Grape Rootstock Response to Salinity, Water and Combined Salinity and Water Stresses
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Water Application and Evapotranspiration
3.2. Soil Salinity
3.3. Soil Water Content
3.4. Fruit Yield
3.5. Trunk Diameter
3.6. Pruning Weight
4. Discussion
4.1. Relative Fruit Yield
4.2. Relative Pruning Weight
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hoerling, M.; Eischeid, J.; Perlwitz, J.; Quan, X.; Zhang, T.; Pegion, P. On the Increased Frequency of Mediterranean Drought. J. Clim. 2012, 25, 2146–2161. [Google Scholar] [CrossRef] [Green Version]
- Araujo, J.A.; Abiodun, B.J.; Crespo, O. Impacts of drought on grape yields in Western Cape, South Africa. Theor. Appl. Climatol. 2016, 123, 117–130. [Google Scholar] [CrossRef]
- Tregeagle, J.M.; Tisdall, J.M.; Blackmore, D.H.; Walker, R.R. A diminished capacity for chloride exclusion by grapevine rootstocks following long-term saline irrigation in an inland versus a coastal region of Australia. Aust. J. Grape Wine Res. 2006, 12, 178–191. [Google Scholar] [CrossRef]
- Zarrouk, O.; Costa, J.M.; Francisco, R.; Lopes, C.; Chaves, M.M. Drought and water management in Mediterranean vineyards. In Grapevine in a Changing Environment; Gerós, H., Chaves, M.M., Gil, H.M., Delrot, S., Eds.; John Wiley & Sons, Ltd.: Chichester, UK, 2016; pp. 38–67. ISBN 978-1-118-73598-5. [Google Scholar]
- Zhang, X.; Walker, R.R.; Stevens, R.M.; Prior, L.D. Yield-salinity relationships of different grapevine (Vitis vinifera L.) scion-rootstock combinations. Aust. J. Grape Wine Res. 2002, 8, 150–156. [Google Scholar] [CrossRef]
- Walker, R.R.; Blackmore, D.H.; Clingeleffer, P.R.; Correll, R.L. Rootstock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana): 1. Yield and vigour inter-relationships. Aust. J. Grape Wine Res. 2002, 8, 3–14. [Google Scholar] [CrossRef]
- Grieve, C.M.; Grattan, S.R.; Maas, E.V. Plant Salt Tolerance. In Agricultural Salinity Assessment and Management; Wallender, W.W., Tanji, K.K., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2012; pp. 405–459. ISBN 978-0-7844-7648-2. [Google Scholar]
- Paranychianakis, N.V.; Aggelides, S.; Angelakis, A.N. Influence of rootstock, irrigation level and recycled water on growth and yield of Soultanina grapevines. Agric. Water Manag. 2004, 69, 13–27. [Google Scholar] [CrossRef]
- Southey, J.M.; Jooste, J.H. The Effect of Grapevine Rootstock on the Performance of Vitis vinifera L. (cv. Colombard) on a Relatively Saline Soil. S. Afr. J. Enol. Vitic. 1991, 12, 32–41. [Google Scholar] [CrossRef]
- Fisarakis, I.; Chartzoulakis, K.; Stavrakas, D. Response of Sultana vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agric. Water Manag. 2001, 51, 13–27. [Google Scholar] [CrossRef]
- Jogaiah, S.; Ramteke, S.D.; Sharma, J.; Upadhyay, A.K. Moisture and Salinity Stress Induced Changes in Biochemical Constituents and Water Relations of Different Grape Rootstock Cultivars. Int. J. Agron. 2014, 2014, 789087. [Google Scholar] [CrossRef]
- Arbabzadeh, F.; Dutt, G. Salt Tolerance of Grape Rootstocks Under Greenhouse Conditions. Am. J. Enol. Vitic. 1987, 38, 95. [Google Scholar]
- Cramer, G.R.; Ergül, A.; Grimplet, J.; Tillett, R.L.; Tattersall, E.A.R.; Bohlman, M.C.; Vincent, D.; Sonderegger, J.; Evans, J.; Osborne, C.; et al. Water and salinity stress in grapevines: Early and late changes in transcript and metabolite profiles. Func. Integr. Genom. 2007, 7, 111–134. [Google Scholar] [CrossRef] [PubMed]
- Stevens, R.M.; Harvey, G.; Partington, D.L.; Coombe, B.G. Irrigation of grapevines with saline water at different growth stages. 1. Effects on soil, vegetative growth, and yield. Aust. J. Agric. Res. 1999, 50, 343–356. [Google Scholar] [CrossRef]
- Dry, P.R.; Loveys, B.R. Factors influencing grapevine vigour and the potential for control with partial rootzone drying. Aust. J. Grape Wine Res. 1998, 4, 140–148. [Google Scholar] [CrossRef]
- DeGaris, K.A.; Walker, R.R.; Loveys, B.R.; Tyerman, S.D. Impact of deficit irrigation strategies in a saline environment on Shiraz yield, physiology, water use and tissue ion concentration: Impact of salinity and water deficit on Shiraz. Aust. J. Grape Wine Res. 2015, 21, 468–478. [Google Scholar] [CrossRef]
- Schultz, H.R. Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought. Plant Cell Environ. 2003, 26, 1393–1405. [Google Scholar] [CrossRef]
- Anderson, R.G.; Ferreira, J.F.S.; Jenkins, D.L.; da Silva Dias, N.; Suarez, D.L. Incorporating field wind data to improve crop evapotranspiration parameterization in heterogeneous regions. Irrig. Sci. 2017, 35, 533–547. [Google Scholar] [CrossRef] [Green Version]
- Williams, L.E.; Ayars, J.E. Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy. Agric. For. Meteorol. 2005, 132, 201–211. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; ISBN 92-5-104219-5. [Google Scholar]
- Ors, S.; Suarez, D.L. Spinach biomass yield and physiological response to interactive salinity and water stress. Agric. Water Manag. 2017, 190, 31–41. [Google Scholar] [CrossRef]
- Shani, U.; Ben-Gal, A. Long-term Response of Grapevines to Salinity: Osmotic Effects and Ion Toxicity. Am. J. Enol. Vitic. 2005, 56, 148. [Google Scholar]
- Suarez, D.L.; Šimùnek, J. Chapter 5. Solute Transport Modeling Under Variably Saturated Water Flow Conditions. In Reactive Transport in Porous Media; Lichtner, P.C., Steefel, C.I., Oelkers, E.H., Eds.; De Gruyter: Berlin, Germany; Boston, MA, USA, 1996; pp. 229–268. ISBN 978-1-5015-0979-7. [Google Scholar]
- Suarez, D.L. Modeling transient root zone salinity (SWS model). In Agricultural Salinity Assessment and Management; Wallender, W.W., Tanji, K.K., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2011; pp. 856–897. ISBN 978-0-7844-1169-8. [Google Scholar]
Treatment | EC dS m−1 | Irrigation Water Composition (mmolc L−1) | SAR | ||||||
---|---|---|---|---|---|---|---|---|---|
Ca2+ | Mg2+ | Na+ | K+ | SO42 − | Cl− | NO3 − | |||
S0 (Control) | 0.65 | 3.09 | 0.45 | 1.65 | 0.07 | 2.68 | 0.73 | 0.35 | 1.24 |
S1 | 1.7 | 3.65 | 12.74 | 7.30 | 1.00 | 4.73 | 9.46 | 0.50 | 4.08 |
S2 | 2.7 | 6.50 | 4.90 | 13.00 | 1.00 | 8.30 | 16.60 | 0.50 | 5.45 |
S3 | 3.7 | 9.30 | 7.00 | 18.60 | 1.00 | 11.80 | 23.60 | 0.50 | 6.52 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suarez, D.L.; Celis, N.; Anderson, R.G.; Sandhu, D. Grape Rootstock Response to Salinity, Water and Combined Salinity and Water Stresses. Agronomy 2019, 9, 321. https://doi.org/10.3390/agronomy9060321
Suarez DL, Celis N, Anderson RG, Sandhu D. Grape Rootstock Response to Salinity, Water and Combined Salinity and Water Stresses. Agronomy. 2019; 9(6):321. https://doi.org/10.3390/agronomy9060321
Chicago/Turabian StyleSuarez, Donald L., Nydia Celis, Ray G. Anderson, and Devinder Sandhu. 2019. "Grape Rootstock Response to Salinity, Water and Combined Salinity and Water Stresses" Agronomy 9, no. 6: 321. https://doi.org/10.3390/agronomy9060321
APA StyleSuarez, D. L., Celis, N., Anderson, R. G., & Sandhu, D. (2019). Grape Rootstock Response to Salinity, Water and Combined Salinity and Water Stresses. Agronomy, 9(6), 321. https://doi.org/10.3390/agronomy9060321