Identification of QTLs and Candidate Genes for Red Crown Rot Resistance in Two Recombinant Inbred Line Populations of Soybean [Glycine max (L.) Merr.]
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Pathogen Culture and Inoculation
2.3. Growth Conditions, Experimental Conditions, and Design
2.4. Phenotypic Data
2.4.1. Assessment of the Rate of Emergence and Survival for Resistance to Calonectria ilicicola
2.4.2. RIL Populations Lines Response to Calonectria ilicicola Infection
2.4.3. Analysis of Phenotypic Data
2.5. SNP Genotyping and Linkage Map Construction for ZM6 and MN RIL Populations
2.6. QTL Mapping for Emergence Rate, Survival Rate, and Disease Severity
2.7. Mining of Candidate Genes for Major QTLs
3. Results
3.1. Variability Characteristics of the Mapping Traits for the RIL Populations
3.2. QTL Detected in the ZM6 Population for Red Crown Rot Resistance in Soybean
3.3. QTL Detected in MN Population for Red Crown Rot Resistance in Soybean
3.4. Colocalization of QTLs in the QTL Hotspot
3.5. Candidate Gene Mining within Major “QTL Hotspots”
4. Discussion
4.1. Examining the Resistance to RCR in Two RIL Populations
4.2. QTL Detected for Red Crown Rot Resistance in ZM6 and MN Population
4.3. Identification of QTL Hotspot for Resistance to RCR in Soybean
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Henchion, M.; Hayes, M.; Mullen, A.M.; Fenelon, M.; Tiwari, B. Future protein supply and demand: Strategies and factors influencing a sustainable equilibrium. Foods 2017, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- Cattelan, A.J.; Dall’Agnol, A. The rapid soybean growth in Brazil. OCL 2018, 25, D102. [Google Scholar] [CrossRef]
- Ayalew, B.; Bekele, A.; Mazengia, Y. Analysis of cost and return of soybean production under small holder farmers in Pawe District, North Western Ethiopia. J. Nat. Sci. Res. 2018, 8, 28–34. [Google Scholar]
- Liao, Z.; Pei, S.; Bai, Z.; Lai, Z.; Wen, L.; Zhang, F.; Li, Z.; Fan, J. Economic Evaluation and Risk Premium Estimation of Rainfed Soybean under Various Planting Practices in a Semi-Humid Drought-Prone Region of Northwest China. Agronomy 2023, 13, 2840. [Google Scholar] [CrossRef]
- Sabagh, A.E.; Hossain, A.; Islam, M.S.; Barutçular, C.; Ratnasekera, D.; Kumar, N.; Meena, R.S.; Gharib, H.S.; Saneoka, H.; da Silva, J.A.T. Sustainable soybean production and abiotic stress management in saline environments: A critical review. Aust. J. Crop Sci. 2019, 13, 228–236. [Google Scholar] [CrossRef]
- Miransari, M. Environmental Stresses in Soybean Production: Soybean Production Volume 2; Academic Press: Cambridge, MA, USA, 2016; Volume 2. [Google Scholar]
- Lin, F.; Chhapekar, S.S.; Vieira, C.C.; Da Silva, M.P.; Rojas, A.; Lee, D.; Liu, N.; Pardo, E.M.; Lee, Y.-C.; Dong, Z. Breeding for disease resistance in soybean: A global perspective. Theor. Appl. Genet. 2022, 135, 3773–3872. [Google Scholar] [CrossRef]
- Gai, Y.; Deng, Q.; Chen, X.; Guan, M.; Xiao, X.; Xu, D.; Deng, M.; Pan, R. Phylogenetic diversity of Calonectria ilicicola causing Cylindrocladium black rot of peanut and red crown rot of soybean in southern China. J. Gen. Plant Pathol. 2017, 83, 273–282. [Google Scholar] [CrossRef]
- Fei, N.; Qi, Y.; Meng, T.; Fu, J.; Yan, X. First report of root rot caused by Calonectria ilicicola on blueberry in Yunnan Province, China. Plant Dis. 2018, 102, 1036. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, D.; Jiang, W.; Zhu, H.; Deng, S.; Wei, L. First report of soft rot of ginger caused by Calonectria ilicicola in Guangxi Province, China. Plant Dis. 2020, 104, 993. [Google Scholar] [CrossRef]
- Roy, K.; McLean, K.; Lawrence, G.; Patel, M.; Moore, W. First report of red crown rot on soybeans in Mississippi. Plant Dis. 1989, 73, 273. [Google Scholar] [CrossRef]
- Ochi, S.; Mimuro, G.; Kishi, S. Effect of red crown rot of soybean on occurrence of wrinkled seeds. J. Gen. Plant Pathol. 2022, 88, 232–238. [Google Scholar] [CrossRef]
- Yamamoto, S.; Nomoto, S.; Hashimoto, N.; Maki, M.; Hongo, C.; Shiraiwa, T.; Homma, K. Monitoring spatial and time-series variations in red crown rot damage of soybean in farmer fields based on UAV remote sensing. Plant Prod. Sci. 2023, 26, 36–47. [Google Scholar] [CrossRef]
- Kleczewski, N.; Plewa, D.; Kangas, C.; Phillippi, E.; Kleczewski, V. First report of red crown rot of soybeans caused by Calonectria ilicicola (anamorph: Cylindrocladium parasiticum) in Illinois. Plant Dis. 2019, 103, 1777. [Google Scholar] [CrossRef]
- Akamatsu, H.; Fujii, N.; Saito, T.; Sayama, A.; Matsuda, H.; Kato, M.; Kowada, R.; Yasuta, Y.; Igarashi, Y.; Komori, H. Factors affecting red crown rot caused by Calonectria ilicicola in soybean cultivation. J. Gen. Plant Pathol. 2020, 86, 363–375. [Google Scholar] [CrossRef]
- Win, K.T.; Kobayashi, M.; Tanaka, F.; Takeuchi, K.; Oo, A.Z.; Jiang, C.-J. Identification of Pseudomonas strains for the biological control of soybean red crown root rot. Sci. Rep. 2022, 12, 14510. [Google Scholar] [CrossRef] [PubMed]
- Berner, D.; Berggren, G.; Pace, M.; White, E.; Gershey, J.; Freedman, J. Red crown rot: Now a major disease of soybeans. La Agric. 1986, 29, 4–5. [Google Scholar]
- Lombard, L.; Crous, P.W.; Wingfield, B.D.; Wingfield, M.J. Phylogeny and systematics of the genus Calonectria. Stud. Mycol. 2010, 66, 31–69. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, J.; Fang, L.; Xie, Y.; Wang, L. First Report of Calonectria ilicicola Causing Fruit Rot on Postharvest Prunus persica in Zhejiang Province, China. Plant Dis. 2023, 107, 3313. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Shen, Y.; Chang, H.; Tseng, M.; Lin, Y. First report of soybean red crown rot caused by Calonectria ilicicola in Taiwan. Plant Dis. 2020, 104, 979. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, C.; Chen, C.; Chen, J.; Xiang, M.; Wanasinghe, D.N.; Hsiang, T.; Hyde, K.D.; Manawasinghe, I.S. Identification and characterization of Calonectria species associated with plant diseases in Southern China. J. Fungi 2022, 8, 719. [Google Scholar] [CrossRef]
- Tazawa, J. Occurrence and control of red crown rot of soybean. Plant Prot. 2013, 67, 46–49. [Google Scholar]
- Ochi, S. Studies on the epidemiology and control of red crown rot of soybean. J. Gen. Plant Pathol. 2017, 83, 427–428. [Google Scholar] [CrossRef]
- Guan, M.; Pan, R.; Gao, X.; Xu, D.; Deng, Q.; Deng, M. First report of red crown rot caused by Cylindrocladium parasiticum on soybean in Guangdong, Southern China. Plant Dis. 2010, 94, 485. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.-J.; Sugano, S.; Ochi, S.; Kaga, A.; Ishimoto, M. Evaluation of Glycine max and Glycine soja for resistance to Calonectria ilicicola. Agronomy 2020, 10, 887. [Google Scholar] [CrossRef]
- Shafique, H.A.; Sultana, V.; Ehteshamul-Haque, S.; Athar, M. Management of soil-borne diseases of organic vegetables. J. Plant Prot. Res. 2016, 56, 221–230. [Google Scholar] [CrossRef]
- Jiang, H.; Lv, S.; Zhou, C.; Qu, S.; Liu, F.; Sun, H.; Zhao, X.; Han, Y. Identification of QTL, QTL-by-environment interactions, and their candidate genes for resistance HG Type 0 and HG Type 1.2. 3.5. 7 in soybean using 3VmrMLM. Front. Plant Sci. 2023, 14, 1177345. [Google Scholar] [CrossRef]
- Kantartzi, S.K.; McAllister, K.; Lee, Y.-C. Targeting and mapping resistance to Cercospora sojina in two elite soybean (Glycine max L.) populations. J. Plant Breed. Crop Sci. 2023, 15, 118–128. [Google Scholar]
- Ferreira, E.G.C.; Marcelino-Guimarães, F.C. Mapping Major Disease Diseases Resistance Resistance Genes in Soybean by Genome-Wide Association Studies. Methods Mol. Biol. 2022, 2481, 313–340. [Google Scholar] [PubMed]
- Xiong, H.; Chen, Y.; Pan, Y.-B.; Wang, J.; Lu, W.; Shi, A. A genome-wide association study and genomic prediction for Phakopsora pachyrhizi resistance in soybean. Front. Plant Sci. 2023, 14, 1179357. [Google Scholar] [CrossRef]
- Sang, Y.; Liu, X.; Yuan, C.; Yao, T.; Li, Y.; Wang, D.; Zhao, H.; Wang, Y. Genome-wide association study on resistance of cultivated soybean to Fusarium oxysporum root rot in Northeast China. BMC Plant Biol. 2023, 23, 625. [Google Scholar] [CrossRef]
- Zhao, F.; Cheng, W.; Wang, Y.; Gao, X.; Huang, D.; Kong, J.; Antwi-Boasiako, A.; Zheng, L.; Yan, W.; Chang, F. Identification of novel genomic regions for bacterial leaf pustule (BLP) resistance in soybean (Glycine max L.) via integrating linkage mapping and association analysis. Int. J. Mol. Sci. 2022, 23, 2113. [Google Scholar] [CrossRef]
- Fournier, T.; Abou Saada, O.; Hou, J.; Peter, J.; Caudal, E.; Schacherer, J. Extensive impact of low-frequency variants on the phenotypic landscape at population-scale. eLife 2019, 8, e49258. [Google Scholar] [CrossRef] [PubMed]
- Chanchu, T.; Yimram, T.; Chankaew, S.; Kaga, A.; Somta, P. Mapping QTLs Controlling Soybean Rust Disease Resistance in Chiang Mai 5, an Induced Mutant Cultivar. Genes 2022, 14, 19. [Google Scholar] [CrossRef]
- Yamanaka, N.; Aoyagi, L.N.; Hossain, M.M.; Aoyagi, M.B.; Muraki, Y. Genetic Mapping of Seven Kinds of Locus for Resistance to Asian Soybean Rust. Plants 2023, 12, 2263. [Google Scholar] [CrossRef]
- Kim, K.H.; Park, J.-H.; Kim, M.Y.; Heu, S.; Lee, S.-H. Genetic mapping of novel symptom in response to soybean bacterial leaf pustule in PI 96188. J. Crop Sci. Biotechnol. 2011, 14, 119–123. [Google Scholar] [CrossRef]
- Li, D.; Sun, M.; Han, Y.; Teng, W.; Li, W. Identification of QTL underlying soluble pigment content in soybean stems related to resistance to soybean white mold (Sclerotinia sclerotiorum). Euphytica 2010, 172, 49–57. [Google Scholar] [CrossRef]
- Huynh, T.; Bastien, M.; Iquira, E.; Turcotte, P.; Belzile, F. Identification of QTLs associated with partial resistance to white mold in soybean using field-based inoculation. Crop Sci. 2010, 50, 969–979. [Google Scholar] [CrossRef]
- Han, Y.; Teng, W.; Yu, K.; Poysa, V.; Anderson, T.; Qiu, L.; Lightfoot, D.A.; Li, W. Mapping QTL tolerance to Phytophthora root rot in soybean using microsatellite and RAPD/SCAR derived markers. Euphytica 2008, 162, 231–239. [Google Scholar] [CrossRef]
- Zhang, Z.; Hao, J.; Yuan, J.; Song, Q.; Hyten, D.L.; Cregan, P.B.; Zhang, G.; Gu, C.; Li, M.; Wang, D. Phytophthora root rot resistance in soybean E00003. Crop Sci. 2014, 54, 492–499. [Google Scholar] [CrossRef]
- Niu, J.; Guo, N.; Sun, J.; Li, L.; Cao, Y.; Li, S.; Huang, J.; Zhao, J.; Zhao, T.; Xing, H. Fine mapping of a resistance gene RpsHN that controls Phytophthora sojae using recombinant inbred lines and secondary populations. Front. Plant Sci. 2017, 8, 538. [Google Scholar] [CrossRef]
- McAllister, K.R.; Lee, Y.-C.; Kantartzi, S.K. QTL mapping for resistance to Cercospora sojina in Essex Forrest soybean (Glycine max L.) lines. J. Plant Breed. Crop Sci. 2021, 13, 14–22. [Google Scholar]
- Pham, A.-T.; Harris, D.K.; Buck, J.; Hoskins, A.; Serrano, J.; Abdel-Haleem, H.; Cregan, P.; Song, Q.; Boerma, H.R.; Li, Z. Fine mapping and characterization of candidate genes that control resistance to Cercospora sojina K. Hara in two soybean germplasm accessions. PLoS ONE 2015, 10, e0126753. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Simko, V. R package “Corrplot”: Visualization of a Correlation Matrix (Version 0.84). 2017. Available online: https://github.com/taiyun/corrplot (accessed on 7 January 2023).
- Zhang, X.; Hina, A.; Song, S.; Kong, J.; Bhat, J.A.; Zhao, T. Whole-genome mapping identified novel “QTL hotspots regions” for seed storability in soybean (Glycine max L.). BMC Genom. 2019, 20, 499. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Feng, Q.; Qian, Q.; Zhao, Q.; Wang, L.; Wang, A.; Guan, J.; Fan, D.; Weng, Q.; Huang, T. High-throughput genotyping by whole-genome resequencing. Genome Res. 2009, 19, 1068–1076. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, S.; Chen, G.; Wang, Y.; Bhat, J.A.; Karikari, B.; Kong, J.; Gai, J.; Zhao, T. Deciphering the genetic architecture of plant height in soybean using two RIL populations sharing a common M8206 parent. Plants 2019, 8, 373. [Google Scholar] [CrossRef] [PubMed]
- Wang, S. Windows QTL Cartographer 2.5; Department of Statistics, North Carolina State University: Raleigh, NC, USA, 2007; Available online: https://brcwebportal.cos.ncsu.edu/qtlcart/WQTLCart.htm (accessed on 1 January 2019).
- Song, Q.; Marek, L.; Shoemaker, R.; Lark, K.; Concibido, V.; Delannay, X.; Specht, J.E.; Cregan, P. A new integrated genetic linkage map of the soybean. Theor. Appl. Genet. 2004, 109, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Churchill, G.A.; Doerge, R.W. Empirical threshold values for quantitative trait mapping. Genetics 1994, 138, 963–971. [Google Scholar] [CrossRef] [PubMed]
- Voorrips, R. MapChart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [PubMed]
- McCouch, S.R.; Chen, X.; Panaud, O.; Temnykh, S.; Xu, Y.; Cho, Y.G.; Huang, N.; Ishii, T.; Blair, M. Microsatellite marker development, mapping and applications in rice genetics and breeding. In Oryza: From Molecule to Plant; Sasaki, T., Moore, G., Eds.; Springer: Dordrecht, The Netherlands, 1997. [Google Scholar] [CrossRef]
- Tian, T.; Liu, Y.; Yan, H.; You, Q.; Yi, X.; Du, Z.; Xu, W.; Su, Z. agriGO v2. 0: A GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res. 2017, 45, W122–W129. [Google Scholar] [CrossRef]
- Kobayashi, M.; Win, K.T.; Jiang, C.-J. Soybean hypocotyls prevent Calonectria ilicicola invasion by multi-layered defenses. Front. Plant Sci. 2022, 12, 813578. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; He, Y.; Xia, R. TBtools, a toolkit for biologists integrating various biological data handling tools with a user-friendly interface. BioRxiv 2018, 1, 289660. [Google Scholar] [CrossRef]
- Hung, H.Y.; Browne, C.; Guill, K.; Coles, N.; Eller, M.; Garcia, A.; Lepak, N.; Melia-Hancock, S.; Oropeza-Rosas, M.; Salvo, S.; et al. The relationship between parental genetic or phenotypic divergence and progeny variation in the maize nested association mapping population. Heredity 2012, 108, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Gelli, M.; Konda, A.R.; Liu, K.; Zhang, C.; Clemente, T.E.; Holding, D.R.; Dweikat, I.M. Validation of QTL mapping and transcriptome profiling for identification of candidate genes associated with nitrogen stress tolerance in sorghum. BMC Plant Biol. 2017, 17, 123. [Google Scholar] [CrossRef] [PubMed]
- Win, K.T.; Jiang, C.-J. A fresh weight-based method for evaluating soybean resistance to red crown rot. Breed. Sci. 2021, 71, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, T.; Sakai, S.; Gomi, T.; Kikuchi, A. Development of methods for assessing resistance to black root rot caused by Calonectria crotalariae in soybean [Glycine max] and screening for resistant germplasm. Bull. Tohoku Natl. Agric. Exp. Stn. 1994, 88, 39–56. [Google Scholar]
- Antwi-Boasiako, A.; Jia, S.; Liu, J.; Guo, N.; Chen, C.; Karikari, B.; Feng, J.; Zhao, T. Identification and Genetic Dissection of Resistance to Red Crown Rot Disease in a Diverse Soybean Germplasm Population. Plants 2024, 13, 940. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Li, S.; Wang, Z.; Chang, F.; Kong, J.; Gai, J.; Zhao, T. Identification of Major Quantitative Trait Loci for Seed Oil Content in Soybeans by Combining Linkage and Genome-Wide Association Mapping. Front. Plant Sci. 2017, 8, 1222. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, Y. Bulk segregation analysis in the NGS era: A review of its teenage years. Plant J. 2022, 109, 1355–1374. [Google Scholar] [CrossRef] [PubMed]
- Mackay, I.; Caligari, P. Efficiencies of F2 and backcross generations for bulked segregant analysis using dominant markers. Crop Sci. 2000, 40, 626–630. [Google Scholar] [CrossRef]
- Jansen, R.; Van Ooijen, J.; Stam, P.; Lister, C.; Dean, C. Genotype-by-environment interaction in genetic mapping of multiple quantitative trait loci. Theor. Appl. Genet. 1995, 91, 33–37. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, Y.; Wu, D.; Zhao, X.; Teng, W.; Li, D.; Li, W. Identification of novel quantitative trait loci associated with tolerance to Phytophthora root rot in the soybean cultivar Hefeng 25 using two recombinant inbred line populations. Can. J. Plant Sci. 2017, 97, 827–834. [Google Scholar] [CrossRef]
- Antwi-Boasiako, A.; Zheng, L.; Begum, N.; Amoah, S.; Zhao, T. Progress towards germplasm evaluation and genetic improvement for resistance to Sclerotinia white mold in soybean. Euphytica 2021, 217, 178. [Google Scholar] [CrossRef]
- Huang, X.; Han, B. Natural variations and genome-wide association studies in crop plants. Annu. Rev. Plant Biol. 2014, 65, 531–551. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.-N.; Li, Y.-T.; Wu, Y.-Z.; Li, T.; Geng, R.; Cao, J.; Zhang, W.; Tan, X.-L. Plant disease resistance-related signaling pathways: Recent progress and future prospects. Int. J. Mol. Sci. 2022, 23, 16200. [Google Scholar] [CrossRef] [PubMed]
- Ngou, B.P.M.; Ding, P.; Jones, J.D. Thirty years of resistance: Zig-zag through the plant immune system. Plant Cell 2022, 34, 1447–1478. [Google Scholar] [CrossRef] [PubMed]
- Sertsuvalkul, N.; DeMell, A.; Dinesh-Kumar, S.P. The complex roles of autophagy in plant immunity. FEBS Lett. 2022, 596, 2163–2171. [Google Scholar] [CrossRef] [PubMed]
- Devanna, B.N.; Jaswal, R.; Singh, P.K.; Kapoor, R.; Jain, P.; Kumar, G.; Sharma, Y.; Samantaray, S.; Sharma, T.R. Role of transporters in plant disease resistance. Physiol. Plant. 2021, 171, 849–867. [Google Scholar] [CrossRef] [PubMed]
- Strobel, G.A. A mechanism of disease resistance in plants. Sci. Am. 1975, 232, 80–89. [Google Scholar] [CrossRef]
- Xi, Y.; Cesari, S.; Kroj, T. Insight into the structure and molecular mode of action of plant paired NLR immune receptors. Essays Biochem. 2022, 66, 513–526. [Google Scholar]
- Zhou, L.; Deng, S.; Xuan, H.; Fan, X.; Sun, R.; Zhao, J.; Wang, H.; Guo, N.; Xing, H. A novel TIR-NBS-LRR gene regulates immune response to Phytophthora root rot in soybean. Crop J. 2022, 10, 1644–1653. [Google Scholar] [CrossRef]
- Ameline-Torregrosa, C.; Wang, B.-B.; O’Bleness, M.S.; Deshpande, S.; Zhu, H.; Roe, B.; Young, N.D.; Cannon, S.B. Identification and characterization of nucleotide-binding site-leucine-rich repeat genes in the model plant Medicago truncatula. Plant Physiol. 2008, 146, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Lu, T.; Zhu, L.; Cao, A.; Xie, S.; Chen, X.; Shen, H.; Xie, Q.; Li, R.; Zhu, J. Multicopper oxidases GbAO and GbSKS are involved in the Verticillium dahliae resistance in Gossypium barbadense. J. Plant Physiol. 2023, 280, 153887. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.Z.; Whitham, S.A. Overexpression of a soybean nuclear localized type–III DnaJ domain-containing HSP40 reveals its roles in cell death and disease resistance. Plant J. 2013, 74, 110–121. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.H.; Hwang, B.K. Pepper heat shock protein 70a interacts with the type III effector AvrBsT and triggers plant cell death and immunity. Plant Physiol. 2015, 167, 307–322. [Google Scholar] [CrossRef] [PubMed]
Scale | Damage Degree | Resistance Degree |
---|---|---|
0 | No visible sign of necrotic lesions on the root | Immune |
1 | Only the tap root exhibits small necrotic lesions without obvious changes in its form and shape | Highly Resistant |
2 | Necrotic lesions spread to the crown and root system and seedling mortality less than 10% | Resistant |
3 | Roots show serious necrotic lesions with less than 50% loss by rot and seedling mortality of 10–20% | Moderately Susceptible |
4 | Roots show serious necrotic lesions with more than 50% root loss by rot and seedling mortality of 21–50% | Susceptible |
5 | Over 50% of root loss by rot with seedling mortality of more than 50% | Highly Susceptible |
Population/ Environment a | Trait b | Mean of Parent (%) c | RIL Populations d | |||||
---|---|---|---|---|---|---|---|---|
♀ | ♂ | Mean ± SE | Min. | Max. | Kurtosis | Skewness | ||
ZM6/2 | ER | 73.33 ± 3.33 | 83.33 ± 3.33 | 83.11 ± 0.00 | 63.33 | 100.00 | −0.86 | 0.13 |
SR | 82.14 ± 3.57 | 100 ± 0.00 | 86.07 ± 0.00 | 54.76 | 100.00 | −0.09 | −0.63 | |
DS | 3.33 ± 0.33 | 1.00 ± 0.00 | 2.83 ± 1.00 | 1.00 | 4.00 | −0.50 | −0.10 | |
ZM6/1 | ER | 76.67 ± 3.33 | 93.33 ± 3.33 | 80.44 ± 1.00 | 56.67 | 100.00 | −0.30 | −0.32 |
SR | 82.74 ± 3.90 | 100 ± 0.00 | 81.79 ± 1.00 | 39.68 | 100.00 | −0.05 | −0.59 | |
DS | 4.33 ± 0.33 | 2.00 ± 0.00 | 3.46 ± 1.00 | 1.00 | 4.33 | −0.50 | −0.10 | |
MN/2 | ER | 100.00 ± 0.00 | 80.00 ± 0.00 | 82.50 ± 5.20 | 35.67 | 100.00 | 1.31 | −1.08 |
SR | 100.00 ± 0.00 | 83.33 ± 6.93 | 96.45 ± 0.04 | 74.17 | 100.00 | 3.86 | −1.93 | |
DS | 1.67 ± 34.64 | 3.67 ± 5.75 | 2.46 ± 6.09 | 1.00 | 4.00 | −0.66 | 0.30 | |
MN/1 | ER | 96.67 ± 5.97 | 70.00 ± 0.00 | 78.44 ± 3.92 | 60.00 | 90.00 | 3.67 | −1.36 |
SR | 100.00 ± 0.00 | 76.67 ± 8.00 | 87.86 ± 3.00 | 52.86 | 100.00 | 1.28 | −1.03 | |
DS | 2.00 ± 0.00 | 3.6 ± 6.00 | 3.00 ± 6.00 | 1.33 | 4.00 | −0.53 | −0.52 |
QTL a | Pos (cM) b | LOD c | Add d | PVE (%) e | CI (cM) f | Physical Region (bp) | Env g |
---|---|---|---|---|---|---|---|
qER-7-1zm6 | 64.51 | 3.82 | 5.81 | 10.37 | 61.4–69.7 | 15,375,767–17,747,973 | 1 |
qER-8-1zm6 | 150.81 | 3.22 | 5.04 | 8.40 | 147.7–154.7 | 41,485,100–42,915,255 | 2 |
qER-10-1zm6 | 16.61 | 3.25 | −5.24 | 8.56 | 12.8–19.6 | 1,694,367–2,679,837 | 1 |
qER-10-2zm6 | 106.41 | 4.04 | −6.00 | 10.70 | 105.1–109.9 | 43,900,754–44,741,960 | 2 |
qER-11-1zm6 | 73.81 | 3.86 | 7.20 | 10.40 | 71.2–75.5 | 14,962,695–15,949,296 | 1 |
qSR-6-1zm6 | 9.71 | 2.97 | 5.32 | 7.78 | 6.7–15.6 | 1,813,130–3,196,555 | 2 |
qSR-7-1zm6 | 48.81 | 4.55 | 7.08 | 12.71 | 46.2–50.1 | 9,304,376–10,428,532 | 2 |
qSR-7-2zm6 | 56.01 | 5.19 | 7.71 | 14.87 | 53–62 | 14,134,797–15,903,280 | 2 |
59.21 | 3.21 | 6.00 | 8.62 | 52.7–61.4 | 14,134,797–15,452,798 | 1 | |
qSR-10-1zm6 | 16.61 | 3.37 | −6.00 | 8.88 | 10.3–19.6 | 1,603,735–2,732,880 | 1 |
qSR-11-1zm6 | 76.41 | 4.19 | 7.66 | 11.34 | 75.5–81.8 | 15,676,274–16,816,800 | 1 |
qSR-17-1zm6 | 46.41 | 3.32 | −5.93 | 8.74 | 32.8–53.7 | 6,777,393–9,645,325 | 2 |
qDS-11-1zm6 | 139.11 | 3.81 | −0.26 | 9.55 | 136–140.8 | 37,603,249–38,850,696 | 2 |
qDS-13-1zm6 | 8.91 | 3.69 | 0.27 | 9.26 | 3.1–11.2 | 4,552,834–5,592,448 | 1 |
qDS-18-1zm6 | 120.11 | 3.63 | −0.28 | 9.57 | 118–122.7 | 59,218,992–60,685,675 | 1 |
qDS-18-2zm6 | 128.51 | 5.04 | −0.32 | 12.95 | 124.8–129.5 | 61,300,197–62,014,706 | 1 |
128.51 | 3.57 | −0.25 | 8.89 | 124.2–129.5 | 60,909,812–62,014,706 | 2 |
QTL a | Pos(cM) b | LOD c | Add d | PVE (%) e | CI (cM) f | Physical Region (bp) | Env g |
---|---|---|---|---|---|---|---|
qER-1-1mn | 27.11 | 7.61 | −7.24 | 25.24 | 25–29 | 8,823,531–22,021,358 | 1 |
qER-10-1mn | 0.01 | 3.38 | −3.81 | 10.72 | 0–8 | 2,275,280–4,174,791 | 1 |
qER-8-1mn | 0.01 | 2.63 | 3.88 | 9.59 | 0–10 | 14,650,727–11,805,246 | 2 |
qER-8-2mn | 48.71 | 3.35 | −4.51 | 12.92 | 33.2–57.9 | 8,218,976–18,160,078 | 2 |
qER-15-1mn | 16.11 | 3.44 | 4.31 | 12.66 | 13.5–22.3 | 5,519,255–113,832,93 | 2 |
qSR-2-1mn | 111.51 | 2.67 | 2.97 | 9.32 | 105.5–125.6 | 7,361,306–15,293,225 | 1 |
qSR-17-1mn | 34.01 | 2.91 | −3.04 | 9.83 | 31.4–34.6 | 18,508,753–33,427,203 | 1 |
qSR-1-1mn | 19.81 | 2.64 | −1.83 | 10.7 | 14.2–23.3 | 3,617,559–8,823,788 | 2 |
qSR-1-2mn | 29.01 | 2.73 | −1.68 | 8.69 | 27.1–35 | 21,174,218–44,479,895 | 2 |
qDS-1-1mn | 37.91 | 2.74 | 0.25 | 10.6 | 32.8–41.3 | 10,404,837–43,932,907 | 1 |
qDS-1-2mn | 46.61 | 3.22 | 0.27 | 11.7 | 44.8–52.6 | 38,197,263–49,324,405 | 1 |
qDS-1-3mn | 56.71 | 3.67 | −0.26 | 11.84 | 51.4–58.2 | 41,313,930–50,832,292 | 2 |
qDS-4-1mn | 154.41 | 3.28 | −0.25 | 10.51 | 152.4–164 | 11,631,171–36,956,769 | 2 |
qDS-13-1mn | 3.41 | 3.65 | −0.27 | 12.28 | 0–7.8 | 688,713–5,592,448 | 2 |
QTL Hotspot Name | QTL Name | LOD a | Add b | PVE (%) c | Physical Region (bp) |
---|---|---|---|---|---|
Hotspot A | qER-1-1mn | 7.61 | −7.24 | 25.24 | 8,823,531–44,479,895 |
qSR-1-2mn | 2.73 | −1.68 | 8.69 | ||
Hotspot B | qSR-7-2zm6 | 5.19 | 7.71 | 14.87 | 14,134,797–15,903,280 |
3.20 | 6.00 | 8.62 | |||
Hotspot C | qER-10-1zm6 | 3.25 | −5.24 | 8.56 | 1,603,735–2,732,880 |
qSR-10-1zm6 | 3.37 | −6.00 | 8.88 | ||
Hotspot D | qER-11-1zm6 | 3.86 | 7.20 | 10.40 | 14,962,695–16,816,800 |
qSR-11-1zm6 | 4.19 | 7.66 | 11.34 | ||
Hotspot E | qDS-13-1zm6 | 3.81 | −0.26 | 9.55 | 688,713–5,592,448 |
qDS-13-1mn | 3.65 | −0.27 | 12.28 | ||
Hotspot F | qDs-18-2zm6 | 5.04 | −0.32 | 12.95 | 60,909,812–62,014,706 |
3.57 | −0.25 | 8.89 |
QTL Hotspot | Gene Mapped IDs a | Annotation Descriptions b |
---|---|---|
A | Glyma.01G127100 | Disease resistance-responsive; Dirigent-like protein |
Glyma.01G126600 | Disease resistance-responsive; Dirigent-like protein | |
Glyma.01G112300 | Signal transduction; Leucine Rich Repeat | |
Glyma.01G127200 | Disease resistance-responsive; Dirigent-like protein | |
Glyma.01G127700 | Signal transduction; Defense response | |
B | Glyma.07G133900 | Lignin catabolic process; multicopper oxidase |
Glyma.07G134100 | Lignin catabolic process; multicopper oxidase | |
C | Glyma.10G019900 | Glutathione metabolic process; glutathione S-transferase |
Glyma.10G023300 | Protein phosphorylation; serine/threonine protein kinase | |
Glyma.10G023400 | Protein phosphorylation; serine/threonine protein kinase | |
Glyma.10G028200 | Bifunctional inhibitor/lipid-transfer protein/seed storage 2S albumin superfamily protein | |
Glyma.10G025700 | F-box family protein; protein binding | |
D | Glyma.11G181200 | F-box family protein; protein binding |
Glyma.11G192300 | Oxidation-reduction process; pheophorbide an oxygenase | |
Glyma.11G193600 | Cellular glucan metabolic process; cell wall biogenesis | |
E | Glyma.13G066100 | DNA repair; ATP binding |
Glyma.13G069200 | Zinc finger (AN1-like) family protein | |
Glyma.13G076200 | Defense response; Signal transduction; Leucine Rich Repeat | |
F | Glyma.18G287000 | Defense response; signal transduction |
Glyma.18G289100 | ATP binding, hsp70 protein | |
Glyma.18G289600 | ATP binding, hsp70 protein | |
Glyma.18G293200 | Drug transmembrane transport; multidrug resistance protein | |
Glyma.18G293300 | Drug transmembrane transport; multidrug resistance protein |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antwi-Boasiako, A.; Zhang, C.; Almakas, A.; Liu, J.; Jia, S.; Guo, N.; Chen, C.; Zhao, T.; Feng, J. Identification of QTLs and Candidate Genes for Red Crown Rot Resistance in Two Recombinant Inbred Line Populations of Soybean [Glycine max (L.) Merr.]. Agronomy 2024, 14, 1693. https://doi.org/10.3390/agronomy14081693
Antwi-Boasiako A, Zhang C, Almakas A, Liu J, Jia S, Guo N, Chen C, Zhao T, Feng J. Identification of QTLs and Candidate Genes for Red Crown Rot Resistance in Two Recombinant Inbred Line Populations of Soybean [Glycine max (L.) Merr.]. Agronomy. 2024; 14(8):1693. https://doi.org/10.3390/agronomy14081693
Chicago/Turabian StyleAntwi-Boasiako, Augustine, Chunting Zhang, Aisha Almakas, Jiale Liu, Shihao Jia, Na Guo, Changjun Chen, Tuanjie Zhao, and Jianying Feng. 2024. "Identification of QTLs and Candidate Genes for Red Crown Rot Resistance in Two Recombinant Inbred Line Populations of Soybean [Glycine max (L.) Merr.]" Agronomy 14, no. 8: 1693. https://doi.org/10.3390/agronomy14081693
APA StyleAntwi-Boasiako, A., Zhang, C., Almakas, A., Liu, J., Jia, S., Guo, N., Chen, C., Zhao, T., & Feng, J. (2024). Identification of QTLs and Candidate Genes for Red Crown Rot Resistance in Two Recombinant Inbred Line Populations of Soybean [Glycine max (L.) Merr.]. Agronomy, 14(8), 1693. https://doi.org/10.3390/agronomy14081693