, 48, 853–858. [Google Scholar] [CrossRef]
- Hou, E.; Chen, C.; Kuang, Y.; Zhang, Y.; Heenan, M.; Wen, D. A structural equation model analysis of phosphorus transformations in global unfertilized and uncultivated soils. Glob. Biogeochem. Cycles 2016, 30, 1300–1309. [Google Scholar] [CrossRef]
- Tian, X.; Bing, H.; Wu, Y.; Zhu, H.; Zhao, W.; He, Q.; Xiong, D. Farmland abandonment decreases soil bioavailable phosphorus but increases organic phosphorus in the mid-hills of Nepal. Catena 2022, 211, 106000. [Google Scholar] [CrossRef]
- MacDonald, G.K.; Bennett, E.M.; Potter, P.A.; Ramankutty, N. Agronomic phosphorus imbalances across the world’s croplands. Proc. Natl. Acad. Sci. USA 2011, 108, 3086–3091. [Google Scholar] [CrossRef]
- Li, Z.; Cui, S.; Zhang, Q.; Xu, G.; Feng, Q.; Chen, C.; Li, Y. Optimizing Wheat Yield, Water, and Nitrogen Use Efficiency with Water and Nitrogen Inputs in China: A Synthesis and Life Cycle Assessment. Front. Plant Sci. 2022, 13, 930484. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhang, Q.; Xu, G.; Liang, G.; Kim, D.-G.; Carmona, C.R.; Yang, M.; Xue, J.; Xiang, Y.; et al. Enhancing soil carbon and nitrogen through grassland conversion from degraded croplands in China: Assessing magnitudes and identifying key drivers of phosphorus reduction. Soil Tillage Res. 2024, 236, 105943. [Google Scholar] [CrossRef]
- Tian, X.; Engel, B.A.; Qian, H.; Hua, E.; Sun, S.; Wang, Y. Will reaching the maximum achievable yield potential meet future global food demand? J. Clean. Prod. 2021, 294, 126285. [Google Scholar] [CrossRef]
- Ford, D.; Williams, P. Introduction to Karst. In Karst Hydrogeology and Geomorphology; Ford, D., Williams, P., Eds.; Wiley: Hoboken, NJ, USA, 2007; pp. 1–8. [Google Scholar] [CrossRef]
- Du, E.; Terrer, C.; Pellegrini, A.F.A.; Ahlström, A.; van Lissa, C.J.; Zhao, X.; Xia, N.; Wu, X.; Jackson, R.B. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 2020, 13, 221–226. [Google Scholar] [CrossRef]
- Khan, A.; Zhang, G.; Li, T.; He, B. Fertilization and cultivation management promotes soil phosphorus availability by enhancing soil P-cycling enzymes and the phosphatase encoding genes in bulk and rhizosphere soil of a maize crop in sloping cropland. Ecotoxicol. Environ. Saf. 2023, 264, 115441. [Google Scholar] [CrossRef]
- Qaswar, M.; Ahmed, W.; Huang, J.; Liu, K.-L.; Zhang, L.; Han, T.-F.; DU, J.-X.; Ali, S.; Ur-Rahim, H.; Huang, Q.-H.; et al. Interaction of soil microbial communities and phosphorus fractions under long-term fertilization in paddy soil. J. Integr. Agric. 2022, 21, 2134–2144. [Google Scholar] [CrossRef]
- Wang, Q.; Qin, Z.-H.; Zhang, W.-W.; Chen, Y.-H.; Zhu, P.; Peng, C.; Wang, L.; Zhang, S.-X.; Colinet, G. Effect of long-term fertilization on phosphorus fractions in different soil layers and their quantitative relationships with soil properties. J. Integr. Agric. 2022, 21, 2720–2733. [Google Scholar] [CrossRef]
- Qin, W.; Zhao, X.; Yang, F.; Chen, J.; Mo, Q.; Cui, S.; Chen, C.; He, S.; Li, Z. Impact of fertilization and grazing on soil N and enzyme activities in a karst pasture ecosystem. Geoderma 2023, 437, 116578. [Google Scholar] [CrossRef]
- Tian, J.; Lu, X.; Chen, Q.; Kuang, X.; Liang, C.; Deng, L.; Lin, D.; Cai, K.; Tian, J. Phosphorus fertilization affects soybean rhizosphere phosphorus dynamics and the bacterial community in karst soils. Plant Soil 2022, 475, 137–152. [Google Scholar] [CrossRef]
- Gooneratne, S.; Laarveld, B.; Pathirana, K.; Christensen, D. Effects of dietary Cu, Mo and S on urinary Cu and Zn excretion in Simmental and Angus cattle. Res. Veter Sci. 2011, 91, e116–e120. [Google Scholar] [CrossRef]
- Salim, H.; Wood, K.M.; Abo-Ismail, M.K.; McEwen, P.L.; Mandell, I.B.; Miller, S.P.; Cant, J.P.; Swanson, K.C. Influence of feeding increasing levels of dry corn distillers grains plus solubles in whole corn grain-based finishing diets on total tract digestion, nutrient balance, and excretion in beef steers1,2. J. Anim. Sci. 2012, 90, 4441–4448. [Google Scholar] [CrossRef]
- Kuo, S. Phosphorus. In Methods of Soil Analysis: Part 3 Chemical Methods, 5.3; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Wiley: Hoboken, NJ, USA, 1996; pp. 869–919. [Google Scholar] [CrossRef]
- Brookes, P.C.; Powlson, D.S.; Jenkinson, D.S. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem. 1982, 14, 319–329. [Google Scholar] [CrossRef]
- Tiessen, H.; Moir, J.O. Characterization of Available P by Sequential Extraction. In Soil Sampling and Methods of Analysis; Carter, M.R., Ed.; Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 75–86. [Google Scholar]
- Thomas, G.W. Soil pH and Soil Acidity. In Methods of Soil Analysis: Part 3 Chemical Methods, 5.3; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Wiley: Hoboken, NJ, USA, 1996; pp. 475–490. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, K.H. Bulk Density. In Methods of Soil Analysis; Klute, A., Ed.; Wiley: Hoboken, NJ, USA, 1986; pp. 363–375. [Google Scholar] [CrossRef]
- Bremner, J.M.; Tabatabai, M.A. Use of an ammonia electrode for determination of ammonium in Kjeldahl analysis of soils. Commun. Soil Sci. Plant Anal. 1972, 3, 159–165. [Google Scholar] [CrossRef]
- Brady, N.; Weil, R. The Nature and Properties of Soils, 7th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Acosta-Martínez, V.; Ali Tabatabai, M. Phosphorus Cycle Enzymes. In Methods of Soil Enzymology; Dick, R.P., Ed.; Wiley: Hoboken, NJ, USA, 2011; pp. 161–183. [Google Scholar] [CrossRef]
- Shafqat, M.N.; Pierzynski, G.M.; Xia, K. Phosphorus Source Effects on Soil Organic Phosphorus: A31P NMR Study. Commun. Soil Sci. Plant Anal. 2009, 40, 1722–1746. [Google Scholar] [CrossRef]
- Chen, G.; Yuan, J.; Chen, H.; Zhao, X.; Wang, S.; Zhu, Y.; Wang, Y. Animal manures promoted soil phosphorus transformation via affecting soil microbial community in paddy soil. Sci. Total. Environ. 2022, 831, 154917. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, W.-Z.; Mu, H.-F.; Dang, T.-H. Inorganic Phosphorus Fractions and Phosphorus Availability in a Calcareous Soil Receiving 21-Year Superphosphate Application. Pedosphere 2010, 20, 304–310. [Google Scholar] [CrossRef]
- Anthonio, C.K.; Jing, H.; Jin, C.; Khan, M.N.; Jiangxue, D.; Garba, H.N.; Dongchu, L.; Guangrong, L.; Shujun, L.; Lisheng, L.; et al. Impact of long-term fertilization on phosphorus fractions and manganese oxide with their interactions in paddy soil aggregates. J. Environ. Manag. 2023, 333, 117440. [Google Scholar] [CrossRef] [PubMed]
- Bhat, N.A.; Riar, A.; Ramesh, A.; Iqbal, S.; Sharma, M.P.; Sharma, S.K.; Bhullar, G.S. Soil Biological Activity Contributing to Phosphorus Availability in Vertisols under Long-Term Organic and Conventional Agricultural Management. Front. Plant Sci. 2017, 8, 1523. [Google Scholar] [CrossRef] [PubMed]
- Halajnia, A.; Haghnia, G.; Fotovat, A.; Khorasani, R. Phosphorus fractions in calcareous soils amended with P fertilizer and cattle manure. Geoderma 2009, 150, 209–213. [Google Scholar] [CrossRef]
- Delgado, A.; Madrid, A.; Kassem, S.; Andreu, L.; del Carmen del Campillo, M. Phosphorus fertilizer recovery from calcareous soils amended with humic and fulvic acids. Plant Soil 2002, 245, 277–286. [Google Scholar] [CrossRef]
- Bi, Q.-F.; Li, K.-J.; Zheng, B.-X.; Liu, X.-P.; Li, H.-Z.; Jin, B.-J.; Ding, K.; Yang, X.-R.; Lin, X.-Y.; Zhu, Y.-G. Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil. Sci. Total. Environ. 2020, 703, 134977. [Google Scholar] [CrossRef]
- Chen, G.-L.; Xiao, L.; Xia, Q.-L.; Wang, Y.; Yuan, J.-H.; Chen, H.; Wang, S.-Q.; Zhu, Y.-Y. Characterization of Different Phosphorus Forms in Flooded and Upland Paddy Soils Incubated with Various Manures. ACS Omega 2021, 6, 3259–3266. [Google Scholar] [CrossRef] [PubMed]
- Condron, L.M.; Turner, B.L.; Cade-Menun, B.J. Chemistry and Dynamics of Soil Organic Phosphorus. In Phosphorus: Agriculture and the Environment; Sims, T., Sharpley, A.N., Eds.; Wiley: Hoboken, NJ, USA, 2005; pp. 87–121. [Google Scholar] [CrossRef]
- Guan, Z.-H.; Cao, Z.; Li, X.G.; Kühn, P.; Hu, G.; Scholten, T.; Zhu, J.; He, J.-S. Effects of winter grazing and N addition on soil phosphorus fractions in an alpine grassland on the Qinghai-Tibet Plateau. Agric. Ecosyst. Environ. 2023, 357, 108700. [Google Scholar] [CrossRef]
- Chtouki, M.; Naciri, R.; Garré, S.; Nguyen, F.; Zeroual, Y.; Oukarroum, A. Phosphorus fertilizer form and application frequency affect soil P availability, chickpea yield, and P use efficiency under drip fertigation. J. Plant Nutr. Soil Sci. 2022, 185, 603–611. [Google Scholar] [CrossRef]
- Gu, Y.; Ros, G.H.; Zhu, Q.; Zheng, D.; Shen, J.; Cai, Z.; Xu, M.; de Vries, W. Responses of total, reactive and dissolved phosphorus pools and crop yields to long-term fertilization. Agric. Ecosyst. Environ. 2023, 357, 108658. [Google Scholar] [CrossRef]
- Wang, Y.; Luo, D.; Xiong, Z.; Wang, Z.; Gao, M. Changes in rhizosphere phosphorus fractions and phosphate-mineralizing microbial populations in acid soil as influenced by organic acid exudation. Soil Tillage Res. 2023, 225, 105543. [Google Scholar] [CrossRef]
- Touhami, D.; Condron, L.M.; McDowell, R.W.; Moss, R. Effects of long-term phosphorus fertilizer inputs and seasonal conditions on organic soil phosphorus cycling under grazed pasture. Soil Use Manag. 2023, 39, 385–401. [Google Scholar] [CrossRef]
- Peng, S.; Kuang, X.; Cheng, H.; Wei, K.; Cai, K.; Tian, J. Post-agricultural succession affects the accumulation and enzymatic transformation of organic phosphorus in a karst area, southwest China. Plant Soil 2023, 498, 5–20. [Google Scholar] [CrossRef]
- Bhupenchandra, I.; Basumatary, A.; Dutta, S.; Das, A.; Choudhary, A.K.; Lal, R.; Sharma, A.D.; Sen, A.; Prabhabati, Y.; Sahoo, M.R. Repercussions of fertilization with boron and enriched organic manure on soil chemical characteristics, boron and phosphorus fractions, and French bean productivity in an acidic Inceptisol of eastern Himalaya. Sci. Hortic. 2024, 324, 112589. [Google Scholar] [CrossRef]
- Guo, Z.; Zhang, L.; Yang, W.; Hua, L.; Cai, C. Aggregate Stability under Long-Term Fertilization Practices: The Case of Eroded Ultisols of South-Central China. Sustainability 2019, 11, 1169. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, G.; Chen, H.; Chen, C.; Wang, J.; Ai, S.; Wei, D.; Li, D.; Ma, B.; Tang, C.; et al. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. ISME J. 2020, 14, 757–770. [Google Scholar] [CrossRef]
Layer (cm) | Bioavailable P (mg kg−1) | Active Po (mg kg−1) | Secondary Mineral P (mg kg−1) | Primary Mineral P (mg kg−1) | Occluded P (mg kg−1) | TP (g kg−1) |
---|---|---|---|---|---|---|
0–10 | 15.65 | 270.94 | 51.33 | 42.57 | 39.44 | 0.43 |
10–30 | 6.24 | 256.07 | 29.60 | 33.04 | 38.28 | 0.37 |
Treatment | Layer | pH | BD | SOM | TN |
---|---|---|---|---|---|
CK | 0–10 | 4.79 Ba | 0.99 Aa | 88.13 Ca | 2.59 Ba |
MF | 0–10 | 4.75 Ba | 0.99 Aa | 101.13 Ba | 2.85 ABa |
MM | 0–10 | 4.94 Aa | 1 Aa | 92.49 BCa | 2.72 Ba |
MFM | 0–10 | 5.06 Aa | 0.96 Aa | 123.36 Aa | 3.12 Aa |
CK | 10–30 | 4.84 Aa | 1.04 Aa | 51.45 Ab | 1.76 Bb |
MF | 10–30 | 4.89 Aa | 1.03 Ba | 51.17 Ab | 1.77 ABb |
MM | 10–30 | 4.96 Aa | 1.09 ABa | 47.99 Ab | 1.75 Bb |
MFM | 10–30 | 5.01 Aa | 1.01 Ba | 49.86 Ab | 1.85 Ab |
Two-way ANOVA | |||||
F | 0–10 | NA | NA | *** | * |
M | 0–10 | ** | NA | ** | NA |
F × M | 0–10 | NA | NA | * | NA |
F | 10–30 | NA | NA | NA | NA |
M | 10–30 | NA | NA | NA | NA |
F × M | 10–30 | NA | NA | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, J.; Yang, F.; Yang, W.; Zhang, M.; He, S.; Li, Z. Fertilizers and Manures Enhance the Bioavailability of Soil Phosphorus Fractions in Karst Grassland. Agronomy 2024, 14, 1429. https://doi.org/10.3390/agronomy14071429
Pan J, Yang F, Yang W, Zhang M, He S, Li Z. Fertilizers and Manures Enhance the Bioavailability of Soil Phosphorus Fractions in Karst Grassland. Agronomy. 2024; 14(7):1429. https://doi.org/10.3390/agronomy14071429
Chicago/Turabian StylePan, Jie, Feng Yang, Wen Yang, Mingjun Zhang, Shengjiang He, and Zhou Li. 2024. "Fertilizers and Manures Enhance the Bioavailability of Soil Phosphorus Fractions in Karst Grassland" Agronomy 14, no. 7: 1429. https://doi.org/10.3390/agronomy14071429
APA StylePan, J., Yang, F., Yang, W., Zhang, M., He, S., & Li, Z. (2024). Fertilizers and Manures Enhance the Bioavailability of Soil Phosphorus Fractions in Karst Grassland. Agronomy, 14(7), 1429. https://doi.org/10.3390/agronomy14071429