Axonal Modulation of Striatal Dopamine Release by Local γ-Aminobutyric Acid (GABA) Signalling
Abstract
:1. Introduction
2. GABAA and GABAB Receptor-Mediated Inhibition of Striatal DA Release
3. Direct vs. Indirect Actions of GABAA and GABAB Receptors That Inhibit DA Release
4. GABAA Receptor Modulation of DA Axonal Processing
5. GABAB Receptor Modulation of DA Axonal Processing
6. Sources of Striatal GABA Mediating GABAergic Inhibition of DA Release
7. Astrocytic GABA Transporters Set the Tone of GABAergic Inhibition of DA Release
8. Clinical Implications for GABAergic Regulation of Striatal DA Release
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Matsuda, W.; Furuta, T.; Nakamura, K.C.; Hioki, H.; Fujiyama, F.; Arai, R.; Kaneko, T. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J. Neurosci. 2009, 29, 444–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Descarries, L.; Mechawar, N. Ultrastructural evidence for diffuse transmission by monoamine and acetylcholine neurons of the central nervous system. Prog. Brain Res. 2000, 125, 27–47. [Google Scholar] [CrossRef]
- Arbuthnott, G.W.; Wickens, J. Space, time and dopamine. Trends Neurosci. 2007, 30, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Aransay, A.; Rodríguez-López, C.; García-Amado, M.; Clascá, F.; Prensa, L. Long-range projection neurons of the mouse ventral tegmental area: A single-cell axon tracing analysis. Front. Neuroanat. 2015, 9, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, H.; Williams, J.; Nathans, J. Complete morphologies of basal forebrain cholinergic neurons in the mouse. eLife 2014, e02444. [Google Scholar] [CrossRef]
- Rice, M.E.; Patel, J.C.; Cragg, S.J. Dopamine release in the basal ganglia. Neuroscience 2011, 198, 112–137. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, Y.; Benoit-Marand, M.; Gonon, F.; Sulzer, D. Presynaptic regulation of dopaminergic neurotransmission. J. Neurochem. 2003, 87, 273–289. [Google Scholar] [CrossRef]
- Sulzer, D.; Cragg, S.J.; Rice, M.E. Striatal dopamine neurotransmission: Regulation of release and uptake. Basal Ganglia 2016. [Google Scholar] [CrossRef] [Green Version]
- Nolan, S.O.; Zachry, J.E.; Johnson, A.R.; Brady, L.J.; Siciliano, C.A.; Calipari, E.S. Direct dopamine terminal regulation by local striatal microcircuitry. J. Neurochem. 2020, 155, 475–493. [Google Scholar] [CrossRef]
- Hamid, A.A.; Pettibone, J.R.; Mabrouk, O.S.; Hetrick, V.L.; Schmidt, R.; Vander Weele, C.M.; Kennedy, R.T.; Aragona, B.J.; Berke, J.D. Mesolimbic dopamine signals the value of work. Nat. Neurosci. 2015, 19, 117–126. [Google Scholar] [CrossRef]
- Mohebi, A.; Pettibone, J.R.; Hamid, A.A.; Wong, J.-M.T.; Vinson, L.T.; Patriarchi, T.; Tian, L.; Kennedy, R.T.; Berke, J.D. Dissociable dopamine dynamics for learning and motivation. Nature 2019, 570, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Cachope, R.; Cheer, J.F. Local control of striatal dopamine release. Front. Behav. Neurosci. 2014, 8, 188. [Google Scholar] [CrossRef] [PubMed]
- Threlfell, S.; Lalic, T.; Platt, N.J.; Jennings, K.A.; Deisseroth, K.; Cragg, S.J. Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 2012, 75, 58–64. [Google Scholar] [CrossRef] [Green Version]
- Tepper, J.M.; Koós, T.; Ibanez-Sandoval, O.; Tecuapetla, F.; Faust, T.W.; Assous, M. Heterogeneity and diversity of striatal GABAergic interneurons: Update 2018. Front. Neuroanat. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gittis, A.H.; Kreitzer, A.C. Striatal microcircuitry and movement disorders. Trends Neurosci. 2012, 35, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Tritsch, N.X.; Ding, J.B.; Sabatini, B.L. Dopaminergic neurons inhibit striatal output through non-canonical release of GABA. Nature 2012, 490, 262–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozovaya, N.; Eftekhari, S.; Cloarec, R.; Gouty-Colomer, L.A.; Dufour, A.; Riffault, B.; Billon-Grand, M.; Pons-Bennaceur, A.; Oumar, N.; Burnashev, N.; et al. GABAergic inhibition in dual-transmission cholinergic and GABAergic striatal interneurons is abolished in Parkinson disease. Nat. Commun. 2018, 9, 1422. [Google Scholar] [CrossRef]
- Brown, M.T.C.; Tan, K.R.; O’Connor, E.C.; Nikonenko, I.; Muller, D.; Lüscher, C. Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature 2012, 492, 452–456. [Google Scholar] [CrossRef]
- Rodríguez, M.; González-Hernández, T. Electrophysiological and morphological evidence for a GABAergic nigrostriatal pathway. J. Neurosci. 1999, 19, 4682–4694. [Google Scholar] [CrossRef] [Green Version]
- Oorschot, D.E. Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: A stereological study using the cavalieri and optical disector methods. J. Comp. Neurol. 1996, 366, 580–599. [Google Scholar] [CrossRef]
- Tritsch, N.X.; Sabatini, B.L. Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron 2012, 76, 33–50. [Google Scholar] [CrossRef] [Green Version]
- Gerfen, C.R.; Surmeier, D.J. Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 2011, 34, 441–466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charara, A.; Heilman, C.; Levey, A.; Smith, Y. Pre- and postsynaptic localization of GABAB receptors in the basal ganglia in monkeys. Neuroscience 1999, 95, 127–140. [Google Scholar] [CrossRef]
- Chéramy, A.; Nieoullon, A.; Glowinski, J. Gabaergic processes involved in the control of dopamine release from nigrostriatal dopaminergic neurons in the cat. Eur. J. Pharmacol. 1978, 48, 281–295. [Google Scholar] [CrossRef]
- Giorguieff, M.F.; Kemel, M.L.; Glowinski, J.; Besson, M.J. Stimulation of dopamine release by GABA in rat striatal slices. Brain Res. 1978, 139, 115–130. [Google Scholar] [CrossRef]
- Starr, M.S. GABA potentiates potassium-stimulated 3H-dopamine release from slices of rat substantia nigra and corpus striatum. Eur. J. Pharmacol. 1978, 48, 325–328. [Google Scholar] [CrossRef]
- Reimann, W.; Zumstein, A.; Starke, K. GABA can both inhibit and facilitate dopamine release in the caudate nucleus of the rabbit. J. Neurochem. 1982, 39, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Smolders, I.; De Klippel, N.; Sarre, S.; Ebinger, G.; Michotte, Y. Tonic GABA-ergic modulation of striatal dopamine release studied by in vivo microdialysis in the freely moving rat. Eur. J. Pharmacol. 1995, 284, 83–91. [Google Scholar] [CrossRef]
- Gruen, R.J.; Friedhoff, A.J.; Coale, A.; Moghaddam, B. Tonic inhibition of striatal dopamine transmission: Effects of benzodiazepine and GABAA receptor antagonists on extracellular dopamine levels. Brain Res. 1992, 599, 51–56. [Google Scholar] [CrossRef]
- Krebs, M.O.; Kemel, M.L.; Gauchy, C.; Desban, M.; Glowinski, J. Local GABAergic regulation of the N-methyl-d-aspartate-evoked release of dopamine is more prominent in striosomes than in matrix of the rat striatum. Neuroscience 1993, 57, 249–260. [Google Scholar] [CrossRef]
- Ronken, E.; Mulder, A.H.; Schoffelmeer, A.N.M. Interacting presynaptic k-opioid and GABAA receptors modulate dopamine release from rat striatal synaptosomes. J. Neurochem. 1993, 61, 1634–1639. [Google Scholar] [CrossRef]
- Avshalumov, M.V.; Chen, B.T.; Marshall, S.P.; Pena, D.M.; Rice, M.E. Glutamate-dependent inhibition of dopamine release in striatum is mediated by a new diffusible messenger, H2O2. J. Neurosci. 2003, 23, 2744–2750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidló, Z.; Reggio, P.H.; Rice, M.E. Inhibition of striatal dopamine release by CB1 receptor activation requires nonsynaptic communication involving GABA, H2O2, and KATP channels. Neurochem. Int. 2008, 52, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Pitman, K.A.; Puil, E.; Borgland, S.L. GABAB modulation of dopamine release in the nucleus accumbens core. Eur. J. Neurosci. 2014, 40, 3472–3480. [Google Scholar] [CrossRef]
- Schmitz, Y.; Schmauss, C.; Sulzer, D. Altered dopamine release and uptake kinetics in mice lacking D2 receptors. J. Neurosci. 2002, 22, 8002–8009. [Google Scholar] [CrossRef]
- Lopes, E.F.; Roberts, B.M.; Siddorn, R.E.; Clements, M.A.; Cragg, S.J. Inhibition of nigrostriatal dopamine release by striatal GABAA and GABAB receptors. J. Neurosci. 2019, 39, 1058–1065. [Google Scholar] [CrossRef] [Green Version]
- Brodnik, Z.D.; Batra, A.; Oleson, E.B.; Espana, R.A. Local GABAA receptor-rediated suppression of dopamine release within the nucleus accumbens. ACS Chem. Neurosci. 2019, 10, 1978–1985. [Google Scholar] [CrossRef]
- Melchior, J.R.; Ferris, M.J.; Stuber, G.D.; Riddle, D.R.; Jones, S.R. Optogenetic versus electrical stimulation of dopamine terminals in the nucleus accumbens reveals local modulation of presynaptic release. J. Neurochem. 2015, 134, 833–844. [Google Scholar] [CrossRef] [Green Version]
- Roberts, B.M.; Doig, N.M.; Brimblecombe, K.R.; Lopes, E.F.; Siddorn, R.E.; Threlfell, S.; Connor-Robson, N.; Bengoa-Vergniory, N.; Pasternack, N.; Wade-Martins, R.; et al. GABA uptake transporters support dopamine release in dorsal striatum with maladaptive downregulation in a parkinsonism model. Nat. Commun. 2020, 11, 4958. [Google Scholar] [CrossRef]
- Rice, M.E.; Cragg, S.J. Nicotine amplifies reward-related dopamine signals in striatum. Nat. Neurosci. 2004, 7, 583–584. [Google Scholar] [CrossRef]
- Zhang, H.; Sulzer, D. Frequency-dependent modulation of dopamine release by nicotine. Nat. Neurosci. 2004, 7, 581–582. [Google Scholar] [CrossRef]
- Bowery, N.G.; Hudson, A.L.; Price, G.W. GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience 1987, 20, 365–383. [Google Scholar] [CrossRef]
- Boyes, J.; Bolam, J.P. The subcellular localization of GABAB receptor subunits in the rat substantia nigra. Eur. J. Neurosci. 2003, 18, 3279–3293. [Google Scholar] [CrossRef]
- Nicholson, L.F.B.; Faull, R.L.M.; Waldvogel, H.J.; Dragunow, M. The regional, cellular and subcellular localization of GABAA/benzodiazepine receptors in the substantia nigra of the rat. Neuroscience 1992, 50, 355–370. [Google Scholar] [CrossRef]
- Brazhnik, E.; Shah, F.; Tepper, J.M. GABAergic afferents activate both GABAA and GABAB receptors in mouse substantia nigra dopaminergic neurons in vivo. J. Neurosci. 2008, 28, 10386–10398. [Google Scholar] [CrossRef] [Green Version]
- Paladini, C.A.; Tepper, J.M. GABAA and GABAB antagonists differentially affect the firing pattern of substantia nigra dopaminergic neurons in vivo. Synapse 1999, 32, 165–176. [Google Scholar] [CrossRef]
- Kramer, P.F.; Twedell, E.L.; Shin, J.H.; Zhang, R.; Khaliq, Z.M. Axonal mechanisms mediating γ-aminobutyric acid receptor type A (GABA-A) inhibition of striatal dopamine release. eLife 2020, 9, e55729. [Google Scholar] [CrossRef] [PubMed]
- Jones, I.W.; Paul Bolam, J.; Wonnacott, S. Presynaptic localisation of the nicotinic acetylcholine receptor β2 subunit immunoreactivity in rat nigrostriatal dopaminergic neurones. J. Comp. Neurol. 2001. [Google Scholar] [CrossRef] [PubMed]
- Britt, J.P.; McGehee, D.S. Presynaptic opioid and nicotinic receptor modulation of dopamine overflow in the nucleus accumbens. J. Neurosci. 2008, 28, 1672–1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hartung, H.; Threlfell, S.; Cragg, S.J. Nitric oxide donors enhance the frequency dependence of dopamine release in nucleus accumbens. Neuropsychopharmacology 2011, 36, 1811–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stouffer, M.A.; Woods, C.A.; Patel, J.C.; Lee, C.R.; Witkovsky, P.; Bao, L.; Machold, R.P.; Jones, K.T.; De Vaca, S.C.; Reith, M.E.A.; et al. Insulin enhances striatal dopamine release by activating cholinergic interneurons and thereby signals reward. Nat. Commun. 2015, 6, 8543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosillo, P.; Zhang, Y.-F.; Threlfell, S.; Cragg, S.J. Cortical control of striatal dopamine transmission via striatal cholinergic interneurons. Cereb. Cortex 2016, 26, 4160–4169. [Google Scholar] [CrossRef]
- Lemos, J.C.; Shin, J.H.; Alvarez, V.A. Striatal cholinergic interneurons are a novel target of corticotropin releasing factor. J. Neurosci. 2019, 39, 5647–5661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waldvogel, H.J.; Fritschy, J.M.; Mohler, H.; Faull, R.L.M. GABAA receptors in the primate basal ganglia: An autoradiographic and a light and electron microscopic immunohistochemical study of the α1 and β2,3 subunits in the baboon brain. J. Comp. Neurol. 1998, 397, 297–325. [Google Scholar] [CrossRef]
- Yung, K.K.L.; Ng, T.K.Y.; Wong, C.K.C. Subpopulations of neurons in the rat neostriatum display GABABR1 receptor immunoreactivity. Brain Res. 1999, 830, 345–352. [Google Scholar] [CrossRef]
- Lim, S.A.O.; Kang, U.J.; McGehee, D.S. Striatal cholinergic interneuron regulation and circuit effects. Front. Synaptic Neurosci. 2014, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Rinetti-Vargas, G.; Phamluong, K.; Ron, D.; Bender, K.J. Periadolescent maturation of GABAergic hyperpolarization at the axon initial segment. Cell Rep. 2017, 20, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Gulledge, A.T.; Stuart, G.J. Excitatory actions of GABA in the cortex. Neuron 2003, 37, 299–309. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Zhao, Y.; Yang, M.; Zeng, S.; Shu, Y. Regulation of action potential waveforms by axonal GABAA receptors in cortical pyramidal neurons. PLoS ONE 2014, 9, 100968. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, A.; Campanac, E.; Scott, R.S.; Rusakov, D.A.; Kullmann, D.M. Presynaptic GABAA receptors enhance transmission and LTP induction at hippocampal mossy fiber synapses. Nat. Neurosci. 2010, 13, 431–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zorrilla de San Martin, J.; Trigo, F.F.; Kawaguchi, S. Axonal GABAA receptors depolarize presynaptic terminals and facilitate transmitter release in cerebellar Purkinje cells. J. Physiol. 2017, 595, 7477–7493. [Google Scholar] [CrossRef] [Green Version]
- Trigo, F.F.; Marty, A.; Stell, B.M. Axonal GABAA receptors. Eur. J. Neurosci. 2008, 28, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Dellal, S.S.; Luo, R.; Otis, T.S. GABA A receptors increase excitability and conduction velocity of cerebellar parallel fiber axons. J. Neurophysiol. 2012, 107, 2958–2970. [Google Scholar] [CrossRef] [Green Version]
- Howell, R.D.; Pugh, J.R. Biphasic modulation of parallel fibre synaptic transmission by co-activation of presynaptic GABAA and GABAB receptors in mice. J. Physiol. 2016, 594, 3651–3666. [Google Scholar] [CrossRef] [Green Version]
- Khatri, S.N.; Wu, W.C.; Yang, Y.; Pugh, J.R. Direction of action of presynaptic GABAA receptors is highly dependent on the level of receptor activation. J. Neurophysiol. 2019, 121, 1896–1905. [Google Scholar] [CrossRef]
- Pugh, J.R.; Jahr, C.E. Axonal GABAA receptors increase cerebellar granule cell excitability and synaptic activity. J. Neurosci. 2011, 31, 565–574. [Google Scholar] [CrossRef] [PubMed]
- Szabadics, J.; Varga, C.; Molnár, G.; Oláh, S.; Barzó, P.; Tamás, G. Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 2006, 311, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Curtis, D.R.; Lodge, D. The depolarization of feline ventral horn group Ia spinal afferent terminations by GABA. Exp. Brain Res. 1982, 46, 215–233. [Google Scholar] [CrossRef] [PubMed]
- Eccles, J.C.; Eccles, R.M.; Magni, F. Central inhibitory action attributable to presynaptic depolarization produced by muscle afferent volleys. J. Physiol. 1961, 159, 147–166. [Google Scholar] [CrossRef] [PubMed]
- Frank, K.; Fuortes, M.G.F. Presynaptic and postsynaptic inhibition of monosynaptic reflexes. Fed. Proc. 1957, 16, 39–40. [Google Scholar]
- Farrant, M.; Nusser, Z. Variations on an inhibitory theme: Phasic and tonic activation of GABAA receptors. Nat. Rev. Neurosci. 2005, 6, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Brickley, S.G.; Mody, I. Extrasynaptic GABAA receptors: Their function in the cns and implications for disease. Neuron 2012, 73, 23–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petri, S.; Krampfl, K.; Dengler, R.; Bufler, J.; Weindl, A.; Arzberger, T. Human GABAA receptors on dopaminergic neurons in the pars compacta of the substantia nigra. J. Comp. Neurol. 2002, 452, 360–366. [Google Scholar] [CrossRef]
- Okada, H.; Matsushita, N.; Kobayashi, K.; Kobayashi, K. Identification of GABAA receptor subunit variants in midbrain dopaminergic neurons. J. Neurochem. 2004, 89, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Tossell, K.; Dodhia, R.A.; Galet, B.; Tkachuk, O.; Ungless, M.A. Tonic GABAergic inhibition, via GABAA receptors containing αβε subunits, regulates excitability of ventral tegmental area dopamine neurons. Eur. J. Neurosci. 2021. [Google Scholar] [CrossRef]
- Ulrich, D.; Bettler, B. GABAB receptors: Synaptic functions and mechanisms of diversity. Curr. Opin. Neurobiol. 2007, 17, 298–303. [Google Scholar] [CrossRef]
- Dvorzhak, A.; Myakhar, O.; Unichenko, P.; Kirmse, K.; Kirischuk, S. Estimation of ambient GABA levels in layer I of the mouse neonatal cortex in brain slices. J. Physiol. 2010, 588, 2351–2360. [Google Scholar] [CrossRef]
- Kirmse, K.; Kirischuk, S. Ambient GABA constrains the strength of gabaergic synapses at cajal-retzius cells in the developing visual cortex. J. Neurosci. 2006, 26, 4216–4227. [Google Scholar] [CrossRef]
- Le Feuvre, Y.; Fricker, D.; Leresche, N. GABAA receptor-mediated IPSCs in rat thalamic sensory nuclei: Patterns of discharge and tonic modulation by GABAB autoreceptors. J. Physiol. 1997, 502, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Laviv, T.; Riven, I.; Dolev, I.; Vertkin, I.; Balana, B.; Slesinger, P.A.; Slutsky, I. Basal GABA regulates GABABR conformation and release probability at single hippocampal synapses. Neuron 2010, 67, 253–267. [Google Scholar] [CrossRef] [Green Version]
- Mapelli, L.; Rossi, P.; Nieus, T.; D’Angelo, E. Tonic activation of GABAB receptors reduces release probability at inhibitory connections in the cerebellar glomerulus. J. Neurophysiol. 2009, 101, 3089–3099. [Google Scholar] [CrossRef]
- Condon, M.D.; Platt, N.J.; Zhang, Y.F.; Roberts, B.M.; Clements, M.A.; Vietti-Michelina, S.; Tseu, M.Y.; Brimblecombe, K.R.; Threlfell, S.; Mann, E.O.; et al. Plasticity in striatal dopamine release is governed by release-independent depression and the dopamine transporter. Nat. Commun. 2019, 10, 4263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.I.; Ganesan, S.; Luo, S.X.; Wu, Y.W.; Park, E.; Huang, E.J.; Chen, L.; Ding, J.B. Aldehyde dehydrogenase 1a1 mediates a GABA synthesis pathway in midbrain dopaminergic neurons. Science 2015, 350, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Kubota, Y.; Inagaki, S.; Kito, S.; Wu, J.Y. Dopaminergic axons directly make synapses with GABAergic neurons in the rat neostriatum. Brain Res. 1987, 406, 147–156. [Google Scholar] [CrossRef]
- Ade, K.K.; Janssen, M.J.; Ortinski, P.I.; Vicini, S. Differential tonic GABA conductances in striatal medium spiny neurons. J. Neurosci. 2008, 28, 1185–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cepeda, C.; Galvan, L.; Holley, S.M.; Rao, S.P.; Andre, V.M.; Botelho, E.P.; Chen, J.Y.; Watson, J.B.; Deisseroth, K.; Levine, M.S. Multiple sources of striatal inhibition are differentially affected in Huntington’s disease mouse models. J. Neurosci. 2013, 33, 7393–7406. [Google Scholar] [CrossRef] [Green Version]
- Santhakumar, V.; Jones, R.T.; Mody, I. Developmental regulation and neuroprotective effects of striatal tonic GABAA currents. Neuroscience 2010, 167, 644–655. [Google Scholar] [CrossRef] [Green Version]
- Tritsch, N.X.; Oh, W.J.; Gu, C.; Sabatini, B.L. Midbrain dopamine neurons sustain inhibitory transmission using plasma membrane uptake of GABA, not synthesis. eLife 2014, 3, e01936. [Google Scholar] [CrossRef] [PubMed]
- Wójtowicz, A.M.; Dvorzhak, A.; Semtner, M.; Grantyn, R. Reduced tonic inhibition in striatal output neurons from Huntington mice due to loss of astrocytic GABA release through GAT-3. Front. Neural Circuits 2013, 7, 188. [Google Scholar] [CrossRef] [Green Version]
- Kavalali, E.T. The mechanisms and functions of spontaneous neurotransmitter release. Nat. Rev. Neurosci. 2015, 16, 5–16. [Google Scholar] [CrossRef] [PubMed]
- Benoit-Marand, M.; Borrelli, E.; Gonon, F. Inhibition of dopamine release via presynaptic D2 receptors: Time course and functional characteristics in vivo. J. Neurosci. 2001, 21, 9134–9141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stensrud, M.J.; Puchades, M.; Gundersen, V. GABA is localized in dopaminergic synaptic vesicles in the rodent striatum. Brain Struct. Funct. 2014, 219, 1901–1912. [Google Scholar] [CrossRef] [PubMed]
- Beatty, J.A.; Sullivan, M.A.; Morikawa, H.; Wilson, C.J. Complex autonomous firing patterns of striatal low-threshold spike interneurons. J. Neurophysiol. 2012, 108, 771–781. [Google Scholar] [CrossRef] [Green Version]
- Holly, E.N.; Davatolhagh, M.F.; España, R.A.; Fuccillo, M.V. Striatal low-threshold spiking interneurons locally gate dopamine during learning. bioRxiv 2020. [Google Scholar] [CrossRef]
- Dorst, M.C.; Tokarska, A.; Zhou, M.; Lee, K.; Stagkourakis, S.; Broberger, C.; Masmanidis, S.; Silberberg, G. Polysynaptic inhibition between striatal cholinergic interneurons shapes their network activity patterns in a dopamine-dependent manner. Nat. Commun. 2020, 11, 5113. [Google Scholar] [CrossRef]
- Ishibashi, M.; Egawa, K.; Fukuda, A. Diverse actions of astrocytes in GABAergic signaling. Int. J. Mol. Sci. 2019, 20, 2964. [Google Scholar] [CrossRef] [Green Version]
- Yoon, B.-E.; Lee, C.J. GABA as a rising gliotransmitter. Front. Neural Circuits 2014, 8, 141. [Google Scholar] [CrossRef] [Green Version]
- Yoon, B.E.; Woo, J.; Chun, Y.E.; Chun, H.; Jo, S.; Bae, J.Y.; An, H.; Min, J.O.; Oh, S.J.; Han, K.S.; et al. Glial GABA, synthesized by monoamine oxidase B, mediates tonic inhibition. J. Physiol. 2014, 592, 4951–4968. [Google Scholar] [CrossRef]
- Kwak, H.; Koh, W.; Kim, S.; Song, K.; Shin, J.-I.; Lee, J.M.; Lee, E.H.; Bae, J.Y.; Ha, G.E.; Oh, J.-E.; et al. Astrocytes control sensory acuity via tonic inhibition in the thalamus. Neuron 2020, 108, 691–706. [Google Scholar] [CrossRef]
- Yu, X.; Taylor, A.M.W.; Nagai, J.; Golshani, P.; Evans, C.J.; Coppola, G.; Khakh, B.S. Reducing astrocyte calcium signaling in vivo alters striatal microcircuits and causes repetitive behavior. Neuron 2018, 99, 1170–1187. [Google Scholar] [CrossRef] [Green Version]
- Kirmse, K.; Dvorzhak, A.; Kirischuk, S.; Grantyn, R. GABA transporter 1 tunes GABAergic synaptic transmission at output neurons of the mouse neostriatum. J. Physiol. 2008, 586, 5665–5678. [Google Scholar] [CrossRef]
- Kirmse, K.; Kirischuk, S.; Grantyn, R. Role of GABA transporter 3 in GABAergic synaptic transmission at striatal output neurons. Synapse 2009, 63, 921–929. [Google Scholar] [CrossRef]
- Augood, S.J.; Herbison, A.E.; Emson, P.C. Localization of GAT-1 GABA transporter mRNA in rat striatum: Cellular coexpression with GAD67 mRNA, GAD67 immunoreactivity, and parvalbumin mRNA. J. Neurosci. 1995, 15, 865–874. [Google Scholar] [CrossRef]
- Durkin, M.M.; Smith, K.E.; Borden, L.A.; Weinshank, R.L.; Branchek, T.A.; Gustafson, E.L. Localization of messenger RNAs encoding three GABA transporters in rat brain: An in situ hybridization study. Mol. Brain Res. 1995, 33, 7–21. [Google Scholar] [CrossRef]
- Ng, C.H.; Wang, X.S.; Ong, W.Y. A light and electron microscopic study of the GABA transporter GAT-3 in the monkey basal ganglia and brainstem. J. Neurocytol. 2000, 29, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Yasumi, M.; Sato, K.; Shimada, S.; Nishimura, M.; Tohyama, M. Regional distribution of GABA transporter 1 (GAT1) mRNA in the rat brain: Comparison with glutamic acid decarboxylase67 (GAD67) mRNA localization. Brain Res. Mol. Brain Res. 1997, 44, 205–218. [Google Scholar] [CrossRef]
- Ficková, M.; Dahmen, N.; Fehr, C.; Hiemke, C. Quantitation of GABA transporter 3 (GAT3) mRNA in rat brain by competitive RT-PCR. Brain Res. Protoc. 1999, 4, 341–350. [Google Scholar] [CrossRef]
- Chai, H.; Diaz-Castro, B.; Shigetomi, E.; Monte, E.; Octeau, J.C.; Yu, X.; Cohn, W.; Rajendran, P.S.; Vondriska, T.M.; Whitelegge, J.P.; et al. Neural circuit-specialized astrocytes: Transcriptomic, proteomic, morphological, and functional evidence. Neuron 2017, 95, 531–549. [Google Scholar] [CrossRef]
- Gokce, O.; Neff, N.F.; Fuccillo, M.V.; Südhof, T.C.; Treutlein, B.; Quake, S.R.; Malenka, R.C.; Stanley, G.M.; Rothwell, P.E.; Camp, J.G. Cellular taxonomy of the mouse striatum as revealed by single-cell RNA-seq. Cell Rep. 2016, 16, 1126–1137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Chen, K.; Sloan, S.A.; Bennett, M.L.; Scholze, A.R.; O’Keeffe, S.; Phatnani, H.P.; Guarnieri, P.; Caneda, C.; Ruderisch, N.; et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 2014, 34, 11929–11947. [Google Scholar] [CrossRef] [PubMed]
- Borden, L.A. GABA transporter heterogeneity: Pharmacology and cellular localization. Neurochem. Int. 1996, 29, 335–356. [Google Scholar] [CrossRef]
- Martín, R.; Bajo-Grañeras, R.; Moratalla, R.; Perea, G.; Araque, A. Circuit-specific signaling in astrocyte-neuron networks in basal ganglia pathways. Science 2015, 349, 730–734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagai, J.; Rajbhandari, A.K.; Gangwani, M.R.; Hachisuka, A.; Coppola, G.; Masmanidis, S.C.; Fanselow, M.S.; Khakh, B.S. Hyperactivity with disrupted attention by activation of an astrocyte synaptogenic cue. Cell 2019, 177, 1280–1292. [Google Scholar] [CrossRef] [PubMed]
- Corkrum, M.; Covelo, A.; Lines, J.; Bellocchio, L.; Pisansky, M.; Loke, K.; Quintana, R.; Rothwell, P.E.; Lujan, R.; Marsicano, G.; et al. Dopamine-evoked synaptic regulation in the nucleus accumbens requires astrocyte activity. Neuron 2020, 105, 1036–1047. [Google Scholar] [CrossRef] [Green Version]
- Richerson, G.B.; Wu, Y. Dynamic equilibrium of neurotransmitter transporters: Not just for reuptake anymore. J. Neurophysiol. 2003, 90, 1363–1374. [Google Scholar] [CrossRef] [Green Version]
- Chazalon, M.; Paredes-Rodriguez, E.; Morin, S.; Martinez, A.; Cristóvão-Ferreira, S.; Vaz, S.; Sebastiao, A.; Panatier, A.; Boué-Grabot, E.; Miguelez, C.; et al. GAT-3 dysfunction generates tonic inhibition in external globus pallidus neurons in parkinsonian rodents. Cell Rep. 2018, 23, 1678–1690. [Google Scholar] [CrossRef] [Green Version]
- Zaccara, G.; Cincotta, M.; Borgheresi, A.; Balestrieri, F. Adverse motor effects induced by antiepileptic drugs. Epileptic Disord. 2004, 6, 153–168. [Google Scholar] [PubMed]
- Diaz-Castro, B.; Gangwani, M.R.; Yu, X.; Coppola, G.; Khakh, B.S. Astrocyte molecular signatures in Huntington’s disease. Sci. Transl. Med. 2019, 11. [Google Scholar] [CrossRef] [Green Version]
- Cepeda, C.; Murphy, K.P.S.; Parent, M.; Levine, M.S. The role of dopamine in huntington’s disease. In Progress in Brain Research; Elsevier B.V.: Amsterdam, The Netherlands, 2014; Volume 211, pp. 235–254. [Google Scholar]
- Chen, J.Y.; Wang, E.A.; Cepeda, C.; Levine, M.S. Dopamine imbalance in Huntington’s disease: A mechanism for the lack of behavioral flexibility. Front. Neurosci. 2013, 7, 114. [Google Scholar] [CrossRef] [Green Version]
- Dong, Q.; Kim, J.; Nguyen, L.; Bu, Q.; Chang, Q. An astrocytic influence on impaired tonic inhibition in hippocampal CA1 pyramidal neurons in a mouse model of Rett syndrome. J. Neurosci. 2020, 40, 6250–6261. [Google Scholar] [CrossRef]
- Zott, B.; Simon, M.M.; Hong, W.; Unger, F.; Chen-Engerer, H.J.; Frosch, M.P.; Sakmann, B.; Walsh, D.M.; Konnerth, A. A vicious cycle of β amyloid−dependent neuronal hyperactivation. Science 2019, 365, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Madsen, K.K.; White, H.S.; Schousboe, A. Neuronal and non-neuronal GABA transporters as targets for antiepileptic drugs. Pharmacol. Ther. 2010, 125, 394–401. [Google Scholar] [CrossRef]
- Griffin, C.E.; Kaye, A.M.; Rivera Bueno, F.; Kaye, A.D. Benzodiazepine pharmacology and central nervous system-mediated effects. Ochsner J. 2013, 13, 214–223. [Google Scholar]
- Schmitz, A. Benzodiazepine use, misuse, and abuse: A review. Ment. Health Clin. 2016, 6, 120–126. [Google Scholar] [CrossRef]
- Tan, K.R.; Brown, M.; Labouébe, G.; Yvon, C.; Creton, C.; Fritschy, J.M.; Rudolph, U.; Lüscher, C. Neural bases for addictive properties of benzodiazepines. Nature 2010, 463, 769–774. [Google Scholar] [CrossRef]
- Bentué-Ferrer, D.; Reymann, J.M.; Tribut, O.; Allain, H.; Vasar, E.; Bourin, M. Role of dopaminergic and serotonergic systems on behavioral stimulatory effects of low-dose alprazolam and lorazepam. Eur. Neuropsychopharmacol. 2001, 11, 41–50. [Google Scholar] [CrossRef]
- Finlay, J.M.; Damsma, G.; Fibiger, H.C. Benzodiazepine-induced decreases in extracellular concentrations of dopamine in the nucleus accumbens after acute and repeated administration. Psychopharmacology 1992, 106, 202–208. [Google Scholar] [CrossRef]
- Hegarty, A.A.; Vogel, W.H. The effect of acute and chronic diazepam treatment on stress-induced changes in cortical dopamine in the rat. Pharmacol. Biochem. Behav. 1995, 52, 771–778. [Google Scholar] [CrossRef]
- Motzo, C.; Porceddu, M.L.; Dazzi, L.; Sanna, A.; Serra, M.; Biggio, G. Enhancement by flumazenil of dopamine release in the nucleus accumbens of rats repeatedly exposed to diazepam or imidazenil. Psychopharmacology 1997, 131, 34–39. [Google Scholar] [CrossRef]
- Murai, T.; Koshikawa, N.; Kanayama, T.; Takada, K.; Tomiyama, K.; Kobayashi, M. Opposite effects of midazolam and β-carboline-3-carboxylate ethyl ester on the release of dopamine from rat nucleus accumbens measured by in vivo microdialysis. Eur. J. Pharmacol. 1994, 261, 65–71. [Google Scholar] [CrossRef]
- Rada, P.; Hoebel, B.G. Acetylcholine in the accumbens is decreased by diazepam and increased by benzodiazepine withdrawal: A possible mechanism for dependency. Eur. J. Pharmacol. 2005, 508, 131–138. [Google Scholar] [CrossRef]
- Takada, K.; Murai, T.; Kanayama, T.; Koshikawa, N. Effects of midazolam and flunitrazepam on the release of dopamine from rat striatum measured by in vivo microdialysis. Br. J. Anaesth. 1993, 70, 181–185. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, Y.; Koide, S.; Hirose, N.; Takada, K.; Saigusa, T.; Koshikawa, N. In vivo microdialysis evidence that midazolam facilitates propofol-induced reduction in rat accumbal dopamine release. Neurosci. Res. Commun. 1999, 25, 121–127. [Google Scholar] [CrossRef]
- Zetterström, T.; Fillenz, M. Local administration of flurazepam has different effects on dopamine release in striatum and nucleus accumbens: A microdialysis study. Neuropharmacology 1990, 29, 129–134. [Google Scholar] [CrossRef]
- Gomez-A, A.; Fiorenza, A.M.; Boschen, S.L.; Sugi, A.H.; Beckman, D.; Ferreira, S.T.; Lee, K.; Blaha, C.D.; Da Cunha, C. Diazepam inhibits electrically evoked and tonic dopamine release in the nucleus accumbens and reverses the effect of amphetamine. ACS Chem. Neurosci. 2017, 8, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Schelp, S.A.; Brodnik, Z.D.; Rakowski, D.R.; Pultorak, K.J.; Sambells, A.T.; España, R.A.; Oleson, E.B. Diazepam concurrently increases the frequency and decreases the amplitude of transient dopamine release events in the nucleus accumbenss. J. Pharmacol. Exp. Ther. 2018, 364, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Moragues, N.; Ciofi, P.; Tramu, G.; Garret, M. Localisation of GABAA receptor ε-subunit in cholinergic and aminergic neurones and evidence for co-distribution with the θ-subunit in rat brain. Neuroscience 2002, 111, 657–669. [Google Scholar] [CrossRef]
- Pirker, S.; Schwarzer, C.; Wieselthaler, A.; Sieghart, W.; Sperk, G. GABAA receptors: Immunocytochemical distribution of 13 subunits in the adult rat brain. Neuroscience 2000, 101, 815–850. [Google Scholar] [CrossRef]
- Munakata, M.; Nakanishi, R.; Akaike, N. Heterogeneous distribution of benzodiazepine receptors among rat neostriatal neurones. Br. J. Pharmacol. 1996, 118, 820–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waldvogel, H.J.; Kubota, Y.; Fritschy, J.-M.; Mohler, H.; Faull, R.L.M. Regional and cellular localisation of GABAA receptor subunits in the human basal ganglia: An autoradiographic and immunohistochemical study. J. Comp. Neurol. 1999, 415, 313–340. [Google Scholar] [CrossRef]
- Fritschy, J.M. Significance of GABAA receptor heterogeneity: Clues from developing neurons. In Advances in Pharmacology; Academic Press Inc.: Waltham, MA, USA, 2015; Volume 73, pp. 13–39. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Roberts, B.M.; Lopes, E.F.; Cragg, S.J. Axonal Modulation of Striatal Dopamine Release by Local γ-Aminobutyric Acid (GABA) Signalling. Cells 2021, 10, 709. https://doi.org/10.3390/cells10030709
Roberts BM, Lopes EF, Cragg SJ. Axonal Modulation of Striatal Dopamine Release by Local γ-Aminobutyric Acid (GABA) Signalling. Cells. 2021; 10(3):709. https://doi.org/10.3390/cells10030709
Chicago/Turabian StyleRoberts, Bradley M., Emanuel F. Lopes, and Stephanie J. Cragg. 2021. "Axonal Modulation of Striatal Dopamine Release by Local γ-Aminobutyric Acid (GABA) Signalling" Cells 10, no. 3: 709. https://doi.org/10.3390/cells10030709
APA StyleRoberts, B. M., Lopes, E. F., & Cragg, S. J. (2021). Axonal Modulation of Striatal Dopamine Release by Local γ-Aminobutyric Acid (GABA) Signalling. Cells, 10(3), 709. https://doi.org/10.3390/cells10030709