Accumulation of Genetic and Epigenetic Alterations in the Background Liver and Emergence of Hepatocellular Carcinoma in Patients with Non-Alcoholic Fatty Liver Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Diagnosis of Metabolic Syndrome
- (1)
- Serum triglyceride is 150 mg/dL or more or serum high-density lipoprotein cholesterol is less than 40 mg/dL.
- (2)
- Systolic blood pressure is 130 mmHg or higher or diastolic blood pressure is 85 mmHg or higher.
- (3)
- Fasting blood glucose is 110 mg/dL or higher.
2.3. Pathological Diagnosis of Non-Alcoholic Steatohepatitis (NASH)
2.4. Ethics
2.5. Detection of Somatic Mutations
2.6. Detection of Epigenome Mutations
2.6.1. Comprehensive Analysis of DNA Methylation Level
2.6.2. Confirmation of Expression Recovery by Pharmacological Unmasking
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghallab, A.; Myllys, M.; Friebel, A.; Duda, J.; Edlund, K.; Halilbasic, E.; Vucur, M.; Hobloss, Z.; Brackhagen, L.; Begher-Tibbe, B.; et al. Spatio-Temporal Multiscale Analysis of Western Diet-Fed Mice Reveals a Translationally Relevant Sequence of Events during NAFLD Progression. Cells 2021, 10, 2516. [Google Scholar] [CrossRef]
- Michelotti, A.; de Scordilli, M.; Palmero, L.; Guardascione, M.; Masala, M.; Roncato, R.; Foltran, L.; Ongaro, E.; Puglisi, F. NAFLD-Re lated Hepatocarcinoma: The Malignant Side of Metabolic Syndrome. Cells 2021, 10, 2034. [Google Scholar] [CrossRef] [PubMed]
- Taura, N.; Fukushima, N.; Yastuhashi, H.; Takami, Y.; Seike, M.; Watanabe, H.; Mizuta, T.; Sasaki, Y.; Nagata, K.; Tabara, A.; et al. The incidence of hepatocellular carcinoma associated with hepatitis C infection decreased in Kyushu area. Med. Sci. Monit. 2011, 17, PH7–PH11. [Google Scholar] [CrossRef]
- White, D.L.; Kanwal, F.; Hashem, B. El-Serag Association between Nonalcoholic Fatty Liver Disease and Risk for Hepatocellular Cancer, Based on Systematic Review. Clin. Gastroenterol. Hepatol. 2012, 10, 1342–1359.e2. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, Y.; Arase, Y.; Ikeda, K.; Seko, Y.; Imai, N.; Hosaka, T.; Kobayashi, M.; Saitoh, S.; Sezaki, H.; Akuta, N.; et al. Large-Scale Long-Term Follow-Up Study of Japanese Patients With Non-Alcoholic Fatty Liver Disease for the Onset of Hepatocellular Carcinoma. Am. J. Gastroenterol. 2012, 107, 253–261. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, H.; Osaki, Y. Non-B, Non-C Hepatocellular Carcinoma. Int. J. Oncol. 2013, 43, 1333–1342. [Google Scholar] [CrossRef]
- Ramai, D.; Tai, W.; Rivera, M.; Facciorusso, A.; Tartaglia, N.; Pacilli, M.; Ambrosi, A.; Cotsoglou, C.; Sacco, R. Natural Progression of Non-Alcoholic Steatohepatitis to Hepatocellular Carcinoma. Biomedicines 2021, 9, 184. [Google Scholar] [CrossRef] [PubMed]
- Yasui, K.; Hashimoto, E.; Komorizono, Y.; Koike, K.; Arii, S.; Imai, Y.; Shima, T.; Kanbara, Y.; Saibara, T.; Mori, T.; et al. Characteristics of Patients With Nonalcoholic Steatohepatitis Who Develop Hepatocellular Carcinoma. Clin. Gastroenterol. Hepatol. 2011, 9, 428–433. [Google Scholar] [CrossRef]
- Kleiner, D.E.; Brunt, E.M.; Van Natta, M.; Behling, C.; Contos, M.J.; Cummings, O.W.; Ferrell, L.D.; Liu, Y.C.; Torbenson, M.S.; Unalp-Arida, A.; et al. Nonalcoholic Steatohepatitis Clinical Research Network. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 2005, 41, 1313–1321. [Google Scholar] [CrossRef]
- Brunt, E.M.; Janney, C.G.; Di Bisceglie, A.M.; Neuschwander-Tetri, B.A.; Bacon, B.R. Nonalcoholic steatohepatitis: A proposal for grad ing and staging the histological lesions. Am. J. Gastroenterol. 1999, 94, 2467–2474. [Google Scholar] [CrossRef]
- Nault, J.C.; Mallet, M.; Pilati, C.; Calderaro, J.; Bioulac-Sage, P.; Laurent, C.; Laurent, A.; Cherqui, D.; Balabaud, C.; Zucman-Rossi, J. High frequency of telomerase reverse-transcriptase promoter somatic mutations in hepatocellular carcinoma and pr9neoplastic lesions. Nat. Commun. 2013, 4, 2218. [Google Scholar] [CrossRef] [Green Version]
- Nishida, N.; Chishina, H.; Arizumi, T.; Takita, M.; Kitai, S.; Yada, N.; Hagiwara, S.; Inoue, T.; Minami, Y.; Ueshima, K.; et al. Identification of Epigenetically Inactivated Genes in Human Hepatocellular Carcinoma by Integrative Analyses of Methylation Profiling and Pharmacological Unmasking. Dig. Dis. 2014, 32, 740–746. [Google Scholar] [CrossRef]
- Nishida, N.; Iwanishi, M.; Minami, T.; Chishina, H.; Arizumi, T.; Takita, M.; Kitai, S.; Yada, N.; Ida, H.; Hagiwara, S.; et al. Hepatic DNA Methylation Is Affected by Hepatocellular Carcinoma Risk in Patients with and without Hepatitis Virus. Dig. Dis. 2015, 33, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Ueda, Y.; Hatano, E.; Kakiuchi, N.; Takeda, H.; Goto, T.; Shimizu, T.; Yoshida, K.; Ikura, Y.; Shiraishi, Y.; et al. TERT promoter mutations and chromosome 8p loss are characteristic of nonalcoholic fatty liver disease-related hepatocellular carcinoma. Int. J. Cancer 2016, 139, 2512–2518. [Google Scholar] [CrossRef]
- Pinyol, R.; Torrecilla, S.; Wang, H.; Montironi, C.; Piqué-Gili, M.; Torres-Martin, M.; Wei-Qiang, L.; Willoughby, C.E.; Ramadori, P.; Andreu-Oller, C.; et al. Molecular Characterization of Hepatocellular Carcinoma in Patients with Non-Alcoholic Steatohepatitis. J. Hepatol. 2021, 75, 865–878. [Google Scholar] [CrossRef]
- Tian, Y.; Arai, E.; Makiuchi, S.; Tsuda, N.; Kuramoto, J.; Ohara, K.; Takahashi, Y.; Ito, N.; Ojima, H.; Hiraoka, N.; et al. Aberrant DNA methylation results in altered gene expression in non-alcoholic steatohepatitis-related hepatocellular carcinomas. J. Cancer Res. Clin. Oncol. 2020, 146, 2461–2477. [Google Scholar] [CrossRef]
- Kuramoto, J.; Arai, E.; Tian, Y.; Funahashi, N.; Hiramoto, M.; Nammo, T.; Nozaki, Y.; Takahashi, Y.; Ito, N.; Shibuya, A.; et al. Genome-wide DNA methylation analysis during non-alcoholic steatohepatitis-related multistage hepatocarcinogenesis: Comparison with hepatitis virus-related carcinogenesis. Carcinogenesis 2017, 38, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.; Yang, H.; Moylan, C.A.; Pang, H.; Dellinger, A.; Abdelmalek, M.; Garrett, M.E.; Ashley-Koch, A.; Suzuki, A.; Tillmann, H.L.; et al. Relationship Between Methylome and Transcriptome in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2013, 145, 1076–1087. [Google Scholar] [CrossRef] [Green Version]
- Zeybel, M.; Hardy, T.; Robinson, S.M.; Fox, C.; Anstee, Q.M.; Ness, T.; Masson, S.; Mathers, J.C.; French, J.; White, S.; et al. Differential DNA methylation of genes involved in fibrosis progression in non-alcoholic fatty liver disease and alcoholic liver disease. Clin. Epigenetics 2015, 7, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirola, C.J.; Gianotti, T.F.; Burgueño, A.L.; Rey-Funes, M.; Loidl, C.F.; Mallardi, P.; Martino, J.S.; Castaño, G.O.; Sookoian, S. Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut 2013, 62, 1356–1363. [Google Scholar] [CrossRef]
- Nishida, N.; Kudo, M.; Nagasaka, T.; Ikai, I.; Goel, A. Characteristic patterns of altered DNA methylation predict emergence of human hepatocellular carcinoma. Hepatology 2012, 56, 994–1003. [Google Scholar] [CrossRef] [PubMed]
Severe Fibrosis Group (n = 8) | Mild Fibrosis Group (n = 8) | p-Value | |
---|---|---|---|
Age (year, mean ± SD) | 71 ± 6 | 70 ± 6 | 0.68 |
Sex Male-no. (%) | 6 (75) | 6 (75) | 1 |
B.M.I. (mean ± SD) | 25 ± 3.0 | 25 ± 2.7 | 0.69 |
Diabetes complications -no. (%) | 3 (37.5) | 6 (75) | 0.31 |
Hypertension complications -no. (%) | 3 (37.5) | 4 (50) | 1 |
Metabolic syndrome -no. (%) | 3 (37.5) | 3 (37.5) | 1 |
ALT (IU/L, mean ± SD) | 51 ± 27 | 35 ± 17 | 0.19 |
ALB (g/dL, mean ± SD) | 3.9 ± 0.2 | 4.1 ± 0.6 | 0.38 |
PLT (×104/μL, mean ± SD) | 16 ± 4.3 | 20 ± 4.2 | 0.08 |
Maximum tumor diameter (mm, mean ± SD) | 46 ± 25 | 76 ± 45 | 0.11 |
Single tumor number -no. (%) | 8 (100) | 7 (88) | 1 |
AFP (ng/mL, median, range) | 7 (4–65) | 4.5 (2–2044) | 0.44 |
DCP (mAU/mL, median, range) | 226 (15–52,788) | 673 (14–44,716) | 0.79 |
NAS (mean ± SD) | 4.6 ± 1.1 | 3.6 ± 1.1 | 0.09 |
Steatosis | 1.3 ± 0.4 | 1.3 ± 0.4 | 1 |
Lobular inflammation | 1.9 ± 0.3 | 1.1 ± 0.3 | <0.01 |
Ballooning | 1.5 ± 0.5 | 1.3 ± 0.7 | 0.43 |
Brunt classification -grade (mean ± SD) | 2.0 ± 0.5 | 1.1 ± 0.3 | 0.001 |
Brunt classification -stage (mean ± SD) | 3.6 ± 0.5 | 0.8 ± 0.4 | <0.001 |
Severe Fibrosis Group | Mild Fibrosis Group | |
---|---|---|
NT (-) ⇒ HCC (+) Somatic gene mutations that did not exist in the non-cancerous part but existed only in the cancerous part | GPR98 (6) MLL3 (5) RYR1 (3), MLL (3), TP53 (3), TERTpromoter (3) CTNNB1 (2), CSMD3 (2), ARID1B (2) SPTA1, PTEN, ARID2, APC, RYR2 PCLO, CSMD1, AXIN1, NFE2L2, TERT TRRAP, FAT3, LRP1B, DST, SMAD4 | TERTpromoter (5) CTNNB1 (4) MLL3 (3), ARID2 (3) HMCN1 (2), CYNE1 (2) TP53 (2), AXIN1 (2) ARID1A (2), ARID1B (2) NFE2L2 (2) FAT3, PCLO, APC PIK3CG, CDKN2A TPRAP, RYR2, LRP1B GRP98, PTEN |
NT (+) ⇒ HCC (++) Somatic gene mutation that was present in the non-cancerous part and also in the cancerous part | PIK3CA (3) MLL (2) ABCA13, FBN2, RYR2, LRP1B, SYNE1 AXIN1 | MLL (3) TP53 (2), PIK3CA (2) HMCN1, RYR1, PCLO LRP1B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hagiwara, S.; Nishida, N.; Ueshima, K.; Minami, Y.; Komeda, Y.; Aoki, T.; Takita, M.; Morita, M.; Chishina, H.; Yoshida, A.; et al. Accumulation of Genetic and Epigenetic Alterations in the Background Liver and Emergence of Hepatocellular Carcinoma in Patients with Non-Alcoholic Fatty Liver Disease. Cells 2021, 10, 3257. https://doi.org/10.3390/cells10113257
Hagiwara S, Nishida N, Ueshima K, Minami Y, Komeda Y, Aoki T, Takita M, Morita M, Chishina H, Yoshida A, et al. Accumulation of Genetic and Epigenetic Alterations in the Background Liver and Emergence of Hepatocellular Carcinoma in Patients with Non-Alcoholic Fatty Liver Disease. Cells. 2021; 10(11):3257. https://doi.org/10.3390/cells10113257
Chicago/Turabian StyleHagiwara, Satoru, Naoshi Nishida, Kazuomi Ueshima, Yasunori Minami, Yoriaki Komeda, Tomoko Aoki, Masahiro Takita, Masahiro Morita, Hirokazu Chishina, Akihiro Yoshida, and et al. 2021. "Accumulation of Genetic and Epigenetic Alterations in the Background Liver and Emergence of Hepatocellular Carcinoma in Patients with Non-Alcoholic Fatty Liver Disease" Cells 10, no. 11: 3257. https://doi.org/10.3390/cells10113257
APA StyleHagiwara, S., Nishida, N., Ueshima, K., Minami, Y., Komeda, Y., Aoki, T., Takita, M., Morita, M., Chishina, H., Yoshida, A., Ida, H., & Kudo, M. (2021). Accumulation of Genetic and Epigenetic Alterations in the Background Liver and Emergence of Hepatocellular Carcinoma in Patients with Non-Alcoholic Fatty Liver Disease. Cells, 10(11), 3257. https://doi.org/10.3390/cells10113257