A Study on Hyperspectral Soil Moisture Content Prediction by Incorporating a Hybrid Neural Network into Stacking Ensemble Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sample Collection and Determination
2.3. Measurement and Pre-Processing of Hyperspectral Data
2.4. Research Methods
2.4.1. Overview of GWO–CNN–GRU–Attention Model
- (1)
- Convolutional Neural Network
- (2)
- Gray Wolf Optimization
- (3)
- Gated Recurrent Unit
- (4)
- GWO–CNN–GRU–Attention
2.4.2. Overview of the Stacking Model
- (1)
- Boosting and Bagging algorithm
- (2)
- Feedforward neural network
- (3)
- Stacking
2.5. Evaluation Method
3. Results
3.1. Sample Analysis
3.2. Prediction Results of the GWO–CNN–GRU–Attention Model
3.3. Prediction Results of the Stacking Model
4. Discussion
5. Conclusions
- (1)
- The GWO–CNN–GRU–Attention method improves the accuracy of hyperspectral soil water content inversion, compared to CNN, GWO-CNN, GWO-CNN-GRU, and GWO–CNN–Attention.
- (2)
- Nine models from Boosting, the Bagging ensemble learning algorithm, the feedforward neural network, and GWO–CNN–GRU–Attention are utilized as the base learners of the stacking model. This model exhibits strong stability and predictive performance in this study. The R2, RMSE, and RPD values of the stacking model on the test set are 0.952, 0.227, and 4.577, respectively. It achieves the best evaluation index and the highest inversion accuracy when compared with other models. In conclusion, the stacking ensemble learning model incorporating the hybrid neural network greatly improves the prediction of hyperspectral soil moisture content.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ge, J.; Thomasson, A.; Sui, R. Remote Sensing of Soil Properties in Precision Agriculture: A Review. Front. Earth Sci. 2011, 5, 229–238. [Google Scholar] [CrossRef]
- Bing, L.; Phuong, D.; Liu, J.; He, Y.; Shang, J. Recent Advances of Hyperspectral Imaging Technology and Applications in Agriculture. Remote Sens. 2020, 12, 2659. [Google Scholar] [CrossRef]
- Li, H.; Cui, J.; Zhang, X.; Han, Y.; Cao, L. Dimensionality Reduction and Classification of Hyperspectral Remote Sensing Image Feature Extraction. Remote Sens. 2022, 14, 4579. [Google Scholar] [CrossRef]
- Guo, P.; Li, T.; Gao, H.; Chen, X.; Cui, Y.; Huang, Y. Evaluating Calibration and Spectral Variable Selection Methods for Predicting Three Soil Nutrients Using Vis-Nir Spectroscopy. Remote Sens. 2021, 13, 4000. [Google Scholar] [CrossRef]
- Liu, J.; Dong, Z.; Xia, J.; Wang, H.; Meng, T.; Zhang, R.; Han, J.; Wang, N.; Xie, J. Estimation of Soil Organic Matter Content Based on Cars Algorithm Coupled with Random Forest. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 258, 119823. [Google Scholar] [CrossRef]
- Tinghui, W.; Yu, J.; Lu, J.; Zou, X.; Zhang, W. Research on Inversion Model of Cultivated Soil Moisture Content Based on Hyperspectral Imaging Analysis. Agriculture 2020, 10, 292. [Google Scholar] [CrossRef]
- Jia, L.S.; Le, Z. Quantitative Analysis of Soil Total Nitrogen Using Hyperspectral Imaging Technology with Extreme Learning Machine. Sensors 2019, 19, 4355. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, P.; Pu, Z.; Chen, X. Calibration and Validation of Salt-Resistant Hyperspectral Indices for Estimating Soil Moisture in Arid Land. J. Hydrol. 2011, 408, 276–285. [Google Scholar] [CrossRef]
- Yin, Y.B.; Li, X.; Zhao, Z.; Dong, D.R. Predict Model and Analysis of the Sandy Soil Moisture with Hyperspectral. Remote Sens. Technol. Appl. 2011, 26, 355–359. [Google Scholar]
- Lim, H.H.; Cheon, E.; Lee, D.-H.; Jeon, J.-S.; Lee, S.-R. Soil Water Content Measurement Technology Using Hyperspectral Visible and near-Infrared Imaging Technique. J. Korean Geotech. Soc. 2019, 35, 51–62. [Google Scholar]
- Yu, L.; Zhu, Y.; Hong, Y.; Xia, T.; Liu, M.; Zhou, Y. Determination of Soil Moisture Content by Hyperspectral Technology with Cars Algorithm. Trans. Chin. Soc. Agric. Eng. 2016, 32, 138–145. [Google Scholar]
- Wang, W.; Gao, M.; Wang, J. Hyperspectral Parameters and Prediction Model of Soil Moisture in Apple Orchards. IOP Conf. Ser. Earth Environ. Sci. 2021, 687, 012085. [Google Scholar] [CrossRef]
- Xu, C.; Zeng, W.; Huang, J.; Wu, J.; Van Leeuwen, W.J. Prediction of Soil Moisture Content and Soil Salt Concentration from Hyperspectral Laboratory and Field Data. Remote Sens. 2016, 8, 42. [Google Scholar] [CrossRef]
- Lv, J.; Zhang, R.; Tu, J.; Liao, M.; Pang, J.; Yu, B.; Li, K.; Xiang, W.; Fu, Y.; Liu, G. A Gnss-Ir Method for Retrieving Soil Moisture Content from Integrated Multi-Satellite Data That Accounts for the Impact of Vegetation Moisture Content. Remote Sens. 2021, 13, 2442. [Google Scholar] [CrossRef]
- Cai, L.; Ding, J. Wavelet Transformation Coupled with Cars Algorithm Improving Prediction Accuracy of Soil Moisture Content Based on Hyperspectral Reflectance. Trans. Chin. Soc. Agric. Eng. 2017, 33, 144–151. [Google Scholar]
- Ke, X.; Xia, S.; Shen, Q.; Yang, B.; Song, Q.; Xu, Y.; Zhang, S.; Zhou, X.; Zhou, Y. Moisture Spectral Characteristics and Hyperspectral Inversion of Fly Ash-Filled Reconstructed Soil. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 253, 119590. [Google Scholar]
- Shen, L.; Gao, M.; Yan, J.; Li, Z.-L.; Leng, P.; Yang, Q.; Duan, S.-B. Hyperspectral Estimation of Soil Organic Matter Content Using Different Spectral Preprocessing Techniques and Plsr Method. Remote Sens. 2020, 12, 1206. [Google Scholar] [CrossRef]
- Ge, J.D.; Wang, J.; Fei, W.; Sun, H. Estimation of Soil Moisture Content Based on Competitive Adaptive Reweighted Sampling Algorithm Coupled with Machine Learning. Acta Opt. Sin. 2018, 38, 1030001. [Google Scholar]
- Lobato, M.; Norris, W.R.; Nagi, R.; Soylemezoglu, A.; Nottage, D. Machine Learning for Soil Moisture Prediction Using Hyperspectral and Multispectral Data. In Proceedings of the 2021 IEEE 24th International Conference on Information Fusion (FUSION), Sun City, South Africa, 1–4 November 2021. [Google Scholar]
- Jia, P.; Zhang, J.; He, W.; Yuan, D.; Hu, Y.; Zamanian, K.; Jia, K.; Zhao, X. Inversion of Different Cultivated Soil Types' Salinity Using Hyperspectral Data and Machine Learning. Remote Sens. 2022, 14, 5639. [Google Scholar] [CrossRef]
- Hong, D.; Gao, L.; Yokoya, N.; Yao, J.; Chanussot, J.; Du, Q.; Zhang, B. More Diverse Means Better: Multimodal Deep Learning Meets Remote-Sensing Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4340–4354. [Google Scholar] [CrossRef]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop Types Using Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Xu, F.; Hu, C.; Li, J.; Plaza, A.; Datcu, M. Special Focus on Deep Learning in Remote Sensing Image Processing. Sci. China-Inf. Sci. 2020, 63, 140300. [Google Scholar] [CrossRef]
- Yang, X.; Ye, Y.; Li, X.; Lau, R.Y.K.; Zhang, X.; Huang, X. Hyperspectral Image Classification with Deep Learning Models. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5408–5423. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Zhao, J.; Hu, X.; Ma, X. Application of Hyperspectral Technology Combined with Genetic Algorithm to Optimize Convolution Long- and Short-Memory Hybrid Neural Network Model in Soil Moisture and Organic Matter. Appl. Sci. 2022, 12, 10333. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Deo, R.C.; Raj, N.; Ghahramani, A.; Feng, Q.; Yin, Z.; Yang, L. Deep Learning Forecasts of Soil Moisture: Convolutional Neural Network and Gated Recurrent Unit Models Coupled with Satellite-Derived Modis, Observations and Synoptic-Scale Climate Index Data. Remote Sens. 2021, 13, 554. [Google Scholar] [CrossRef]
- Tang, J.; Liu, G.; Pan, Q. A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems: Applications and Trends. IEEE/CAA J. Autom. Sin. 2021, 8, 1627–1643. [Google Scholar] [CrossRef]
- Tao, L.; Wang, G.; Chen, X.; Li, J.; Cai, Q. Soil Moisture Retrieval Using Modified Particle Swarm Optimization and Back-Propagation Neural Network. Photogramm. Eng. Remote Sens. 2019, 85, 789–798. [Google Scholar] [CrossRef]
- Liang, Y.-J.; Ren, C.; Wang, H.-Y.; Huang, Y.-B.; Zheng, Z.-T. Research on Soil Moisture Inversion Method Based on Ga-Bp Neural Network Model. Int. J. Remote Sens. 2019, 40, 2087–2103. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Zhang, N.; Zhang, X.; Shang, P.; Ma, R.; Yuan, X.; Li, L.; Bai, T. Detection of Cotton Verticillium Wilt Disease Severity Based on Hyperspectrum and Gwo-Svm. Remote Sens. 2023, 15, 3373. [Google Scholar] [CrossRef]
- Ladi, S.K.; Panda, G.K.; Dash, R.; Ladi, P.K.; Dhupar, R. A Novel Grey Wolf Optimisation Based Cnn Classifier for Hyperspectral Image Classification. Multimed. Tools Appl. 2022, 81, 28207–28230. [Google Scholar] [CrossRef]
- Ge, X.; Ding, J.; Jin, X.; Wang, J.; Chen, X.; Li, X.; Liu, J.; Xie, B. Estimating Agricultural Soil Moisture Content through Uav-Based Hyperspectral Images in the Arid Region. Remote Sens. 2021, 13, 1562. [Google Scholar] [CrossRef]
- Lin, N.; Jiang, R.; Li, G.; Yang, Q.; Li, D.; Yang, X. Estimating the Heavy Metal Contents in Farmland Soil from Hyperspectral Images Based on Stacked Adaboost Ensemble Learning. Ecol. Indic. 2022, 143, 109330. [Google Scholar] [CrossRef]
- Xie, B.; Ding, J.; Ge, X.; Li, X.; Han, L.; Wang, Z. Estimation of Soil Organic Carbon Content in the Ebinur Lake Wetland, Xinjiang, China, Based on Multisource Remote Sensing Data and Ensemble Learning Algorithms. Sensors 2022, 22, 2685. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, Y.; Li, F.; He, L. Soil Moisture Retrieval Using Extremely Randomized Trees over the Shandian River Basin. Natl. Remote Sens. Bull. 2021, 25, 941–951. [Google Scholar] [CrossRef]
- Han, Y.; Li, S.; Zheng, W.; Shi, S.; Zhu, X.; Jin, X. Regression Prediction of Soil Available Nitrogen near-Infrared Spectroscopy Based on Boosting Algorithm. Laser Optoelectron. Prog. 2021, 58, 555–565. [Google Scholar]
- Jin, X.; Li, S.; Zhang, W.; Zhu, J.; Sun, J. Prediction of Soil-Available Potassium Content with Visible near-Infrared Ray Spectroscopy of Different Pretreatment Transformations by the Boosting Algorithms. Appl. Sci. 2020, 10, 1520. [Google Scholar] [CrossRef]
- Huang, X.; Guan, H.; Bo, L.; Xu, Z.; Mao, X. Hyperspectral Proximal Sensing of Leaf Chlorophyll Content of Spring Maize Based on a Hybrid of Physically Based Modelling and Ensemble Stacking. Comput. Electron. Agric. 2023, 208, 107745. [Google Scholar] [CrossRef]
- Fu, B.; Deng, L.; Zhang, L.; Qin, J.; Liu, M.; Jia, M.; He, H.; Deng, T.; Gao, E.; Fan, D. Estimation of Mangrove Canopy Chlorophyll Content Using Hyperspectral Image and Stacking Ensemble Regression Algorithm. Natl. Remote Sens. Bull. 2022, 26, 1182–1205. [Google Scholar] [CrossRef]
- Feng, L.; Zhang, Z.; Ma, Y.; Du, Q.; Williams, P.; Drewry, J.; Luck, B. Alfalfa Yield Prediction Using Uav-Based Hyperspectral Imagery and Ensemble Learning. Remote Sens. 2020, 12, 2028. [Google Scholar] [CrossRef]
- Wang, Z.; Hang, Z.; He, C.; Cai, T.; Feng, Y.; Lu, N.; Dou, H. Hyperspectral inversion study of Vertisol soil moisture content based on ensemble learning. J. Agric. Resour. Environ. 2023, 40, 1426–1434. [Google Scholar]
- Tao, S.; Zhang, X.; Chen, J.; Zhang, Z.; Kang, X.; Qi, W.; Wang, Y.; Gao, Y. Generating surface soil moisture at the 30 m resolution in grape-growing areas based on stacked ensemble learning. Int. J. Remote Sens. 2024, 45, 5385–5424. [Google Scholar] [CrossRef]
- Zhang, F.; Wu, S.; Liu, J.; Wang, C.; Guo, Z.; Xu, A.; Pan, K.; Pan, X. Predicting soil moisture content over partially vegetation covered surfaces from hyperspectral data with deep learning. Soil Sci. Soc. Am. J. 2021, 85, 989–1001. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Gao, L.L.; Wang, J.Y.; Yang, J.H. Study on Soil Moisture Utilization in Different Rotation Patterns of Maize and Soybean. Anhui Agric. Sci. Bull. 2019, 25, 38–40. [Google Scholar]
- Yann, L.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-Based Learning Applied to Document Recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar]
- Malley, D.F.; Williams, P.C. Use of near-Infrared Reflectance Spectroscopy in Prediction of Heavy Metals in Freshwater Sediment by Their Association with Organic Matter. Environ. Sci. Technol. 1997, 31, 3461–3467. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, X.; Yan, C.-X.; Wang, S.-R.; Ju, X.-P.; Li, Y. Soil Moisture Retrieval Model for Remote Sensing Using Reflected Hyperspectral Information. Remote Sens. 2019, 11, 366. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, K.; Wang, X.; Chen, Y. Retrieval of Soil Moisture Content Based on a Modified Hapke Photometric Model: A Novel Method Applied to Laboratory Hyperspectral and Sentinel-2 Msi Data. Remote Sens. 2020, 12, 2239. [Google Scholar] [CrossRef]
- Mireguli, A.; Ding, J.; Kasim, N.; Wang, J.; Wang, J. Regional Scale Soil Moisture Content Estimation Based on Multi-Source Remote Sensing Parameters. Int. J. Remote Sens. 2020, 41, 3346–3367. [Google Scholar]
- Zhang, F.; Wang, C.; Pan, K.; Guo, Z.; Liu, J.; Xu, A.; Ma, H.; Pan, X. The Simultaneous Prediction of Soil Properties and Vegetation Coverage from Vis-Nir Hyperspectral Data with a One-Dimensional Convolutional Neural Network: A Laboratory Simulation Study. Remote Sens. 2022, 14, 397. [Google Scholar] [CrossRef]
- Kara, A.; Pekel, E.; Ozcetin, E.; Yıldız, G.B. Genetic Algorithm Optimized a Deep Learning Method with Attention Mechanism for Soil Moisture Prediction. Neural Comput. Appl. 2024, 36, 1761–1772. [Google Scholar] [CrossRef]
- Wang, S.; Wu, Y.; Li, R.; Wang, X. Remote Sensing-Based Retrieval of Soil Moisture Content Using Stacking Ensemble Learning Models. Land Degrad. Dev. 2023, 34, 911–925. [Google Scholar] [CrossRef]
- Ge, X.; Ding, J.; Wang, J.; Sun, H.; Zhu, Z. A New Method for Predicting Soil Moisture Based on UAV Hyperspectral Image. Spectrosc. Spectr. Anal. 2020, 40, 602–609. [Google Scholar]
- Wang, R.; Zhao, J.; Yang, H.; Li, N. Inversion of Soil Moisture on Farmland Areas Based on SSA-CNN Using Multi-Source Remote Sensing Data. Remote Sens. 2023, 15, 2515. [Google Scholar] [CrossRef]
- Zhang, T.; Fu, Q.; Tian, R.; Zhang, Y.; Sun, Z. A spectrum contextual self-attention deep learning network for hyperspectral inversion of soil metals. Ecol. Indic. 2023, 152, 110351. [Google Scholar] [CrossRef]
Dataset | Number of Samples | Maximum (%) | Minimum (%) | Mean (%) | Standard Deviation (%) | Coefficient of Variation |
---|---|---|---|---|---|---|
Total | 162 | 6.951 | 2.254 | 4.099 | 1.171 | 0.286 |
Training set | 130 | 6.951 | 2.254 | 4.168 | 1.154 | 0.277 |
Testing set | 32 | 5.800 | 2.489 | 3.817 | 1.201 | 0.315 |
Model | Training Set | Testing Set | ||||
---|---|---|---|---|---|---|
R2 | RMSE | RPD | R2 | RMSE | RPD | |
CNN | 0.502 | 0.706 | 1.416 | 0.794 | 0.472 | 2.205 |
GWO-CNN | 0.814 | 0.431 | 2.321 | 0.897 | 0.333 | 3.122 |
GWO-CNN-GRU | 0.784 | 0.466 | 2.149 | 0.914 | 0.305 | 3.409 |
GWO–CNN–Attention | 0.784 | 0.465 | 2.153 | 0.916 | 0.302 | 3.445 |
GWO–CNN–GRU–Attention | 0.872 | 0.373 | 2.792 | 0.929 | 0.270 | 3.779 |
Model | Training Set | Testing Set | ||||
---|---|---|---|---|---|---|
R2 | RMSE | RPD | R2 | RMSE | RPD | |
XGBoost | 0.999 | 0.013 | 79.478 | 0.895 | 0.338 | 3.082 |
MLP | 0.863 | 0.370 | 2.702 | 0.915 | 0.303 | 3.430 |
RF | 0.967 | 0.181 | 5.531 | 0.908 | 0.316 | 3.292 |
LightGBM | 0.987 | 0.115 | 8.692 | 0.870 | 0.376 | 2.772 |
GBRT | 0.999 | 0.003 | 35,718.721 | 0.849 | 0.405 | 2.571 |
AdaBoost | 0.896 | 0.322 | 3.093 | 0.916 | 0.302 | 3.450 |
CatBoost | 0.998 | 0.037 | 27.043 | 0.905 | 0.321 | 3.245 |
Extra Trees | 1.0 | 0.001 | 7.417 × 1014 | 0.873 | 0.371 | 2.807 |
GWO–CNN–GRU–Attention | 0.872 | 0.373 | 2.792 | 0.929 | 0.270 | 3.779 |
Stacking1 | 0.892 | 0.328 | 3.047 | 0.920 | 0.294 | 3.536 |
Stacking2 | 0.923 | 0.301 | 3.590 | 0.952 | 0.227 | 4.577 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Li, H.; Sun, M.; Liu, X.; Cao, L. A Study on Hyperspectral Soil Moisture Content Prediction by Incorporating a Hybrid Neural Network into Stacking Ensemble Learning. Agronomy 2024, 14, 2054. https://doi.org/10.3390/agronomy14092054
Yang Y, Li H, Sun M, Liu X, Cao L. A Study on Hyperspectral Soil Moisture Content Prediction by Incorporating a Hybrid Neural Network into Stacking Ensemble Learning. Agronomy. 2024; 14(9):2054. https://doi.org/10.3390/agronomy14092054
Chicago/Turabian StyleYang, Yuzhu, Hongda Li, Miao Sun, Xingyu Liu, and Liying Cao. 2024. "A Study on Hyperspectral Soil Moisture Content Prediction by Incorporating a Hybrid Neural Network into Stacking Ensemble Learning" Agronomy 14, no. 9: 2054. https://doi.org/10.3390/agronomy14092054
APA StyleYang, Y., Li, H., Sun, M., Liu, X., & Cao, L. (2024). A Study on Hyperspectral Soil Moisture Content Prediction by Incorporating a Hybrid Neural Network into Stacking Ensemble Learning. Agronomy, 14(9), 2054. https://doi.org/10.3390/agronomy14092054