Trends in Articular Cartilage Tissue Engineering: 3D Mesenchymal Stem Cell Sheets as Candidates for Engineered Hyaline-Like Cartilage
Abstract
:1. Introduction
2. Hyaline Cartilage Structure and Function
3. Current Clinical Cartilage Regeneration Therapies
4. Limitations of Current Autologous Cell-Based Cartilage Regeneration Therapies
5. Allogeneic Mesenchymal Stem Cells as Promising Cell Sources for Cartilage Applications
6. Three-Dimensional Culture for MSC Chondrogenesis
7. Transplantation Capabilities of 3D MSC Chondrogenic Cultures
8. Cell Sheet Technology as a Transplantable 3D Tissue-Like Platform
9. Three-Dimensional MSC Sheets as In Vitro Platforms for Fabricating Transplantable Hyaline-Like Cartilage
10. Summary
11. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Makris, E.A.; Gomoll, A.H.; Malizos, K.N.; Hu, J.C.; Athanasiou, K.A. Repair and Tissue Engineering Techniques for Articular Cartilage. Nat. Rev. Rheumatol. 2015, 11, 21–34. [Google Scholar] [CrossRef]
- Memon, A.R.; Quinlan, J.F. Surgical Treatment of Articular Cartilage Defects in the Knee: Are We Winning? Adv. Orthop. 2012, 2012. [Google Scholar] [CrossRef] [Green Version]
- Falah, M.; Nierenberg, G.; Soudry, M.; Hayden, M.; Volpin, G. Treatment of Articular Cartilage Lesions of the Knee. Int. Orthop. 2010, 621–630. [Google Scholar] [CrossRef] [Green Version]
- Rodeo, S.A. Cell Therapy in Orthopaedics: Where Are We in 2019? Bone Jt. J. 2019, 361–364. [Google Scholar] [CrossRef]
- Abou-El-Enein, M.; Elsanhoury, A.; Reinke, P. Overcoming Challenges Facing Advanced Therapies in the EU Market. Cell Stem Cell 2016, 293–297. [Google Scholar] [CrossRef] [Green Version]
- Haddock, R.; Lin-Gibson, S.; Lumelsky, N.; McFarland, R.; Roy, K.; Saha, K.; Zhang, J.; Zylberberg, C. Manufacturing Cell Therapies: The Paradigm Shift in Health Care of This Century. NAM Perspect. 2017, 7. [Google Scholar] [CrossRef]
- Somoza, R.A.; Welter, J.F.; Correa, D.; Caplan, A.I. Chondrogenic Differentiation of Mesenchymal Stem Cells: Challenges and Unfulfilled Expectations. Tissue Eng. Part B Rev. 2014, 20, 596–608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barry, F. MSC Therapy for Osteoarthritis: An Unfinished Story. J. Orthop. Res. 2019, 1229–1235. [Google Scholar] [CrossRef]
- Goldring, M.B. Chondrogenesis, Chondrocyte Differentiation, and Articular Cartilage Metabolism in Health and Osteoarthritis. Ther. Adv. Musculoskelet. Dis. 2012, 4, 269–285. [Google Scholar] [CrossRef] [PubMed]
- Pittenger, M.F.; Discher, D.E.; Péault, B.M.; Phinney, D.G.; Hare, J.M.; Caplan, A.I. Mesenchymal Stem Cell Perspective: Cell Biology to Clinical Progress. NPJ Regen. Med. 2019, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Bou-Ghannam, S.; Kameishi, S.; Oka, M.; Grainger, D.W.; Okano, T. Allogeneic Mesenchymal Stem Cell Sheet Therapy: A New Frontier in Drug Delivery Systems. J. Control. Release 2021, 330, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Thorp, H.; Kim, K.; Kondo, M.; Grainger, D.W.; Okano, T. Fabrication of Hyaline-like Cartilage Constructs Using Mesenchymal Stem Cell Sheets. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Blain, E.J. Involvement of the Cytoskeletal Elements in Articular Cartilage Homeostasis and Pathology. Int. J. Exp. Pathol. 2009, 1–15. [Google Scholar] [CrossRef]
- Johnstone, B.; Hering, T.M.; Caplan, A.I.; Goldberg, V.M.; Yoo, J.U. In Vitro Chondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells. Exp. Cell Res. 1998, 238, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Mackay, A.M.; Beck, S.C.; Murphy, J.M.; Barry, F.P.; Chichester, C.O.; Pittenger, M.F. Chondrogenic Differentiation of Cultured Human Mesenchymal Stem Cells from Marrow. Tissue Eng. 1998, 4, 415–428. [Google Scholar] [CrossRef]
- Merceron, C.; Portron, S.; Masson, M.; Lesoeur, J.; Fellah, B.H.; Gauthier, O.; Geffroy, O.; Weiss, P.; Guicheux, J.; Vinatier, C. The Effect of Two- and Three-Dimensional Cell Culture on the Chondrogenic Potential of Human Adipose-Derived Mesenchymal Stem Cells after Subcutaneous Transplantation with an Injectable Hydrogel. Cell Transplant. 2011, 20, 1575–1588. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Wen, F.; Wu, Y.; Goh, G.S.H.; Ge, Z.; Tan, L.P.; Hui, J.H.P.; Yang, Z. Cross-Talk between TGF-Beta/SMAD and Integrin Signaling Pathways in Regulating Hypertrophy of Mesenchymal Stem Cell Chondrogenesis under Deferral Dynamic Compression. Biomaterials 2015, 38, 72–85. [Google Scholar] [CrossRef]
- Goldberg, A.; Mitchell, K.; Soans, J.; Kim, L.; Zaidi, R. The Use of Mesenchymal Stem Cells for Cartilage Repair and Regeneration: A Systematic Review. J. Orthop. Surg. Res. 2017, 12, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Salazar, M.; Gonzalez-Galofre, Z.N.; Casamitjana, J.; Crisan, M.; James, A.W.; Péault, B. Five Decades Later, Are Mesenchymal Stem Cells Still Relevant? Front. Bioeng. Biotechnol. 2020, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negoro, T.; Takagaki, Y.; Okura, H.; Matsuyama, A. Trends in Clinical Trials for Articular Cartilage Repair by Cell Therapy. NPJ Regen. Med. 2018, 3, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kon, E.; Filardo, G.; Di Martino, A.; Marcacci, M. ACI and MACI. J. Knee Surg. 2012, 17–22. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, J.; Athanasiou, K.A. The Role of Tissue Engineering in Articular Cartilage Repair and Regeneration. Crit. Rev. Biomed. Eng. 2009, 37, 1–57. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Yamato, M.; Hamahashi, K.; Okano, T.; Mochida, J. Articular Cartilage Regeneration Using Cell Sheet Technology. Anat. Rec. 2014, 297, 36–43. [Google Scholar] [CrossRef]
- Kondo, M.; Kameishi, S.; Grainger, D.W.; Okano, T. Novel Therapies Using Cell Sheets Engineered from Allogeneic Mesenchymal Stem/Stromal Cells. Emerg. Top. Life Sci. 2020. [Google Scholar] [CrossRef]
- Benjamin, M.; Ralphs, J. Biology of Fibrocartilage Cells. Int. Rev. Cytol. 2004, 233, 1–45. [Google Scholar] [CrossRef]
- Armiento, A.R.; Alini, M.; Stoddart, M.J. Articular Fibrocartilage–Why Does Hyaline Cartilage Fail to Repair? Adv. Drug Deliv. Rev. 2019, 146, 289–305. [Google Scholar] [CrossRef] [PubMed]
- Minas, T. A Primer in Cartilage Repair. J. Bone Jt. Surg. Br. 2012, 94, 1482–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The Basic Science of Articular Cartilage: Structure, Composition, and Function. Sports Health 2009, 1, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Kamisan, N.; Naveen, S.V.; Ahmad, R.E.; Tunku, K. Chondrocyte Density, Proteoglycan Content and Gene Expressions from Native Cartilage Are Species Specific and Not Dependent on Cartilage Thickness: A Comparative Analysis between Rat, Rabbit and Goat. BMC Vet. Res. 2013, 9. [Google Scholar] [CrossRef] [Green Version]
- Armiento, A.R.; Stoddart, M.J.; Alini, M.; Eglin, D. Biomaterials for Articular Cartilage Tissue Engineering: Learning from Biology. Acta Biomater. 2018, 65, 1–20. [Google Scholar] [CrossRef]
- Gharpuray, V.M. Fibrocartilage. In Handbook of Biomaterial Properties, 2nd ed.; Springer: New York, NY, USA, 2016; Volume 171, pp. 45–54. [Google Scholar] [CrossRef]
- Ferket, B.S.; Feldman, Z.; Zhou, J.; Oei, E.H.; Bierma-Zeinstra, S.M.A.; Mazumdar, M. Impact of Total Knee Replacement Practice: Cost Effectiveness Analysis of Data from the Osteoarthritis Initiative. BMJ 2017, 356, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schinhan, M.; Gruber, M.; Vavken, P.; Dorotka, R.; Samouh, L.; Chiari, C.; Gruebl-Barabas, R.; Nehrer, S. Critical-Size Defect Induces Unicompartmental Osteoarthritis in a Stable Ovine Knee. J. Orthop. Res. 2012, 30, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Houck, D.A.; Kraeutler, M.J.; Belk, J.W.; Frank, R.M.; McCarty, E.C.; Bravman, J.T. Do Focal Chondral Defects of the Knee Increase the Risk for Progression to Osteoarthritis? A Review of the Literature. Orthop. J. Sports Med. 2018. [Google Scholar] [CrossRef]
- Gomoll, A.H.; Farr, J.; Gillogly, S.D.; Kercher, J.; Minas, T. Surgical Management of Articular Cartilage Defects of the Knee. J. Bone Jt. Surg. Am. 2010, 92, 2470–2490. [Google Scholar]
- Akkiraju, H.; Nohe, A. Role of Chondrocytes in Cartilage Formation, Progression of Osteoarthritis and Cartilage Regeneration. J. Dev. Biol. 2016, 3, 177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcacci, M.; Filardo, G.; Kon, E. Treatment of Cartilage Lesions: What Works and Why? Injury 2013, 44 (Suppl. 1), S11–S15. [Google Scholar] [CrossRef]
- Steadman, J.R.; Rodkey, W.G.; Singleton, S.B.; Briggs, K.K. Microfracture Technique for Full-Thickness Chondral Defects: Technique and Clinical Results. Oper. Tech. Orthop. 1997, 7, 300–304. [Google Scholar] [CrossRef]
- Gao, L.; Orth, P.; Cucchiarini, M.; Madry, H. Autologous Matrix-Induced Chondrogenesis: A Systematic Review of the Clinical Evidence. Am. J. Sports Med. 2019, 222–231. [Google Scholar] [CrossRef]
- Mithoefer, K.; McAdams, T.; Williams, R.J.; Kreuz, P.C.; Mandelbaum, B.R. Clinical Efficacy of the Microfracture Technique for Articular Cartilage Repair in the Knee: An Evidence-Based Systematic Analysis. Database Abstr. Rev. Eff. Qual. Rev. 2009, 38. [Google Scholar] [CrossRef]
- Solheim, E.; Hegna, J.; Inderhaug, E.; Øyen, J.; Harlem, T.; Strand, T. Results at 10–14 Years after Microfracture Treatment of Articular Cartilage Defects in the Knee. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 1587–1593. [Google Scholar] [CrossRef]
- Gobbi, A.; Karnatzikos, G.; Kumar, A. Long-Term Results after Microfracture Treatment for Full-Thickness Knee Chondral Lesions in Athletes. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 1986–1996. [Google Scholar] [CrossRef]
- Dewan, A.K.; Gibson, M.A.; Elisseeff, J.H.; Trice, M.E. Evolution of Autologous Chondrocyte Repair and Comparison to Other Cartilage Repair Techniques. Biomed. Res. Int. 2014, 2014, 1–11. [Google Scholar] [CrossRef] [PubMed]
- McGowan, K.B.; Stiegman, G. Regulatory Challenges for Cartilage Repair Technologies. Cartilage 2013, 4, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, T.A.E.; Hincke, M.T. Strategies for Articular Cartilage Lesion Repair and Functional Restoration. Tissue Eng. Part B Rev. 2010, 16, 305–329. [Google Scholar] [CrossRef] [PubMed]
- Hunziker, E.B.; Lippuner, K.; Keel, M.J.B.; Shintani, N. An Educational Review of Cartilage Repair: Precepts & Practice-Myths & Misconceptions-Progress & Prospects. Osteoarthr. Cartil. 2015, 334–350. [Google Scholar] [CrossRef] [Green Version]
- Kraeutler, M.J.; Belk, J.W.; Purcell, J.M.; McCarty, E.C. Microfracture versus Autologous Chondrocyte Implantation for Articular Cartilage Lesions in the Knee: A Systematic Review of 5-Year Outcomes. Am. J. Sports Med. 2017, 46, 995. [Google Scholar] [CrossRef] [PubMed]
- DiBartola, A.C.; Wright, B.M.; Magnussen, R.A.; Flanigan, D.C. Clinical Outcomes after Autologous Chondrocyte Implantation in Adolescents’ Knees: A Systematic Review. Arthrosc. J. Arthrosc. Relat. Surg. 2016, 32, 1905–1916. [Google Scholar] [CrossRef]
- FDA Approves First Autologous Cellularized Scaffold for the Repair of Cartilage Defects of the Knee. 2016. Available online: https://cartilage.org/news/fda-approves-first-autologous-cellularized-scaffold-for-the-repair-of-cartilage-defects-of-the-knee/ (accessed on 1 March 2021).
- Jones, C.W.; Willers, C.; Keogh, A.; Smolinski, D.; Fick, D.; Yates, P.J.; Kirk, T.B.; Zheng, M.H. Matrix-Induced Autologous Chondrocyte Implantation in Sheep: Objective Assessments Including Confocal Arthroscopy. J. Orthop. Res. 2008, 26, 292–303. [Google Scholar] [CrossRef]
- Ebert, J.R.; Robertson, W.B.; Woodhouse, J.; Fallon, M.; Zheng, M.H.; Ackland, T.; Wood, D.J. Clinical and Magnetic Resonance Imaging-Based Outcomes to 5 Years after Matrix-Induced Autologous Chondrocyte Implantation to Address Articular Cartilage Defects in the Knee. Am. J. Sports Med. 2011, 39, 753–763. [Google Scholar] [CrossRef]
- Zheng, M.H.; Willers, C.; Kirilak, L.; Yates, P.; Xu, J.; Wood, D.; Shimmin, A. Matrix-Induced Autologous Chondrocyte Implantation (MACI®): Biological and Histological Assessment. Tissue Eng. 2007, 13, 737–746. [Google Scholar] [CrossRef]
- Smith, H.J.; Richardson, J.B.; Tennant, A. Modification and Validation of the Lysholm Knee Scale to Assess Articular Cartilage Damage. Osteoarthr. Cartil. 2009, 17, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Barber-Westin, S.D.; Noyes, F.R. The International Knee Documentations Committee Rating System. In Noyes’ Knee Disorders: Surgery, Rehabilitation, Clinical Outcomes; Elsevier: Amsterdam, The Netherlands, 2010; pp. e28–e47. [Google Scholar] [CrossRef]
- Hambly, K. The Use of the Tegner Activity Scale for Articular Cartilage Repair of the Knee: A Systematic Review. Knee Surg. Sports Traumatol. Arthrosc. 2011, 19, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Gille, J.; Behrens, P.; Schulz, A.P.; Oheim, R.; Kienast, B. Matrix-Associated Autologous Chondrocyte Implantation: A Clinical Follow-Up at 15 Years. Cartilage 2016, 7, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Van den Borne, M.P.J.; Raijmakers, N.J.H.; Vanlauwe, J.; Victor, J.; de Jong, S.N.; Bellemans, J.; Saris, D.B.F. International Cartilage Repair Society (ICRS) and Oswestry Macroscopic Cartilage Evaluation Scores Validated for Use in Autologous Chondrocyte Implantation (ACI) and Microfracture. Osteoarthr. Cartil. 2007, 15, 1397–1402. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, W.; Skinner, J.A.; Gooding, C.R.; Carrington, R.W.J.; Flanagan, A.M.; Briggs, T.W.R.; Bentley, G. Autologous Chondrocyte Implantation versus Matrix-Induced Autologous Chondrocyte Implantation for Osteochondral Defects of the Knee. A Prospective, Randomised Study. J. Bone Jt. Surg. Ser. B 2005, 87, 640–645. [Google Scholar] [CrossRef] [Green Version]
- Zeifang, F.; Oberle, D.; Nierhoff, C.; Richter, W.; Moradi, B.; Schmitt, H. Autologous Chondrocyte Implantation Using the Original Periosteum-Cover Technique versus Matrix-Associated Autologous Chondrocyte Implantation: A Randomized Clinical Trial. Am. J. Sports Med. 2010, 38, 924–933. [Google Scholar] [CrossRef]
- Kim, Y.S.; Smoak, M.M.; Melchiorri, A.J.; Mikos, A.G. An Overview of the Tissue Engineering Market in the United States from 2011 to 2018. Tissue Eng. Part A 2019, 25, 1–8. [Google Scholar] [CrossRef]
- BlueCross BlueShield. ACI (Carticel) Phased Out; BlueCross BlueShield: Chicago, IL, USA, 2018; Available online: https://www.bluecrossnc.com/sites/default/files/document/attachment/services/public/pdfs/medicalpolicy/autologous_chondrocyte_implantation.pdf (accessed on 1 March 2021).
- Rheinstein, P.H.; Adbari, B. Significant FDA Approvals in 1997. Am. Fam. Physician 1998, 57, 2865. [Google Scholar]
- Ministry of Food and Drug Safety. Chondron|Ministry of Food and Drug Safety. Available online: https://www.mfds.go.kr/eng/brd/m_30/view.do?seq=70954 (accessed on 1 March 2021).
- European Medicines Agency. ChondroCelect|European Medicines Agency (Withdrawal); European Medicines Agency: Amsterdam, The Netherlands, 2016; Available online: https://www.ema.europa.eu/en/documents/public-statement/public-statement-chondrocelect-withdrawal-marketing-authorisation-european-unionen.pdf (accessed on 1 March 2021).
- European Medicines Agency. ChondroCelect|European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/chondrocelect (accessed on 1 March 2021).
- Medipost. MEDIPOST Clears Product Approval Renewal of CARTISTEM by the Ministry of Food and Drug Safety (MFDS). Available online: http://www.medi-post.com/stem-cell-therapeutic/2019/03/36443/ (accessed on 1 March 2021).
- Sakakibara, N. J-TEC Received Government Approval to Manufacture and Sell Autologous Cultured Cartilage JACC® in Japan. 2012. Available online: http://www.jpte.co.jp/english/ir/library/JACC_20120730E.pdf (accessed on 1 March 2021).
- NIHR. NOVOCART 3D for Articular Cartilage Defects of the Knee; NIHR: London, UK, 2019. Available online: http://www.io.nihr.ac.uk/wp-content/uploads/2019/09/13181-Autologous-Chondrocyte-Implant-for-Articular-Cartilage-Defects-V1.0-SEP2019-NON-CONF.pdf (accessed on 1 March 2021).
- European Medicines Agency. Maci|European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/maci (accessed on 1 March 2021).
- U.S. Food and Drug Administration. MACI (Autologous Cultured Chondrocytes on a Porcine Collagen Membrane)|FDA. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/maci-autologous-cultured-chondrocytes-porcine-collagen-membrane (accessed on 1 March 2021).
- Australian Department of Health-Therapeutic Goods Administration. Ortho-ACI|Australian Department of Health. Available online: https://www.ebs.tga.gov.au/servlet/xmlmillr6?dbid=ebs/PublicHTML/pdfStore.nsf&docid=289402&agid=(PrintDetailsPublic)&actionid=1 (accessed on 1 March 2021).
- European Medicines Agency. Spherox|European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/spherox (accessed on 1 March 2021).
- prnewswire.com. Korea Approves the World’s First Cell and Gene Therapy for Knee Osteoarthritis. Available online: https://www.prnewswire.com/news-releases/korea-approves-the-worlds-first-cell-and-gene-therapy-for-knee-osteoarthritis-300486969.html (accessed on 1 March 2021).
- Won Shin, J. Invossa Approval Revoked As Korea Confirms False Data Submission. 2019. Available online: https://pink.pharmaintelligence.informa.com/PS125369 (accessed on 1 March 2021).
- Crawford, D.; Deberardino, T.; Williams, R. NeoCart, an Autologous Cartilage Tissue Implant, Compared with Microfracture for Treatment of Distal Femoral Cartilage Lesions. J. Bone Jt. Surg. 2012, 94, 979–989. [Google Scholar] [CrossRef] [PubMed]
- Simaria, A.S.; Hassan, S.; Varadaraju, H.; Rowley, J.; Warren, K.; Vanek, P.; Farid, S.S. Allogeneic Cell Therapy Bioprocess Economics and Optimization: Single-Use Cell Expansion Technologies. Biotechnol. Bioeng. 2014, 111, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Heathman, T.R.; Nienow, A.W.; McCall, M.J.; Coopman, K.; Kara, B.; Hewitt, C.J. The Translation of Cell-Based Therapies: Clinical Landscape and Manufacturing Challenges. Regen. Med. 2015, 49–64. [Google Scholar] [CrossRef] [Green Version]
- Trounson, A.; McDonald, C. Stem Cell Therapies in Clinical Trials: Progress and Challenges. Cell Stem Cell 2015, 17. [Google Scholar] [CrossRef] [Green Version]
- Mekhileri, N.V.; Lim, K.S.; Brown, G.C.J.; Mutreja, I.; Schon, B.S.; Hooper, G.J.; Woodfield, T.B.F. Automated 3D Bioassembly of Micro-Tissues for Biofabrication of Hybrid Tissue Engineered Constructs. Biofabrication 2018, 10. [Google Scholar] [CrossRef] [Green Version]
- Musumeci, G.; Loreto, C.; Castorina, S.; Imbesi, R.; Leonardi, R.; Castrogiovanni, P. Current Concepts in the Treatment of Cartilage Damage. A Review. Ital. J. Anat. Embryol. 2013, 118, 189–203. [Google Scholar]
- Park, Y.-B.; Ha, C.-W.; Rhim, J.H.; Lee, H.-J. Stem Cell Therapy for Articular Cartilage Repair: Review of the Entity of Cell Populations Used and the Result of the Clinical Application of Each Entity. Am. J. Sports Med. 2018, 46, 2540–2552. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Bou-Ghannam, S.; Thorp, H.; Grainger, D.W.; Okano, T. Human Mesenchymal Stem Cell Sheets in Xeno-Free Media for Possible Allogenic Applications. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- León, S.A.; Mei, X.Y.; Safir, O.A.; Gross, A.E.; Kuzyk, P.R. Long-Term Results of Fresh Osteochondral Allografts and Realignment Osteotomy for Cartilage Repair in the Knee. Bone Jt. J. 2019, 101-B, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Kot, M.; Baj-Krzyworzeka, M.; Szatanek, R.; Musiał-Wysocka, A.; Suda-Szczurek, M.; Majka, M. The Importance of HLA Assessment in “off-the-Shelf” Allogeneic Mesenchymal Stem Cells Based-Therapies. Int. J. Mol. Sci. 2019, 20, 5680. [Google Scholar] [CrossRef] [Green Version]
- García-Sancho, J.; Sánchez, A.; Vega, A.; Noriega, D.C.; Nocito, M. Influence of HLA Matching on the Efficacy of Allogeneic Mesenchymal Stromal Cell Therapies for Osteoarthritis and Degenerative Disc Disease. Transplant. Direct 2017, 3, e205. [Google Scholar] [CrossRef] [PubMed]
- Caplan, A.I. Mesenchymal Stem Cells. J. Orthop. Res. 1991, 9, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Caplan, A.I.; Sorrell, J.M. The MSC Curtain That Stops the Immune System. Immunol. Lett. 2015. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal Criteria for Defining Multipotent Mesenchymal Stromal Cells. The International Society for Cellular Therapy Position Statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Harrell, C.R.; Markovic, B.S.; Fellabaum, C.; Arsenijevic, A.; Volarevic, V. Mesenchymal Stem Cell-Based Therapy of Osteoarthritis: Current Knowledge and Future Perspectives. Biomed. Pharmacother. 2019, 109, 2318–2326. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.Y.; Wang, B. Cartilage Repair by Mesenchymal Stem Cells: Clinical Trial Update and Perspectives. J. Orthop. Transl. 2017, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Schachtele, S.; Clouser, C.; Aho, J. Markers and Methods to Validate Mesenchymal Stem Cell Identity, Potency, and Quality. R&D Syst. White Pap. 2018. Available online: https://www.rndsystems.com/resources/articles/markers-and-methods-verify-mesenchymal-stem-cell-identity-potency-and-quality (accessed on 4 February 2021).
- Martin, C.; Olmos, É.; Collignon, M.L.; De Isla, N.; Blanchard, F.; Chevalot, I.; Marc, A.; Guedon, E. Revisiting MSC Expansion from Critical Quality Attributes to Critical Culture Process Parameters. Process Biochem. 2017, 59, 231–243. [Google Scholar] [CrossRef]
- Bravery, C.A.; Carmen, J.; Fong, T.; Oprea, W.; Hoogendoorn, K.H.; Woda, J.; Burger, S.R.; Rowley, J.A.; Bonyhadi, M.L.; Van’T Hof, W. Potency Assay Development for Cellular Therapy Products: An ISCT* Review of the Requirements and Experiences in the Industry. Cytotherapy 2013, 9–19.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- 95. FDA.; CBER. Draft Guidance for Industry: Potency Tests for Cellular and Gene Therapy Products. Biotechnol. Law Rep. 2011. [CrossRef]
- Squillaro, T.; Peluso, G.; Galderisi, U. Clinical Trials with Mesenchymal Stem Cells: An Update. Cell Transplant. 2016, 25, 829–848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merckx, G.; Bronckaers, A.; Hilkens, P.; Ratajczak, J.; Lo Monaco, M.; Clegg, P.; Vandeweerd, J.-M.; Gervois, P.; Lambrichts, I. Stem Cells for Cartilage Repair: Preclinical Studies and Insights in Translational Animal Models and Outcome Measures. Stem Cells Int. 2018, 2018, 1–22. [Google Scholar] [CrossRef]
- Saidova, A.A.; Vorobjev, I.A. Lineage Commitment, Signaling Pathways, and the Cytoskeleton Systems in Mesenchymal Stem Cells. Tissue Eng. Part B Rev. 2019, 26, 13–25. [Google Scholar] [CrossRef]
- Yamashita, A.; Nishikawa, S.; Rancourt, D.E. Identification of Five Developmental Processes during Chondrogenic Differentiation of Embryonic Stem Cells. PLoS ONE 2010, 5, e10998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murdoch, A.D.; Grady, L.M.; Ablett, M.P.; Katopodi, T.; Meadows, R.S.; Hardingham, T.E. Chondrogenic Differentiation of Human Bone Marrow Stem Cells in Transwell Cultures: Generation of Scaffold-Free Cartilage. Stem Cells 2007, 25, 2786–2796. [Google Scholar] [CrossRef]
- Xu, J.; Wang, W.; Ludeman, M.; Cheng, K.; Hayami, T.; Lotz, J.C.; Kapila, S. Chondrogenic Differentiation of Human Mesenchymal Stem Cells in Three-Dimensional Alginate Gels. Tissue Eng. Part A 2008, 14, 667–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Jiang, X.; Zhang, X.; Chen, R.; Sun, T.; Fok, K.L.; Dong, J.; Tsang, L.L.; Yi, S.; Ruan, Y.; et al. Dedifferentiation-Reprogrammed Mesenchymal Stem Cells with Improved Therapeutic Potential. Stem Cells 2011, 29, 2077–2089. [Google Scholar] [CrossRef]
- Mueller, M.B.; Fischer, M.; Zellner, J.; Berner, A.; Dienstknecht, T.; Prantl, L.; Kujat, R.; Nerlich, M.; Tuan, R.S.; Angele, P. Hypertrophy in Mesenchymal Stem Cell Chondrogenesis: Effect of TGF-β Isoforms and Chondrogenic Conditioning. Cells Tissues Organs 2010, 192, 158–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Y.; Lei, G.; Lin, Z.; Yang, Y.; Lin, H.; Tuan, R.S. Engineering Hyaline Cartilage from Mesenchymal Stem Cells with Low Hypertrophy Potential via Modulation of Culture Conditions and Wnt/β-Catenin Pathway. Biomaterials 2019, 192, 569–578. [Google Scholar] [CrossRef]
- DeLise, A.M.; Fischer, L.; Tuan, R.S. Cellular Interactions and Signaling in Cartilage Development. Osteoarthr. Cartil. 2000, 8, 309–334. [Google Scholar] [CrossRef] [Green Version]
- Watts, A.E.; Ackerman-Yost, J.C.; Nixon, A.J. A Comparison of Three-Dimensional Culture Systems to Evaluate in Vitro Chondrogenesis of Equine Bone Marrow-Derived Mesenchymal Stem Cells. Tissue Eng. Part A 2013, 19, 2275–2283. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.Y.; Choy, T.H.; Ho, F.C.; Chan, P.B. Scaffold Composition Affects Cytoskeleton Organization, Cell-Matrix Interaction and the Cellular Fate of Human Mesenchymal Stem Cells upon Chondrogenic Differentiation. Biomaterials 2015, 52, 208–220. [Google Scholar] [CrossRef] [PubMed]
- Sasazaki, Y.; Seedhom, B.B.; Shore, R. Morphology of the Bovine Chondrocyte and of Its Cytoskeleton in Isolation and in Situ: Are Chondrocytes Ubiquitously Paired through the Entire Layer of Articular Cartilage? Rheumatology 2008, 47, 1641–1646. [Google Scholar] [CrossRef] [Green Version]
- McMurtrey, R.J. Analytic Models of Oxygen and Nutrient Diffusion, Metabolism Dynamics, and Architecture Optimization in Three-Dimensional Tissue Constructs with Applications and Insights in Cerebral Organoids. Tissue Eng. Part C Methods 2016, 22, 221–249. [Google Scholar] [CrossRef] [Green Version]
- Samal, J.R.K.; Rangasami, V.K.; Samanta, S.; Varghese, O.P.; Oommen, O.P. Discrepancies on the Role of Oxygen Gradient and Culture Condition on Mesenchymal Stem Cell Fate. Adv. Healthc. Mater. 2021, 2002058. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Liu, H.; Li, J.; Zhou, Y. Roles of Hypoxia During the Chondrogenic Differentiation of Mesenchymal Stem Cells. Curr. Stem Cell Res. Ther. 2014, 9, 141–147. [Google Scholar] [CrossRef]
- Bae, H.C.; Park, H.J.; Wang, S.Y.; Yang, H.R.; Lee, M.C.; Han, H.S. Hypoxic Condition Enhances Chondrogenesis in Synovium-Derived Mesenchymal Stem Cells. Biomater. Res. 2018, 22, 28. [Google Scholar] [CrossRef] [Green Version]
- Malladi, P.; Xu, Y.; Chiou, M.; Giaccia, A.J.; Longaker, M.T. Effect of Reduced Oxygen Tension on Chondrogenesis and Osteogenesis in Adipose-Derived Mesenchymal Cells. Am. J. Physiol. Cell Physiol. 2006, 290. [Google Scholar] [CrossRef] [PubMed]
- Lafont, J.E.; Talma, S.; Hopfgarten, C.; Murphy, C.L. Hypoxia Promotes the Differentiated Human Articular Chondrocyte Phenotype through SOX9-Dependent and -Independent Pathways. J. Biol. Chem. 2008, 283, 4778–4786. [Google Scholar] [CrossRef] [Green Version]
- Vater, C.; Kasten, P.; Stiehler, M. Culture Media for the Differentiation of Mesenchymal Stromal Cells. Acta Biomater. 2011, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Achilli, T.M.; Meyer, J.; Morgan, J.R. Advances in the Formation, Use and Understanding of Multi-Cellular Spheroids. Expert Opin. Biol. Ther. 2012, 1347–1360. [Google Scholar] [CrossRef] [Green Version]
- Sekiya, I.; Vuoristo, J.T.; Larson, B.L.; Prockop, D.J. In Vitro Cartilage Formation by Human Adult Stem Cells from Bone Marrow Stroma Defines the Sequence of Cellular and Molecular Events during Chondrogenesis. Proc. Natl. Acad. Sci. USA 2002, 99, 4397–4402. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Su, P.; Xu, C.; Yang, J.; Yu, W.; Huang, D. Chondrogenic Differentiation of Human Mesenchymal Stem Cells: A Comparison between Micromass and Pellet Culture Systems. Biotechnol. Lett. 2010, 32, 1339–1346. [Google Scholar] [CrossRef]
- Tamamura, Y.; Otani, T.; Kanatani, N.; Koyama, E.; Kitagaki, J.; Komori, T.; Yamada, Y.; Costantini, F.; Wakisaka, S.; Pacifici, M.; et al. Developmental Regulation of Wnt/β-Catenin Signals Is Required for Growth Plate Assembly, Cartilage Integrity, and Endochondral Ossification. J. Biol. Chem. 2005, 280, 19185–19195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Dong, S. The Signaling Pathways Involved in Chondrocyte Differentiation and Hypertrophic Differentiation. Stem Cells Int. 2016, 2016, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Y.F.; Soung, D.Y.; Schwarz, E.M.; O’Keefe, R.J.; Drissi, H. Wnt Induction of Chondrocyte Hypertrophy through the Runx2 Transcription Factor. J. Cell. Physiol. 2006, 208, 77–86. [Google Scholar] [CrossRef]
- Madeira, C.; Santhagunam, A.; Salgueiro, J.B.; Cabral, J.M.S. Advanced Cell Therapies for Articular Cartilage Regeneration. Trends Biotechnol. 2015, 35–42. [Google Scholar] [CrossRef]
- Vinatier, C.; Mrugala, D.; Jorgensen, C.; Guicheux, J.; Noël, D. Cartilage Engineering: A Crucial Combination of Cells, Biomaterials and Biofactors. Trends Biotechnol. 2009, 307–314. [Google Scholar] [CrossRef]
- Tatman, P.D.; Gerull, W.; Sweeney-Easter, S.; Davis, J.I.; Gee, A.O.; Kim, D.-H. Multiscale Biofabrication of Articular Cartilage: Bioinspired and Biomimetic Approaches. Tissue Eng. Part B Rev. 2015, 21, 543–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Y.; Liu, H.; Yang, Q.; Wang, S.; Wang, J.; Ma, J.; Noh, I.; Mikos, A.G.; Zhang, S. Selective Laser Sintering Scaffold with Hierarchical Architecture and Gradient Composition for Osteochondral Repair in Rabbits. Biomaterials 2017, 137, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Di Bella, C.; Duchi, S.; O’Connell, C.D.; Blanchard, R.; Augustine, C.; Yue, Z.; Thompson, F.; Richards, C.; Beirne, S.; Onofrillo, C.; et al. In Situ Handheld Three-Dimensional Bioprinting for Cartilage Regeneration. J. Tissue Eng. Regen. Med. 2018, 12, 611–621. [Google Scholar] [CrossRef]
- Ansari, M.; Eshghanmalek, M. Biomaterials for Repair and Regeneration of the Cartilage Tissue. Bio-Des. Manuf. 2019, 2, 41–49. [Google Scholar] [CrossRef]
- Bernhard, J.C.; Vunjak-Novakovic, G. Should We Use Cells, Biomaterials, or Tissue Engineering for Cartilage Regeneration? Stem Cell Res. Ther. 2016, 56. [Google Scholar] [CrossRef] [Green Version]
- Campos, Y.; Almirall, A.; Fuentes, G.; Bloem, H.L.; Kaijzel, E.L.; Cruz, L.J. Tissue Engineering: An Alternative to Repair Cartilage. Tissue Eng. Part B Rev. 2019, 357–373. [Google Scholar] [CrossRef] [PubMed]
- Bobacz, K.; Erlacher, L.; Smolen, J.; Soleiman, A.; Graninger, W.B. Chondrocyte Number and Proteoglycan Synthesis in the Aging and Osteoarthritic Human Articular Cartilage. Ann. Rheum. Dis. 2004, 63, 1618–1622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahboudi, H.; Kazemi, B.; Soleimani, M. Comparison between High Cell-Density Culture Systems for Chondrogenic Differentiation and Articular Cartilage Reconstruction of Human Mesenchymal Stem Cells: A Literature Review. Regen. Reconstr. Restor. 2017, 2, 7–15. [Google Scholar] [CrossRef]
- Mcbeath, R.; Pirone, D.M.; Nelson, C.M.; Bhadriraju, K.; Chen, C.S. Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment. Dev. Cell 2004, 6, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Jubel, A.; Andermahr, J.; Schiffer, G.; Fischer, J.; Rehm, K.E.; Stoddart, M.J.; Häuselmann, H.J. Transplantation of de Novo Scaffold-Free Cartilage Implants into Sheep Knee Chondral Defects. Am. J. Sports Med. 2008, 36, 1555–1564. [Google Scholar] [CrossRef]
- Jang, J.; Lee, J.; Lee, E.; Lee, E.A.; Son, Y. Disc-Type Hyaline Cartilage Reconstruction Using 3D-Cell Sheet Culture of Human Bone Marrow Stromal Cells and Human Costal Chondrocytes and Maintenance of Its Shape and Phenotype after Transplantation. Tissue Eng. Regen. Med. 2016, 13, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Itokazu, M.; Wakitani, S.; Mera, H.; Tamamura, Y.; Sato, Y.; Takagi, M.; Nakamura, H. Transplantation of Scaffold-Free Cartilage-Like Cell-Sheets Made from Human Bone Marrow Mesenchymal Stem Cells for Cartilage Repair: A Preclinical Study. Cartilage 2016, 7, 361–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elder, S.H.; Cooley, A.J.; Borazjani, A.; Sowell, B.L.; To, H.; Tran, S.C. Production of Hyaline-like Cartilage by Bone Marrow Mesenchymal Stem Cells in a Self-Assembly Model. Tissue Eng. Part A 2009, 15, 3025–3036. [Google Scholar] [CrossRef]
- Wood, J.J.; Malek, M.A.; Frassica, F.J.; Polder, J.A.; Mohan, A.K.; Bloom, E.T.; Braun, M.M.; Coté, T.R. Autologous Cultured Chondrocytes: Adverse Events Reported to the United States Food and Drug Administration. J. Bone Jt. Surg. Am. 2006, 88, 503–507. [Google Scholar] [CrossRef]
- Middendorf, J.M.; Griffin, D.J.; Shortkroff, S.; Dugopolski, C.; Kennedy, S.; Siemiatkoski, J.; Cohen, I.; Bonassar, L.J. Mechanical Properties and Structure-Function Relationships of Human Chondrocyte-Seeded Cartilage Constructs after in Vitro Culture. J. Orthop. Res. 2017, 35, 2298–2306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, U.; Wiesmann, H.P.; Libera, J.; Depprich, R.; Naujoks, C.; Handschel, J. Cartilage Defect Regeneration by Ex Vivo Engineered Autologous Microtissue-Preliminary Results. In Vivo 2012, 26, 251–257. [Google Scholar]
- Iwasa, J.; Engebretsen, L.; Shima, Y.; Ochi, M. Clinical Application of Scaffolds for Cartilage Tissue Engineering. Knee Surg. Sports Traumatol. Arthrosc. 2009, 17, 561–577. [Google Scholar] [CrossRef] [Green Version]
- Malinin, T.; Ouellette, E.A. Articular Cartilage Nutrition Is Mediated by Subchondral Bone: A Long-Term Autograft Study in Baboons. Osteoarthr. Cartil. 2000, 8, 483–491. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.R.; Szczodry, M.; Bruno, S. Animal Models for Cartilage Regeneration and Repair. Tissue Eng. Part B Rev. 2010, 16. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, C.G.; Fisher, M.B.; Carey, J.L.; Mauck, R.L. Impact of Guidance Documents on Translational Large Animal Studies of Cartilage Repair. Sci. Transl. Med. 2015, 7, 310re9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gregory, M.H.; Capito, N.; Kuroki, K.; Stoker, A.M.; Cook, J.L.; Sherman, S.L. A Review of Translational Animal Models for Knee Osteoarthritis. Arthritis 2012. [Google Scholar] [CrossRef]
- Goetz, J.E.; Fredericks, D.; Petersen, E.; Rudert, M.J.; Baer, T.; Swanson, E.; Roberts, N.; Martin, J.; Tochigi, Y. A Clinically Realistic Large Animal Model of Intra-Articular Fracture That Progresses to Post-Traumatic Osteoarthritis. Osteoarthr. Cartil. 2015. [Google Scholar] [CrossRef] [Green Version]
- Ahern, B.J.; Parvizi, J.; Boston, R.; Schaer, T.P. Preclinical Animal Models in Single Site Cartilage Defect Testing: A Systematic Review. Osteoarthr. Cartil. 2009, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoemann, C.; Kandel, R.; Roberts, S.; Saris, D.B.F.; Creemers, L.; Mainil-Varlet, P.; Méthot, S.; Hollander, A.P.; Buschmann, M.D. International Cartilage Repair Society (ICRS) Recommended Guidelines for Histological Endpoints for Cartilage Repair Studies in Animal Models and Clinical Trials. Cartilage 2011, 2, 153–172. [Google Scholar] [CrossRef] [Green Version]
- Klein, J. Chemistry: Repair or Replacement–A Joint Perspective. Science 2009, 323, 47–48. [Google Scholar] [CrossRef]
- Wong, B.L.; Bae, W.C.; Chun, J.; Gratz, K.R.; Lotz, M.; Sah, R.L. Biomechanics of Cartilage Articulation: Effects of Lubrication and Degeneration on Shear Deformation. Arthritis Rheum. 2008, 58, 2065–2074. [Google Scholar] [CrossRef] [PubMed]
- Unsworth, A.; Dowson, D.; Wright, V. The Frictional Behavior of Human Synovial Joints–Part 1: Natural Joints. J. Lubr. Technol. 1975, 97, 369–376. [Google Scholar] [CrossRef]
- Patel, J.M.; Wise, B.C.; Bonnevie, E.D.; Mauck, R.L. A Systematic Review and Guide to Mechanical Testing for Articular Cartilage Tissue Engineering. Tissue Eng. Part C Methods 2019, 593–608. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Muneta, T.; Otabe, K.; Ozeki, N.; Mizuno, M.; Udo, M.; Saito, R.; Yanagisawa, K.; Ichinose, S.; Koga, H.; et al. Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin in Vitro and in Vivo. PLoS ONE 2016, 11, e0148777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, W.; Kluzek, M.; Iuster, N.; Shimoni, E.; Kampf, N.; Goldberg, R.; Klein, J. Cartilage-Inspired, Lipid-Based Boundary-Lubricated Hydrogels. Science 2020, 370, 335–338. [Google Scholar] [CrossRef] [PubMed]
- Davatchi, F.; Abdollahi, B.S.; Mohyeddin, M.; Shahram, F.; Nikbin, B. Mesenchymal Stem Cell Therapy for Knee Osteoarthritis. Preliminary Report of Four Patients. Int. J. Rheum. Dis. 2011, 14, 211–215. [Google Scholar] [CrossRef]
- Haraguchi, Y.; Shimizu, T.; Yamato, M.; Okano, T. Concise Review: Cell Therapy and Tissue Engineering for Cardiovascular Disease. Stem Cells Transl. Med. 2012, 1, 136–141. [Google Scholar] [CrossRef]
- Yang, J.; Yamato, M.; Shimizu, T.; Sekine, H.; Ohashi, K.; Kanzaki, M.; Ohki, T.; Nishida, K.; Okano, T. Reconstruction of Functional Tissues with Cell Sheet Engineering. Biomaterials 2007, 5033–5043. [Google Scholar] [CrossRef]
- Yang, J.; Yamato, M.; Kohno, C.; Nishimoto, A.; Sekine, H.; Fukai, F.; Okano, T. Cell Sheet Engineering: Recreating Tissues without Biodegradable Scaffolds. Biomaterials 2005, 26. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Ma, J.; Gao, Y.; Yang, L. Cell Sheet Technology: A Promising Strategy in Regenerative Medicine. Cytotherapy 2019, 21, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Owaki, T.; Shimizu, T.; Yamato, M.; Okano, T. Cell Sheet Engineering for Regenerative Medicine: Current Challenges and Strategies. Biotechnol. J. 2014, 904–914. [Google Scholar] [CrossRef]
- Yamada, N.; Okano, T.; Sakai, H.; Karikusa, F.; Sawasaki, Y.; Sakurai, Y. Thermo-responsive Polymeric Surfaces; Control of Attachment and Detachment of Cultured Cells. Die Makromol. Chem. Rapid Commun. 1990, 11, 571–576. [Google Scholar] [CrossRef]
- Kobayashi, J.; Kikuchi, A.; Aoyagi, T.; Okano, T. Cell Sheet Tissue Engineering: Cell Sheet Preparation, Harvesting/Manipulation, and Transplantation. J. Biomed. Mater. Res. Part A 2019, 107, 955–967. [Google Scholar] [CrossRef]
- Kushida, A.; Yamato, M.; Konno, C.; Kikuchi, A.; Sakurai, Y.; Okano, T. Decrease in Culture Temperature Releases Monolayer Endothelial Cell Sheets Together with Deposited Fibronectin Matrix from Temperature-Responsive Culture Surfaces. J. Biomed. Mater. Res. 1999, 45, 355–362. [Google Scholar] [CrossRef]
- Matsuda, N.; Shimizu, T.; Yamato, M.; Okano, T. Tissue Engineering Based on Cell Sheet Technology. Adv. Mater. 2007, 19, 3089–3099. [Google Scholar] [CrossRef]
- Nakao, M.; Kim, K.; Nagase, K.; Grainger, D.W.; Kanazawa, H.; Okano, T. Phenotypic Traits of Mesenchymal Stem Cell Sheets Fabricated by Temperature-Responsive Cell Culture Plate: Structural Characteristics of MSC Sheets. Stem Cell Res. Ther. 2019, 10, 353. [Google Scholar] [CrossRef]
- Ingber, D.E.; Dike, L.; Hansen, L.; Karp, S.; Liley, H.; Maniotis, A.; McNamee, H.; Mooney, D.; Plopper, G.; Sims, J.; et al. Cellular Tensegrity: Exploring How Mechanical Changes in the Cytoskeleton Regulate Cell Growth, Migration, and Tissue Pattern during Morphogenesis. Int. Rev. Cytol. 1994, 150, 173–224. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.; Reidler, D.; Shen, M.Y.; Huang, H. Keratinocyte Cytoskeletal Roles in Cell Sheet Engineering. BMC Biotechnol. 2013, 13, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuda, Y.; Shimizu, T.; Yamato, M.; Kikuchi, A.; Sasagawa, T.; Sekiya, S.; Kobayashi, J.; Chen, G.; Okano, T. Cellular Control of Tissue Architectures Using a Three-Dimensional Tissue Fabrication Technique. Biomaterials 2007, 28. [Google Scholar] [CrossRef]
- Kikuchi, T.; Shimizu, T.; Wada, M.; Yamato, M.; Okano, T. Automatic Fabrication of 3-Dimensional Tissues Using Cell Sheet Manipulator Technique. Biomaterials 2014, 35. [Google Scholar] [CrossRef] [Green Version]
- Williams, C.; Xie, A.W.; Yamato, M.; Okano, T.; Wong, J.Y. Stacking of Aligned Cell Sheets for Layer-by-Layer Control of Complex Tissue Structure. Biomaterials 2011, 32, 5625–5632. [Google Scholar] [CrossRef]
- Haraguchi, Y.; Shimizu, T.; Sasagawa, T.; Sekine, H.; Sakaguchi, K.; Kikuchi, T.; Sekine, W.; Sekiya, S.; Yamato, M.; Umezu, M.; et al. Fabrication of Functional Three-Dimensional Tissues by Stacking Cell Sheets in Vitro. Nat. Protoc. 2012, 7, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Sekine, W.; Haraguchi, Y.; Shimizu, T.; Yamato, M.; Umezawa, A.; Okano, T. Chondrocyte Differentiation of Human Endometrial Gland-Derived MSCs in Layered Cell Sheets. Sci. World J. 2013, 2013. [Google Scholar] [CrossRef] [PubMed]
- Mitani, G.; Sato, M.; Lee, J.I.; Kaneshiro, N.; Ishihara, M.; Ota, N.; Kokubo, M.; Sakai, H.; Kikuchi, T.; Mochida, J. The Properties of Bioengineered Chondrocyte Sheets for Cartilage Regeneration. BMC Biotechnol. 2009, 9, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneshiro, N.; Sato, M.; Ishihara, M.; Mitani, G.; Sakai, H.; Mochida, J. Bioengineered Chondrocyte Sheets May Be Potentially Useful for the Treatment of Partial Thickness Defects of Articular Cartilage. Biochem. Biophys. Res. Commun. 2006, 349, 723–731. [Google Scholar] [CrossRef]
- Sekine, H.; Shimizu, T.; Dobashi, I.; Matsuura, K.; Hagiwara, N.; Takahashi, M.; Kobayashi, E.; Yamato, M.; Okano, T. Cardiac Cell Sheet Transplantation Improves Damaged Heart Function via Superior Cell Survival in Comparison with Dissociated Cell Injection. Tissue Eng. Part A 2011, 17, 2973–2980. [Google Scholar] [CrossRef]
- Shimizu, R.; Kamei, N.; Adachi, N.; Hamanishi, M.; Kamei, G.; Mahmoud, E.E.; Nakano, T.; Iwata, T.; Yamato, M.; Okano, T.; et al. Repair Mechanism of Osteochondral Defect Promoted by Bioengineered Chondrocyte Sheet. Tissue Eng. Part A 2014, 21, 1131–1141. [Google Scholar] [CrossRef] [Green Version]
- Ito, S.; Sato, M.; Yamato, M.; Mitani, G.; Kutsuna, T.; Nagai, T.; Ukai, T.; Kobayashi, M.; Kokubo, M.; Okano, T.; et al. Repair of Articular Cartilage Defect with Layered Chondrocyte Sheets and Cultured Synovial Cells. Biomaterials 2012, 33, 5278–5286. [Google Scholar] [CrossRef]
- Ebihara, G.; Sato, M.; Yamato, M.; Mitani, G.; Kutsuna, T.; Nagai, T.; Ito, S.; Ukai, T.; Kobayashi, M.; Kokubo, M.; et al. Cartilage Repair in Transplanted Scaffold-Free Chondrocyte Sheets Using a Minipig Model. Biomaterials 2012, 33, 3846–3851. [Google Scholar] [CrossRef]
- Hamahashi, K.; Sato, M.; Yamato, M.; Kokubo, M.; Mitani, G.; Ito, S.; Nagai, T.; Ebihara, G.; Kutsuna, T.; Okano, T.; et al. Studies of the Humoral Factors Produced by Layered Chondrocyte Sheets. J. Tissue Eng. Regen. Med. 2015, 9, 24–30. [Google Scholar] [CrossRef]
- Kokubo, M.; Sato, M.; Yamato, M.; Mitani, G.; Kutsuna, T.; Ebihara, G.; Okano, T.; Mochida, J. Characterization of Chondrocyte Sheets Prepared Using a Co-Culture Method with Temperature-Responsive Culture Inserts. J. Tissue Eng. Regen. Med. 2016, 10, 486–495. [Google Scholar] [CrossRef]
- Takahashi, T.; Sato, M.; Toyoda, E.; Maehara, M.; Takizawa, D.; Maruki, H.; Tominaga, A.; Okada, E.; Okazaki, K.; Watanabe, M. Rabbit Xenogeneic Transplantation Model for Evaluating Human Chondrocyte Sheets Used in Articular Cartilage Repair. J. Tissue Eng. Regen. Med. 2018, 12, 2067–2076. [Google Scholar] [CrossRef]
- Takizawa, D.; Sato, M.; Okada, E.; Takahashi, T.; Maehara, M.; Tominaga, A.; Sogo, Y.; Toyoda, E.; Watanabe, M. Regenerative Effects of Human Chondrocyte Sheets in a Xenogeneic Transplantation Model Using Immune-Deficient Rats. J. Tissue Eng. Regen. Med. 2020, 14, 1296–1306. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Yamato, M.; Mitani, G.; Takagaki, T.; Hamahashi, K.; Nakamura, Y.; Ishihara, M.; Matoba, R.; Kobayashi, H.; Okano, T.; et al. Combined Surgery and Chondrocyte Cell-Sheet Transplantation Improves Clinical and Structural Outcomes in Knee Osteoarthritis. NPJ Regen. Med. 2019, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takatori, N.; Sato, M.; Toyoda, E.; Takahashi, T.; Okada, E.; Maehara, M.; Watanabe, M. Cartilage Repair and Inhibition of the Progression of Cartilage Degeneration after Transplantation of Allogeneic Chondrocyte Sheets in a Nontraumatic Early Arthritis Model. Regen. Ther. 2018, 9, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, E.; Sato, M.; Takahashi, T.; Maehara, M.; Okada, E.; Wasai, S.; Watanabe, M.; Iijima, H.; Nonaka, K.; Kawaguchi, Y. Transcriptomic and Proteomic Analyses Reveal the Potential Mode of Action of Chondrocyte Sheets in Hyaline Cartilage Regeneration. Int. J. Mol. Sci. 2020, 21, 149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokoyama, M.; Sato, M.; Umezawa, A.; Mitani, G.; Takagaki, T.; Yokoyama, M.; Kawake, T.; Okada, E.; Kokubo, M.; Ito, N.; et al. Assessment of the Safety of Chondrocyte Sheet Implantation for Cartilage Regeneration. Tissue Eng. Part C Methods 2016, 22, 59–68. [Google Scholar] [CrossRef]
- Kim, K.; Bou-Ghannam, S.; Okano, T. Cell Sheet Tissue Engineering for Scaffold-Free Three-Dimensional (3D) Tissue Reconstruction. In Methods in Cell Biology; Academic Press Inc.: Cambridge, MA, USA; Elsevier: Cambridge, MA, USA, 2020; Volume 157, pp. 143–167. [Google Scholar] [CrossRef]
- Patel, N.G.; Zhang, G. Stacked Stem Cell Sheets Enhance Cell-Matrix Interactions. Organogenesis 2014, 10, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Utoh, R.; Ohashi, K.; Kikuchi, T.; Okano, T. Fabrication of Functional 3D Hepatic Tissues with Polarized Hepatocytes by Stacking Endothelial Cell Sheets in Vitro. J. Tissue Eng. Regen. Med. 2017, 11, 2071–2080. [Google Scholar] [CrossRef] [PubMed]
- Maehara, M.; Sato, M.; Toyoda, E.; Takahashi, T.; Okada, E.; Kotoku, T.; Watanabe, M. Characterization of Polydactyly-Derived Chondrocyte Sheets versus Adult Chondrocyte Sheets for Articular Cartilage Repair. Inflamm. Regen. 2017, 37, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Madry, H.; Kaul, G.; Cucchiarini, M.; Stein, U.; Zurakowski, D.; Remberger, K.; Menger, M.D.; Kohn, D.; Trippel, S.B. Enhanced Repair of Articular Cartilage Defects in Vivo by Transplanted Chondrocytes Overexpressing Insulin-like Growth Factor I (IGF-I). Gene Ther. 2005, 12, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Alkaya, D.; Gurcan, C.; Kilic, P.; Yilmazer, A.; Gurman, G. Where Is Human-Based Cellular Pharmaceutical R&D Taking Us in Cartilage Regeneration? 3 Biotech 2020, 1–13. [Google Scholar] [CrossRef]
- Farhang, N.; Davis, B.; Weston, J.; Ginley-Hidinger, M.; Gertz, J.; Bowles, R.D. Synergistic CRISPRa-Regulated Chondrogenic Extracellular Matrix Deposition without Exogenous Growth Factors. Tissue Eng. Part A 2020, 26, 1169–1179. [Google Scholar] [CrossRef]
- Sridharan, B.; Sharma, B.; Detamore, M.S. A Road Map to Commercialization of Cartilage Therapy in the United States of America. Tissue Eng. Part B Rev. 2015, 22, 15–33. [Google Scholar] [CrossRef] [Green Version]
- Schacker, M.; Seimetz, D. From Fiction to Science: Clinical Potentials and Regulatory Considerations of Gene Editing. Clin. Transl. Med. 2019, 8, 27. [Google Scholar] [CrossRef] [Green Version]
Product Name | Company | Cell Type * | Support Material(s) | Country of Approval—Approval Body | Year Approved | Refs. |
---|---|---|---|---|---|---|
Carticel (1st gen. ACI) | Vericel | Autologous chondrocytes | Surgical application of periosteal flap | U.S.—FDA | 1997 (2017 phased out) | [62,63] |
Chondron™ | Sewon Cellontech | Autologous chondrocytes | Fibrin gel | Korea—MFDS | 2001 | [64] |
ChondroCelect® | TiGenix | Autologous chondrocytes | Surgical application of periosteal flap or commercially available collagen membrane (not included) | E.U.—EMA | 2009 (2016 withdrawn) | [65,66] |
Cartistem® | Medipost | Allogeneic umbilical cord blood-derived mesenchymal stem cells | N/A (injection into synovial space) | Korea—MFDS | 2012 | [67] |
JACC® | J-Tec | Autologous cultured chondrocytes | Collagen gel | Japan—MHLW | 2012 | [68] |
Novocart® 3D | Aesculap Biologics | Autologous chondrocytes | Three-dimensional collagen-chondroitin sulphate scaffolds | Germany/Switzerland | 2014 | [69] |
MACI® | Vericel | Autologous cultured chondrocytes | Porcine type I/III collagen membrane | E.U.—EMA | 2013 (2018 withdrawn) | [70] |
U.S.—FDA | 2016 | [71] | ||||
Ortho-ACI® (3rd gen. MACI) | Orthocell | Autologous chondrocytes | Porcin type I/III collagen scaffold | Australia | 2017 | [72] |
Spherox (chondrosphere®) | co.don | Autologous matrix-associated chondrocytes | N/A (self-adhering) | E.U.—EMA | 2017 | [73] |
Invossa™ (TissueGene-C) | Kolon Life Sciences | Allogeneic chondrocytes (retrovirally transduced to be TGF-β-expressing) | N/A (injection into synovial space) | Korea—MFDS | 2017 (2019 revoked) | [74,75] |
Cell Source | Study Type | In Vitro Chondrogenic Enhancement | Refs. |
---|---|---|---|
Human articular chondrocytes | In vitro | Layering | [172] |
Articular chondrocytes (human, rabbit) | In vitro/in vivo (allogeneic rabbit) | Layering | [173] |
Rat articular chondrocytes and synoviocytes | In vivo (allogeneic rat) | Layering | [175] |
Rabbit articular chondrocytes and synoviocytes | In vivo (allogeneic rabbit) | Layering | [176] |
Porcine articular chondrocytes | In vivo (allogeneic minipig) | Layering | [177] |
Human articular chondrocytes | In vitro | Co-culture with synoviocytes + layering | [178] |
Human articular chondrocytes | In vitro | Co-culture with synoviocytes + layering | [179] |
Human articular chondrocytes | In vivo (xenogeneic immunosuppressed rabbit) | Co-culture with synoviocytes + layering | [180] |
Human articular chondrocytes and synoviocytes | In vivo (athymic rat) | Co-culture with synoviocytes + layering | [181] |
Autologous human articular chondrocytes (with microfracture) | In vivo (autologous human—small cohort clinical study) | Co-culture with synoviocytes + layering | [182] |
Rat articular chondrocytes | In vitro/in vivo (allogeneic rat) | None | [183] |
Human juvenile polydactyly chondrocytes | In vitro/in vivo(xenogeneic immunosuppressed rabbit) | None | [184] |
Human juvenile polydactyly chondrocytes | In vivo (athymic rat) | None | [25] |
Human endometrial gland-derived MSCs | In vitro | Layering | [171] |
Human bone marrow-derived MSCs | In vitro | Chondrogenic induction medium + hypoxia (5% O2) | [12] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thorp, H.; Kim, K.; Kondo, M.; Maak, T.; Grainger, D.W.; Okano, T. Trends in Articular Cartilage Tissue Engineering: 3D Mesenchymal Stem Cell Sheets as Candidates for Engineered Hyaline-Like Cartilage. Cells 2021, 10, 643. https://doi.org/10.3390/cells10030643
Thorp H, Kim K, Kondo M, Maak T, Grainger DW, Okano T. Trends in Articular Cartilage Tissue Engineering: 3D Mesenchymal Stem Cell Sheets as Candidates for Engineered Hyaline-Like Cartilage. Cells. 2021; 10(3):643. https://doi.org/10.3390/cells10030643
Chicago/Turabian StyleThorp, Hallie, Kyungsook Kim, Makoto Kondo, Travis Maak, David W. Grainger, and Teruo Okano. 2021. "Trends in Articular Cartilage Tissue Engineering: 3D Mesenchymal Stem Cell Sheets as Candidates for Engineered Hyaline-Like Cartilage" Cells 10, no. 3: 643. https://doi.org/10.3390/cells10030643
APA StyleThorp, H., Kim, K., Kondo, M., Maak, T., Grainger, D. W., & Okano, T. (2021). Trends in Articular Cartilage Tissue Engineering: 3D Mesenchymal Stem Cell Sheets as Candidates for Engineered Hyaline-Like Cartilage. Cells, 10(3), 643. https://doi.org/10.3390/cells10030643