Anthocyanin Accumulation and Color Development of ‘Benitaka’ Table Grape Subjected to Exogenous Abscisic Acid Application at Different Timings of Ripening
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area and Pre-Conditions
2.2. Treatments and Statistical Design
2.3. Sampling and Analyses
2.4. Anthocyanin Evaluations
2.5. Skin Color Evaluations
2.6. Total Soluble Solids (TSS), Titratable Acidity (TA), and Maturation Index (TSS/TA)
2.7. Statistical Analysis
3. Results
3.1. Total and Weekly Rate of Anthocyanin Accumulation
3.2. Berries Color and Weekly Rate of Color Development
3.3. Total Soluble Solids (TSS), Titratable Acidity (TA), and Maturation Index (TSS/TA)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pezzuto, J.M. Grapes and human health: A perspective. J. Agr. Food Chem. 2018, 56, 6777–6784. [Google Scholar] [CrossRef] [PubMed]
- Katalinić, V.; Možina, S.; Skroza, D.; Generalić, I.; Abramoviĉ, H.; Miloš, M.; Boban, M. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chem. 2010, 119, 715–723. [Google Scholar] [CrossRef]
- Nixdorf, S.L.; Hermosín-Gutiérrez, I. Brazilian red wines made from the hybrid grape cultivar Isabel: Phenolic composition and antioxidant capacity. Anal. Chim. Acta. 2010, 659, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Lacampagne, S.; Gagné, S.; Gény, L. Involvement of Abscisic Acid in Controlling the Proanthocyanidin Biosynthesis Pathway in Grape Skin: New Elements Regarding the Regulation of Tannin Composition and Leucoanthocyanidin Reductase (LAR) and Anthocyanidin Reductase (ANR) Activities and Expres. J. Plant Growth Regul. 2010, 29, 81–90. [Google Scholar] [CrossRef]
- Flamini, R.; Mattivi, F.; De Rosso, M.; Arapitsas, P.; Bavaresco, L. Advanced knowledge of three important classes of grape phenolics: anthocyanins, stilbenes and flavonols. Int. J. Mol. Sci. 2013, 14, 19651–19669. [Google Scholar] [CrossRef]
- Owen, S.J.; Lafond, M.D.; Bowen, P.; Bogdanoff, C.; Usher, K.; Abrams, S.R. Profiles of abscisic acid and its catabolites in developing Merlot grape (Vitis vinifera) berries. Am. J. Enol. Viticult. 2009, 60, 277–284. [Google Scholar]
- Koyama, K.; Sadamatsu, K.; Goto-Yamamoto, N. Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Funct. Integ. Genomics 2010, 10, 367–381. [Google Scholar] [CrossRef] [PubMed]
- Peppi, M.C.; Fidelibus, M.W.; Dokoozlian, N. Abscisic acid application timing and concentration affect firmness, pigmentation and color of ‘Flame Seedless’ grapes. HortScience 2006, 41, 1440–1445. [Google Scholar] [CrossRef]
- Roberto, S.R.; Assis, A.M.; Yamamoto, L.Y.; Miotto, L.C.V.; Sato, A.J.; Koyama, R.; Genta, W. Application timing and concentration of abscisic acid improve color of ‘Benitaka’ table grape. Sci. Hortic. 2012, 142, 44–48. [Google Scholar] [CrossRef]
- Kishino, A.A.; Marur, C.J.; Roberto, S.R. Caracteristicas da planta. In Viticultura Tropical: o sistema de produção de uvas de mesa do Paraná; Kishino, A.Y., Carvalho, S.L.C., Roberto, S.R., Eds.; IAPAR Publishing: Londrina, Brazil, 2018; pp. 155–249. [Google Scholar]
- Leão, P.C.S.; Soares, J.M.; Rodrigues, B.L. Principais cultivares. In A Vitivinicultura no Semiárido Brasileiro; Soares, J.M., Leão, P.C.S., Eds.; Embrapa Informação Tecnológica: Brasília, Brazil, 2009; pp. 151–214. [Google Scholar]
- Peppi, M.C.; Fidelibus, M.W.; Dokoozlian, N. Application timing and concentration of abscisic acid affect the quality of ‘Redglobe’ grapes. J. Hortic. Sci. Biotechnol. 2007, 82, 304–310. [Google Scholar] [CrossRef]
- Peppi, M.C.; Fidelibus, M.W.; Dokoozlian, N. Timing and concentration of abscisic acid applications affect the quality of ‘Crimson Seedless’ grapes. Int.l J. Fruit Sci. 2007, 7, 71–83. [Google Scholar] [CrossRef]
- Deis, L.; Canagnaro, B.; Rubens, B.; Wuilloud, R.; Silva, M.F. Water deficit and exogenous ABA significantly affect grape and wine phenolic composition under in field and in vitro conditions. Plant Growth Reg. 2011, 65, 11–21. [Google Scholar] [CrossRef]
- Roberto, S.R.; De Assis, A.M.; Yamamoto, L.Y.; Miotto, L.C.V.; Koyama, R.; Sato, A.J.; Borges, R.S. Ethephon use and application timing of abscisic acid for improving color of ‘Rubi’ table grape. Pesqui. Agropecu. Bras. 2013, 48, 797–800. [Google Scholar] [CrossRef]
- Yamamoto, L.Y.; Koyama, R.; De Assis, A.M.; Borges, W.F.S.; De Oliveira, I.R.; Roberto, S.R. Color of berry and juice of ‘Isabel’ grape treated with abscisic acid in different ripening stages. Pesqui. Agropecu. Bras. 2015, 50, 1160–1167. [Google Scholar] [CrossRef]
- Koyama, R.; Assis, A.M.; Yamamoto, L.Y.; Borges, W.F.; Borges, R.S.; Prudêncio, S.H.; Roberto, S.R. Exogenous abscisic acid increases the anthocyanin concentration of berry and juice from ‘Isabel’ grapes (Vitis labrusca L.). HortScience 2014, 49, 460–464. [Google Scholar] [CrossRef]
- Giribaldi, M.; Hartung, W.; Schubert, A.S. The effects of abscisic acid on grape berry ripening are affected by the timing of treatment. J. Int. Sci. Vigne. Vin. 2010, 44, 9–15. [Google Scholar]
- Caviglione, J.H.; Kiihl, L.R.B.; Caramori, P.H.; Oliveira, D. Cartas climáticas do Paraná; IAPAR Publishing: Londrina, Brazil, 2000. [Google Scholar]
- Carreño, J.; Martínez, A.; Almela, L.; Fernández-López, J.Á. Proposal of an index for the objective evaluation of the color of red table grapes. Food Res. Int. 1995, 28, 373–377. [Google Scholar] [CrossRef]
- Instituto Adolfo Lutz. Normas analíticas do Instituto Adolfo Lutz: métodos químicos e físicos para análise dos alimentos, 3rd ed.; Instituto Adolfo Lutz: São Paulo, Brazil, 2008. [Google Scholar]
- Tukey, J.W. Comparing individual means in the analysis of variance. Biometrics 1949, 5, 99–114. [Google Scholar] [CrossRef]
- Villalobos-González, L.; Peña-Neira, A.; Ibáñez, F.; Pastenes, C. Long term effects of abscisic acid (ABA) on the grape berry phenylpropanoid pathway: Gene expression and metabolite content. Plant Physiol. Bioch. 2016, 105, 213–223. [Google Scholar] [CrossRef]
- Boss, P.K.; Davies, C.; Robinson, S.P. Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Mol. Biol. 1996, 32, 565–569. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ishimaru, M.; Hiraoka, C.; Honda, C. MYB-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis. Plant Sci. 2002, 215, 924–933. [Google Scholar]
- Jeong, S.T.; Goto-Yamamoto, N.; Kobayashi, S.; Esaka, M. Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skin. Plant Sci. 2004, 167, 247–252. [Google Scholar] [CrossRef]
- Azuma, A.; Kobayashi, S.; Yakushiji, H.; Yamada, M.; Mitani, N.; Sato, A. VvMYBA1 genotype determines grape skin color. Vitis 2007, 46, 154–155. [Google Scholar]
- Roubelakis-Angelakis, K.A. Grapevine Molecular Physiology and Biotechnology, 2nd ed.; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Koyama, R.; Roberto, S.R.; de Souza, R.T.; Borges, W.F.S.; Anderson, M.; Waterhouse, A.L.; Cantu, D.; Fidelibus, M.W.; Blanco-Ulate, B. Exogenous Abscisic Acid Promotes Anthocyanin Biosynthesis and Increased Expression of Flavonoid Synthesis Genes in Vitis vinifera × Vitis labrusca Table Grapes in a Subtropical Region. Front. Plant Sci. 2018, 9, 323. [Google Scholar] [CrossRef] [PubMed]
- Domingues-Neto, F.J.; Junior, S.P.; Borges, C.V.; Cunha, S.R.; Callili, D.; Lima, G.P.P.; Roberto, S.R.; Leonel, S.; Tecchio, M.T. The exogenous application of abscisic acid induces accumulation of anthocyanins and phenolic compounds of the ‘Rubi’ grape. Am. J. Plant Sci. 2017, 8, 2422–2432. [Google Scholar] [CrossRef]
- Tecchio, M.A.; Neto, F.J.D.; Junior, A.P.; Da Silva, M.J.R.; Roberto, S.R.; Smarsi, R.C. Improvement of color and increase in anthocyanin content of ‘Niagara Rosada’ grapes with application of abscisic acid. Afr. J. Biotechnol. 2017, 16, 1400–1403. [Google Scholar]
- Gagné, K.; Esteve, K.; Deytieux, C.; Saucier, C.; Geny, L. Influence of abscisic acid in triggering « véraison » in grape berry skins of Vitis vinifera L. cv. Cabernet Sauvignon. J. Int. Sci. Vigne Vin 2006, 38, 7–14. [Google Scholar] [CrossRef]
- Tarara, J.; Lee, J.; Spayd, S.; Scagel, S. Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in Merlot grapes. Am. J. Enol. Vitic. 2008, 59, 235–247. [Google Scholar]
- Ferrara, G.; Mazzeo, A.; Matarrese, M.A.S.; Pacucci, C.; Punzi, R.; Faccia, M.; Trani, A.; Gambacorta, G. Application of abscisic acid (S-ABA) and sucrose to improve color, anthocyanin content and antioxidant activity of cv. crimson seedless grape berries. Aust. J. Grape Wine Res. 2015, 21, 18–29. [Google Scholar] [CrossRef]
- Keller, M. The Science of Grapevines: Anatomy and Physiology, 2nd ed.; Elsevier Academic Press: London, UK, 2015. [Google Scholar]
- Rebucci, B.; Poni, S.; Intrieri, C.; Magnanini, E.; Lakso, N.A. Effect of manipulated grape berry transpiration and post-veraison sugar accumulation. Aust. J. Grape Wine Res. 1997, 3, 57–65. [Google Scholar] [CrossRef]
- Reynolds, A.; Robbins, N.; Lee, H.S.; Kotsaki, E. Impacts and Interactions of Abscisic Acid and Gibberellic Acid on Sovereign Coronation and Skookum Seedless Table Grapes. Am. J. Enol. Vitic. 2016, 67, 327–338. [Google Scholar] [CrossRef]
- Ruiz-García, Y.; Gil-Muñoz, R.; López-Roca, J.M.; Martínez-Cutillas, A.; Romero-Cascales, I.; Gómez-Plaza, E. Increasing the Phenolic Compound Content of Grapes by Preharvest Application of Abcisic Acid and a Combination of Methyl Jasmonate and Benzothiadiazole. J. Agr. Food Chem. 2013, 61, 3978–3983. [Google Scholar]
- Zhang, Y.; Dami, I. Improving freezing tolerance of ‘Chambourcin’ grapevines with exogenous abscisic acid. HortScience 2012, 47, 1750–1757. [Google Scholar] [CrossRef]
- Jackson, R.S. Wine Science: Principles and Applications, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Peppi, M.C.; Walker, M.A.; Fidelibus, M.W. Application of abscisic acid rapidly upregulated UFGT gene expression and improved color of grape berries. Vitis 2008, 47, 11–14. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahab, M.; Roberto, S.R.; Ahmed, S.; Colombo, R.C.; Silvestre, J.P.; Koyama, R.; de Souza, R.T. Anthocyanin Accumulation and Color Development of ‘Benitaka’ Table Grape Subjected to Exogenous Abscisic Acid Application at Different Timings of Ripening. Agronomy 2019, 9, 164. https://doi.org/10.3390/agronomy9040164
Shahab M, Roberto SR, Ahmed S, Colombo RC, Silvestre JP, Koyama R, de Souza RT. Anthocyanin Accumulation and Color Development of ‘Benitaka’ Table Grape Subjected to Exogenous Abscisic Acid Application at Different Timings of Ripening. Agronomy. 2019; 9(4):164. https://doi.org/10.3390/agronomy9040164
Chicago/Turabian StyleShahab, Muhammad, Sergio Ruffo Roberto, Saeed Ahmed, Ronan Carlos Colombo, João Pedro Silvestre, Renata Koyama, and Reginaldo Teodoro de Souza. 2019. "Anthocyanin Accumulation and Color Development of ‘Benitaka’ Table Grape Subjected to Exogenous Abscisic Acid Application at Different Timings of Ripening" Agronomy 9, no. 4: 164. https://doi.org/10.3390/agronomy9040164
APA StyleShahab, M., Roberto, S. R., Ahmed, S., Colombo, R. C., Silvestre, J. P., Koyama, R., & de Souza, R. T. (2019). Anthocyanin Accumulation and Color Development of ‘Benitaka’ Table Grape Subjected to Exogenous Abscisic Acid Application at Different Timings of Ripening. Agronomy, 9(4), 164. https://doi.org/10.3390/agronomy9040164