Next Issue
Volume 3, June
Previous Issue
Volume 2, December
 
 

Agronomy, Volume 3, Issue 1 (March 2013) – 13 articles , Pages 1-255

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
229 KiB  
Article
Sustainable Production of Japanese Eggplants in a Piedmont Soil in Rotation with Winter Cover Crops
by Ramesh Ravella, Muchha Reddy, Kurt Taylor and Ahmed Elobeid
Agronomy 2013, 3(1), 248-255; https://doi.org/10.3390/agronomy3010248 - 22 Mar 2013
Cited by 2 | Viewed by 6847
Abstract
Eggplant is a popular vegetable consumed all over the world. Cover cropping is an efficient way of recycling nutrients and reducing inorganic fertilizer requirements to maintain the sustainability of the soil without affecting productivity and profitability. Eggplants (Solanum melongena) (Japanese varieties [...] Read more.
Eggplant is a popular vegetable consumed all over the world. Cover cropping is an efficient way of recycling nutrients and reducing inorganic fertilizer requirements to maintain the sustainability of the soil without affecting productivity and profitability. Eggplants (Solanum melongena) (Japanese varieties Hansel and Kamo) were grown in a Piedmont soil with two main treatments, cover crop (CC) and no cover crop (NC), and four sub-fertilizer treatments (T1: 0-0-0, T2: 56-28-112, T3: 84-56-168, and T4: 168-112-224 N-P-K kg/ha), using four replications. The Hansel variety eggplant yield was significantly higher than the Kamo variety. Eggplant yields from CC treatments for both varieties were significantly higher (p < 0.001) than the yields from NC treatments. No significant difference was observed in the yields between T1 and T2 treatments, but the yields from T3 were significantly higher than T1 and T2 and yields from T4 were significantly higher than T3 yields. N released through mineralization of cover crop mixture ranged from 13.33 g/kg at the beginning of the growing season and increased to 18.32 g/kg at the end of the growing season. These results suggest that Japanese eggplants can be successfully grown in the Piedmont area of North Carolina in rotation with cover crops for higher yields. Full article
(This article belongs to the Special Issue Sustainable Crop Production)
Show Figures

Figure 1

282 KiB  
Article
Production of Phaseolus vulgaris L. Genotypes with Tithonia diversifolia (Hemsl.) Gray and Cajanus cajan (L.) Millsp.
by Pedro S. Jorge-Mustonen, Maren Oelbermann and Donald C. L. Kass
Agronomy 2013, 3(1), 232-247; https://doi.org/10.3390/agronomy3010232 - 21 Mar 2013
Cited by 3 | Viewed by 6775
Abstract
Adding mulch biomass prior to crop seeding may improve production of tropical soil. We evaluated the response of four bean (Phaseolus vulgaris L.) genotypes to the addition of mulch biomass from Tithonia diversifolia (Hemsl.) Gray and Cajanus cajan L. Millsp. The addition [...] Read more.
Adding mulch biomass prior to crop seeding may improve production of tropical soil. We evaluated the response of four bean (Phaseolus vulgaris L.) genotypes to the addition of mulch biomass from Tithonia diversifolia (Hemsl.) Gray and Cajanus cajan L. Millsp. The addition of mulch did not result in significant differences (p < 0.05) in soil characteristics when compared to a control (no mulch addition) except for soil potassium (K), which was significantly greater (p < 0.05) in the T. diversifolia mulch biomass treatment. Bean yield and shoot biomass were significantly greater (p < 0.05) in the mulch biomass treatments compared to the control (no biomass added). In these treatments, Phosphorus (P)-efficient bean genotypes had a significantly greater (p < 0.05) yield and shoot biomass. Bean shoot nutrient concentrations were significantly different (p < 0.05) between mulch biomass treatments and between bean genotypes (P, K and magnesium (Mg) only). Phosphorus utilization and uptake efficiencies were significantly different (p < 0.05) between mulch biomass treatments and between bean genotypes. Bean root biomass was not significantly different (p < 0.05) between mulch biomass treatments, but was significantly different (p < 0.05) between bean genotypes. The number of root nodules was significantly greater (p < 0.05) in the T. diversifolia mulch biomass treatment and was significantly different between bean genotypes. Full article
(This article belongs to the Special Issue Sustainable Crop Production)
Show Figures

Figure 1

365 KiB  
Review
Induced Mutations Unleash the Potentials of Plant Genetic Resources for Food and Agriculture
by Chikelu Mba
Agronomy 2013, 3(1), 200-231; https://doi.org/10.3390/agronomy3010200 - 5 Mar 2013
Cited by 166 | Viewed by 20350
Abstract
The options for increasing food production by at least 70% over the next four decades so as to keep pace with a rapidly increasing human population are bedeviled by erratic climatic conditions, depleted arable lands, dwindling water resources and by the significant environmental [...] Read more.
The options for increasing food production by at least 70% over the next four decades so as to keep pace with a rapidly increasing human population are bedeviled by erratic climatic conditions, depleted arable lands, dwindling water resources and by the significant environmental and health costs for increasing the use of agrochemicals. Enhanced productivities through “smart” crop varieties that yield more with fewer inputs is a viable option. However, the genetic similarities amongst crop varieties—which render entire cropping systems vulnerable to the same stresses—coupled with unvarying parental materials limit the possibilities for uncovering novel alleles of genes and, hence, assembling new gene combinations to break yield plateaux and enhance resilience. Induced mutation unmasks novel alleles that are harnessed to breed superior crop varieties. The historical antecedents, theoretical and practical considerations, and the successes of induced mutations in crop improvement are reviewed along with how induced mutagenesis underpins plant functional genomics. The roles of cell and molecular biology techniques in enhancing the efficiencies for the induction, detection and deployment of mutation events are also reviewed. Also, the integration of phenomics into induced mutagenesis and the use of pre-breeding for facilitating the incorporation of mutants into crop improvement are advocated. Full article
(This article belongs to the Special Issue Sustainable Crop Production)
Show Figures

Graphical abstract

616 KiB  
Article
Evaluation of Post-Harvest Organic Carbon Amendments as a Strategy to Minimize Nitrogen Losses in Cole Crop Production
by Katelyn A. Congreves, Richard J. Vyn and Laura L. Van Eerd
Agronomy 2013, 3(1), 181-199; https://doi.org/10.3390/agronomy3010181 - 18 Feb 2013
Cited by 18 | Viewed by 6366
Abstract
Cole crops (Brassica vegetables) can pose a significant risk for N losses during the post-harvest period due to substantial amounts of readily mineralizable N in crop residues. Amending the soil with organic C has the potential to immobilize N and thereby reduce [...] Read more.
Cole crops (Brassica vegetables) can pose a significant risk for N losses during the post-harvest period due to substantial amounts of readily mineralizable N in crop residues. Amending the soil with organic C has the potential to immobilize N and thereby reduce the risk for N losses. Four field trials were conducted to determine the effects of organic C amendments (OCA) on N dynamics and spring wheat (Triticum durum L.) harvest parameters proceeding early- and late-broccoli (Brassica olecerea var italica L.) systems in 2009 and 2010. The experimental controls represented the traditional grower practice of incorporated broccoli crop residue (CR-control) and the pre-plant application of N fertilizer (CRN-control) to subsequent spring wheat. Alternative practices were compared to the controls, which included broccoli crop residue removal (CR-removal), an oat (Avena sativa L.) cover crop (CC-oat), and three different OCA of wheat straw (OCA-straw), yard waste (OCA-yard), or used cooking oil (OCA-oil). The treatments, which demonstrated reduced autumn soil mineral N (SMN) concentrations after broccoli harvest, relative to the CR-control, were CR-removal, OCA-straw, and OCA-oil. Although CR-removal and OCA-straw indicated a reduced potential for autumn soil N losses in the early-broccoli system, these practices are not recommended for growers because subsequent spring wheat yield and profit margins were reduced compared to the CR- and CRN-controls. The OCA-oil reduced autumn SMN concentrations by 53 to 112 kg N ha−1 relative to the CR-control after both early- and late-broccoli harvest, suggesting a larger potential for reduced autumn soil N losses, compared to all other treatments. No detrimental effects resulted from the OCA-oil treatment on the subsequent spring yield or grain N. The OCA-oil reduced spring wheat profit margins relative to the CR-control, like the OCA-straw and CR-removal treatments, however profit margins were similar between the OCA-oil and the CRN-control. Therefore, in areas with a high risk of environmental N contamination, growers should consider the OCA-oil practice after cole crop harvest to minimize the risk of N losses. Full article
(This article belongs to the Special Issue Sustainable Crop Production)
Show Figures

Figure 1

511 KiB  
Review
Improving Resilience of Northern Field Crop Systems Using Inter-Seeded Red Clover: A Review
by Amélie C. M. Gaudin, Sabrina Westra, Cora E. S. Loucks, Ken Janovicek, Ralph C. Martin and William Deen
Agronomy 2013, 3(1), 148-180; https://doi.org/10.3390/agronomy3010148 - 8 Feb 2013
Cited by 80 | Viewed by 14050
Abstract
In light of the environmental challenges ahead, resilience of the most abundant field crop production systems must be improved to guarantee yield stability with more efficient use of nitrogen inputs, soil and water resources. Along with genetic and agronomic innovations, diversification of northern [...] Read more.
In light of the environmental challenges ahead, resilience of the most abundant field crop production systems must be improved to guarantee yield stability with more efficient use of nitrogen inputs, soil and water resources. Along with genetic and agronomic innovations, diversification of northern agro-ecosystems using inter-seeded legumes provides further opportunities to improve land management practices that sustain crop yields and their resilience to biotic and abiotic stresses. Benefits of legume cover crops have been known for decades and red clover (Trifolium pratense) is one of the most common and beneficial when frost-seeded under winter wheat in advance of maize in a rotation. However, its use has been declining mostly due to the use of synthetic fertilizers and herbicides, concerns over competition with the main crop and the inability to fully capture red clover benefits due to difficulties in the persistence of uniform stands. In this manuscript, we first review the environmental, agronomic, rotational and economical benefits associated with inter-seeded red clover. Red clover adaptation to a wide array of common wheat-based rotations, its potential to mitigate the effects of land degradation in a changing climate and its integration into sustainable food production systems are discussed. We then identify areas of research with significant potential to impact cropping system profitability and sustainability. Full article
(This article belongs to the Special Issue Sustainable Crop Production)
Show Figures

Graphical abstract

298 KiB  
Article
Measuring Maize Seedling Drought Response in Search of Tolerant Germplasm
by Meghyn Meeks, Seth C. Murray, Steve Hague and Dirk Hays
Agronomy 2013, 3(1), 135-147; https://doi.org/10.3390/agronomy3010135 - 7 Feb 2013
Cited by 37 | Viewed by 9806
Abstract
To identify and develop drought tolerant maize (Zea mays L.), high-throughput and cost-effective screening methods are needed. In dicot crops, measuring survival and recovery of seedlings has been successful in predicting drought tolerance but has not been reported in C4 grasses such [...] Read more.
To identify and develop drought tolerant maize (Zea mays L.), high-throughput and cost-effective screening methods are needed. In dicot crops, measuring survival and recovery of seedlings has been successful in predicting drought tolerance but has not been reported in C4 grasses such as maize. Seedlings of sixty-two diverse maize inbred lines and their hybrid testcross progeny were evaluated for germination, survival and recovery after a series of drought cycles. Genotypic differences among inbred lines and hybrid testcrosses were best explained approximately 13 and 18 days after planting, respectively. Genotypic effects were significant and explained over 6% of experimental variance. Specifically three inbred lines had significant survival, and 14 hybrids had significant recovery. However, no significant correlation was observed between hybrids and inbreds (R2 = 0.03), indicating seedling stress response is more useful as a secondary screening parameter in hybrids than in inbred lines per se. Field yield data under full and limited irrigation indicated that seedling drought mechanisms were independent of drought responses at flowering in this study. Full article
Show Figures

Graphical abstract

384 KiB  
Article
Genetic Variation in Soybean at the Maturity Locus E4 Is Involved in Adaptation to Long Days at High Latitudes
by Yasutaka Tsubokura, Hisakazu Matsumura, Meilan Xu, Baohui Liu, Hiroko Nakashima, Toyoaki Anai, Fanjiang Kong, Xiaohui Yuan, Hiroyuki Kanamori, Yuichi Katayose, Ryoji Takahashi, Kyuya Harada and Jun Abe
Agronomy 2013, 3(1), 117-134; https://doi.org/10.3390/agronomy3010117 - 4 Feb 2013
Cited by 69 | Viewed by 10841
Abstract
Soybean (Glycine max) cultivars adapted to high latitudes have a weakened or absent sensitivity to photoperiod. The purposes of this study were to determine the molecular basis for photoperiod insensitivity in various soybean accessions, focusing on the sequence diversity of the [...] Read more.
Soybean (Glycine max) cultivars adapted to high latitudes have a weakened or absent sensitivity to photoperiod. The purposes of this study were to determine the molecular basis for photoperiod insensitivity in various soybean accessions, focusing on the sequence diversity of the E4 (GmphyA2) gene, which encodes a phytochrome A (phyA) protein, and its homoeolog (GmphyA1), and to disclose the evolutionary consequences of two phyA homoeologs after gene duplication. We detected four new single-base deletions in the exons of E4, all of which result in prematurely truncated proteins. A survey of 191 cultivated accessions sourced from various regions of East Asia with allele-specific molecular markers reliably determined that the accessions with dysfunctional alleles were limited to small geographical regions, suggesting the alleles’ recent and independent origins from functional E4 alleles. Comparison of nucleotide diversity values revealed lower nucleotide diversity at non-synonymous sites in GmphyA1 than in E4, although both have accumulated mutations at almost the same rate in synonymous and non-coding regions. Natural mutations have repeatedly generated loss-of-function alleles at the E4 locus, and these have accumulated in local populations. The E4 locus is a key player in the adaptation of soybean to high-latitude environments under diverse cropping systems. Full article
Show Figures

Graphical abstract

862 KiB  
Article
Sustainable Phosphorus Measures: Strategies and Technologies for Achieving Phosphorus Security
by Dana Cordell and Stuart White
Agronomy 2013, 3(1), 86-116; https://doi.org/10.3390/agronomy3010086 - 31 Jan 2013
Cited by 130 | Viewed by 32106
Abstract
Phosphorus underpins the world’s food systems by ensuring soil fertility, maximising crop yields, supporting farmer livelihoods and ultimately food security. Yet increasing concerns around long-term availability and accessibility of the world’s main source of phosphorus—phosphate rock, means there is a need to investigate [...] Read more.
Phosphorus underpins the world’s food systems by ensuring soil fertility, maximising crop yields, supporting farmer livelihoods and ultimately food security. Yet increasing concerns around long-term availability and accessibility of the world’s main source of phosphorus—phosphate rock, means there is a need to investigate sustainable measures to buffer the world’s food systems against the long and short-term impacts of global phosphorus scarcity. While the timeline of phosphorus scarcity is contested, there is consensus that more efficient use and recycling of phosphorus is required. While the agricultural sector will be crucial in achieving this, sustainable phosphorus measures in sectors upstream and downstream of agriculture from mine to fork will also need to be addressed. This paper presents a comprehensive classification of all potential phosphorus supply- and demand-side measures to meet long-term phosphorus needs for food production. Examples range from increasing efficiency in the agricultural and mining sector, to technologies for recovering phosphorus from urine and food waste. Such measures are often undertaken in isolation from one another rather than linked in an integrated strategy. This integrated approach will enable scientists and policy-makers to take a systematic approach when identifying potential sustainable phosphorus measures. If a systematic approach is not taken, there is a risk of inappropriate investment in research and implementation of technologies and that will not ultimately ensure sufficient access to phosphorus to produce food in the future. The paper concludes by introducing a framework to assess and compare sustainable phosphorus measures and to determine the least cost options in a given context. Full article
Show Figures

Figure 1

522 KiB  
Article
Effects of Previous Crop Management, Fertilization Regime and Water Supply on Potato Tuber Proteome and Yield
by Catherine Tétard-Jones, Martin G. Edwards, Leonidas Rempelos, Angharad M.R. Gatehouse, Mick Eyre, Stephen J. Wilcockson and Carlo Leifert
Agronomy 2013, 3(1), 59-85; https://doi.org/10.3390/agronomy3010059 - 15 Jan 2013
Cited by 10 | Viewed by 7991
Abstract
There is increasing concern about the sustainability and environmental impacts of mineral fertilizer use in agriculture. Increased recycling of nutrients via the use of animal and green manures and fertilizers made from domestic organic waste may reduce reliance on mineral fertilizers. However, the [...] Read more.
There is increasing concern about the sustainability and environmental impacts of mineral fertilizer use in agriculture. Increased recycling of nutrients via the use of animal and green manures and fertilizers made from domestic organic waste may reduce reliance on mineral fertilizers. However, the relative availability of nutrients (especially nitrogen) is lower in organic compared to mineral fertilizers, which can result in significantly lower yields in nutrient demanding crops such as potato. It is therefore important to gain a better understanding of the factors affecting nutrient use efficiency (yield per unit fertilizer input) from organic fertilizers. Here we show that (a) previous crop management (organic vs. conventional fertilization and crop protection regimes), (b) organic fertilizer type and rate (composted cattle manure vs. composted chicken manure pellets) and (c) watering regimes (optimized and restricted) significantly affected leaf chlorophyll content, potato tuber N-concentration, proteome and yield. Protein inference by gel matching indicated several functional groups significantly affected by previous crop management and organic fertilizer type and rate, including stress/defense response, glycolysis and protein destination and storage. These results indicate genomic pathways controlling crop responses (nutrient use efficiency and yield) according to contrasting types and rates of organic fertilizers that can be linked to the respective encoding genes. Full article
Show Figures

Graphical abstract

409 KiB  
Article
Manure and Paper Mill Sludge Application Effects on Potato Yield, Nitrogen Efficiency and Disease Incidence
by Adrien N'Dayegamiye, Judith Nyiraneza, Marcel Giroux, Michèle Grenier and Anne Drapeau
Agronomy 2013, 3(1), 43-58; https://doi.org/10.3390/agronomy3010043 - 15 Jan 2013
Cited by 11 | Viewed by 8201
Abstract
Appropriate organic amendment management is essential in potato production to increase soil productivity and potato (Solanum tuberosum L.) quality. The objectives of this two-year field study (2004–2005) were to evaluate the effects of organic amendment applications with or without mineral N fertilizer [...] Read more.
Appropriate organic amendment management is essential in potato production to increase soil productivity and potato (Solanum tuberosum L.) quality. The objectives of this two-year field study (2004–2005) were to evaluate the effects of organic amendment applications with or without mineral N fertilizer addition on potato yield, N uptake, N use efficiency (NUE), and on disease incidence. The experimental design was a split-plot, which included nine treatments with four different organic amendments applied in fall 2003 or in spring 2004 at a rate of 40 Mg ha−1 (wet basis) and an unamended control in main plots, and N fertilizer rates (0 and 90 kg N ha−1) in sub-plots. Organic amendments consisted of fresh cattle manure (FCM), composted cattle manure (CCM), paper mill sludge with C/N ratio <15 (PMS1) and paper mill sludge with C/N >15 (PMS2) applied alone (0 kg N ha−1) or supplemented with mineral fertilizer at a rate 90 kg N ha−1. The N fertilizer rate in the unamended control consisted of 0 and 150 kg N ha−1. No organic amendments were applied in 2005 to evaluate residual effects. Fall and spring applications of FCM, CCM and PMS alone significantly increased N uptake and potato marketable yields by 2.5 to 16.4 Mg ha−1, compared to the unfertilized control. Combining organic amendments with N fertilizer at 90 kg N ha−1 increased potato yields, N uptake, and specific gravity, which were comparable to those obtained in mineral N fertilizer treatments (150 kg N ha−1). Residual effects of organic amendments alone had no significant effects on potato yields or on N uptake compared to the unfertilized control. Potato NUE for FCM, CCM and PMS ranged from 6% to 25% in the first year and from 2% to 8% in the residual year. The NUE values were higher for PMS with lower C/N ratio compared to FCM and CCM. This study did not show any difference between organic amendment applied in spring or fall on potato yield and quality. It was also demonstrated that mineral N fertilizer needed to be combined with organic amendments to sustain potato yield and N nutrition. This study showed that appropriate organic amendment management could increase potato yield and quality and reduce N fertilizer requirement. Full article
(This article belongs to the Special Issue Sustainable Crop Production)
Show Figures

Figure 1

217 KiB  
Article
Integrated Palmer Amaranth Management in Glufosinate-Resistant Cotton: II. Primary, Secondary and Conservation Tillage
by Jatinder S. Aulakh, Andrew J. Price, Stephen F. Enloe, Glenn Wehtje and Michael G. Patterson
Agronomy 2013, 3(1), 28-42; https://doi.org/10.3390/agronomy3010028 - 15 Jan 2013
Cited by 24 | Viewed by 6757
Abstract
A three year field experiment was conducted to evaluate the role of soil inversion, cover crops and spring tillage methods for Palmer amaranth between-row (BR) and within-row (WR) management in glufosinate-resistant cotton. Main plots were two soil inversion treatments: fall inversion tillage (IT) [...] Read more.
A three year field experiment was conducted to evaluate the role of soil inversion, cover crops and spring tillage methods for Palmer amaranth between-row (BR) and within-row (WR) management in glufosinate-resistant cotton. Main plots were two soil inversion treatments: fall inversion tillage (IT) and non-inversion tillage (NIT). Subplots were three cover treatments: crimson clover, cereal rye or none (i.e., winter fallow); and the sub subplots were four secondary spring tillage methods: disking followed by (fb) cultivator (DCU), disking fb chisel plow (DCH), disking fb disking (DD) and no tillage (NT). Averaged over years and soil inversion, the crimson clover produced maximum cover biomass (4390 kg ha−1) fb cereal rye (3698 kg ha−1) and winter fallow (777 kg ha−1). Two weeks after planting (WAP) and before the postemergence (POST) application, Palmer amaranth WR and BR density were two- and four-times less, respectively, in IT than NIT. Further, Palmer amaranth WR and BR density were reduced two-fold following crimson clover and cereal rye than following winter fallow at 2 WAP. Without IT, early season Palmer amaranth densities were 40% less following DCU, DCH and DD, when compared with IT. Following IT, no spring tillage method improved Palmer amaranth control. The timely application of glufosinate + S-metolachlor POST tank mixture greatly improved Palmer amaranth control in both IT and NIT systems. The highest cotton yields were obtained with DD following cereal rye (2251 kg ha−1), DD following crimson clover (2213 kg ha−1) and DD following winter fallow (2153 kg ha−1). On average, IT cotton yields (2133 kg ha−1) were 21% higher than NIT (1766 kg ha−1). Therefore, from an integrated weed management standpoint, an occasional fall IT could greatly reduce Palmer amaranth emergence on farms highly infested with glyphosate-resistant Palmer amaranth. In addition, a cereal rye or crimson clover cover crop can effectively reduce early season Palmer amaranth emergence in both IT and NIT systems. For effective and season-long control of Palmer amaranth, one or more POST applications of glufosinate + residual herbicide as tank mixture may be needed in a glufosinate-based cotton production system. Full article
(This article belongs to the Special Issue Weed Management and Herbicide Resistance)
1013 KiB  
Article
Development of a Geo-Referenced Database for Weed Mapping and Analysis of Agronomic Factors Affecting Herbicide Resistance in Apera spica-venti L. Beauv. (Silky Windgrass)
by Dario Massa, Yasmin I. Kaiser, Dionisio Andújar-Sánchez, Rocío Carmona-Alférez, Jörg Mehrtens and Roland Gerhards
Agronomy 2013, 3(1), 13-27; https://doi.org/10.3390/agronomy3010013 - 4 Jan 2013
Cited by 18 | Viewed by 8695
Abstract
In this work, we evaluate the role of agronomic factors in the selection for herbicide resistance in Apera spica-venti L. Beauv. (silky windgrass). During a period of three years, populations were collected in more than 250 conventional fields across Europe and tested for [...] Read more.
In this work, we evaluate the role of agronomic factors in the selection for herbicide resistance in Apera spica-venti L. Beauv. (silky windgrass). During a period of three years, populations were collected in more than 250 conventional fields across Europe and tested for resistance in the greenhouse. After recording the field history of locations, a geo-referenced database has been developed to map the distribution of herbicide-resistant A. spica-venti populations in Europe. A Logistic Regression Model was used to assess whether and to what extent agricultural and biological factors (crop rotation, soil tillage, sowing date, soil texture and weed density) affect the probability of resistance selection apart from the selection pressure due to herbicide application. Our results revealed that rotation management and soil tillage are the factors that have the greatest influence on the model. In addition, first order interactions between these two variables were highly significant. Under conventional tillage, a percentage of winter crops in the rotation exceeding 75% resulted in a 1280-times higher risk of resistance selection compared to rotations with less than 50% of winter crops. Under conservation tillage, the adoption of >75% of winter crops increased the risk of resistance 13-times compared to rotations with less than 50% of winter crops. Finally, early sowing and high weed density significantly increased the risk of resistance compared to the reference categories (later sowing and low weed density, respectively). Soil texture had no significant influence. The developed model can find application in management programs aimed at preventing the evolution and spread of herbicide resistance in weed populations. Full article
(This article belongs to the Special Issue Weed Management and Herbicide Resistance)
Show Figures

Figure 1

297 KiB  
Article
The Assessment of the Use of Eco-Friendly Nets to Ensure Sustainable Cabbage Seedling Production in Africa
by Everlyne M. Muleke, Mwanarusi Saidi, Francis M. Itulya, Thibaud Martin and Mathieu Ngouajio
Agronomy 2013, 3(1), 1-12; https://doi.org/10.3390/agronomy3010001 - 24 Dec 2012
Cited by 17 | Viewed by 10839
Abstract
High seed cost accompanied by poor germination and seedling performance renders cabbage nursery and field production enterprises unsustainable to many small-scale growers in tropical and sub-tropical countries. In most nurseries, adverse ecological conditions and pest damage are among the major factors responsible for [...] Read more.
High seed cost accompanied by poor germination and seedling performance renders cabbage nursery and field production enterprises unsustainable to many small-scale growers in tropical and sub-tropical countries. In most nurseries, adverse ecological conditions and pest damage are among the major factors responsible for poor seedling performance. The objective of this study was to test the potential use of eco-friendly net (EFN) covers as a low cost technology for sustainable cabbage seedling production. The study was a two-season experiment conducted using a randomized complete block design with five replications and two treatments. Treatments were: the standard open field transplant production (control) and transplant production under 0.4 mm mesh polyethylene net covering. EFN covering increased both temperature and relative humidity, enhanced seedling growth and reduced insect pest damage. Seed germination and seedling emergence were under the net covering earlier. Higher seed germination and seedling survival were recorded under the EFN treatment, indicating a potential for reducing the seed requirement per unit area of cabbage production. Seedlings grown under the nets had higher stomatal conductance and leaf chlorophyll content; furthermore, they grew taller, with more leaves within a shorter period of time compared to the control seedlings. The use of EFN in cabbage nurseries offers a sustainable technology for enhancing seedling performance by reducing pest infestation, thereby lowering production cost and improving the grower’s income. Full article
(This article belongs to the Special Issue Sustainable Crop Production)
Show Figures

Graphical abstract

Previous Issue
Next Issue
Back to TopTop