The Platelet-Activating Factor Receptor’s Association with the Outcome of Ovarian Cancer Patients and Its Experimental Inhibition by Rupatadine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Ethics Approval
2.3. Immunohistochemistry
2.4. Cells, Culture Conditions, and Reagents
2.5. RT-qPCR
2.6. siRNA Knockdown
2.7. Western Blotting
2.8. Cell Proliferation
2.9. Wound Healing
2.10. Statistical Analysis
3. Results
3.1. Elevated Cytoplasmic PAFR Expression in Serous, Clear Cell, and Endometrioid Ovarian Cancer Patients
3.2. PAFR Expression Correlates with Clinical and Pathological Data
3.3. PAFR as a Negative Independent Prognostic Factor in Ovarian Cancer Patients
3.4. PAFR Knockdown Reduced Ovarian Cancer Cell Proliferation
3.5. Rupatadine Has an Inhibitory Effect on Proliferation and Migration of Ovarian Cancer Cells
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BRCA | breast cancer gene |
DNA | deoxyribonucleic acid |
EOC | epithelial ovarian cancer |
FBS | fetal bovine serum |
FIGO | International Federation of Gynecology and Obstetrics |
GAPDH | glycerinaldehyd-3-phosphat-dehydrogenase |
IHC | immunohistochemistry |
IRScore | immunoreactive score |
mRNA | messenger ribonucleic acid |
MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
OS | overall survival |
PAF | platelet-activating factor |
PTAFR | platelet-activating factor receptor |
qPCR | quantitative polymerase chain reaction |
RFS | recurrence-free survival |
ROC | receiver operating characteristic |
siRNA | small interfering ribonucleic acid |
SD | standard deviation |
Src/FAK | steroid receptor coactivator/focal adhesion kinase |
STAT | signal transducer and activator of transcription |
References
- Oberaigner, W.; Minicozzi, P.; Bielska-Lasota, M.; Allemani, C.; de Angelis, R.; Mangone, L.; Sant, M.; Eurocare Working, G. Survival for ovarian cancer in Europe: The across-country variation did not shrink in the past decade. Acta Oncol. 2012, 51, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA A Cancer J. Clin. 2013, 63, 11–30. [Google Scholar] [CrossRef] [PubMed]
- Colombo, N.; Sessa, C.; du Bois, A.; Ledermann, J.; McCluggage, W.G.; McNeish, I.; Morice, P.; Pignata, S.; Ray-Coquard, I.; Vergote, I.; et al. ESMO-ESGO consensus conference recommendations on ovarian cancer: Pathology and molecular biology, early and advanced stages, borderline tumours and recurrent diseasedagger. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 672–705. [Google Scholar] [CrossRef]
- Bruchim, I.; Ben-Harim, Z.; Piura, E.; Tepper, R.; Fishman, A. Preoperative clinical and radiological features of metastatic ovarian tumors. Arch. Gynecol. Obs. 2013, 288, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, X.; Hong, S.; Zhang, M.; Cai, Q.; Jiang, W.; Xu, C. Epidermal growth factor induces platelet-activating factor production through receptors transactivation and cytosolic phospholipase A2 in ovarian cancer cells. J. Ovarian Res. 2014, 7, 39. [Google Scholar] [CrossRef]
- Kisielewski, R.; Tolwinska, A.; Mazurek, A.; Laudanski, P. Inflammation and ovarian cancer—current views. Ginekol. Pol. 2013, 84, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Maccio, A.; Madeddu, C. Inflammation and ovarian cancer. Cytokine 2012, 58, 133–147. [Google Scholar] [CrossRef]
- Boccellino, M.; Biancone, L.; Cantaluppi, V.; Ye, R.D.; Camussi, G. Effect of platelet-activating factor receptor expression on CHO cell motility. J. Cell Physiol. 2000, 183, 254–264. [Google Scholar] [CrossRef]
- Heon Seo, K.; Ko, H.M.; Kim, H.A.; Choi, J.H.; Jun Park, S.; Kim, K.J.; Lee, H.K.; Im, S.Y. Platelet-activating factor induces up-regulation of antiapoptotic factors in a melanoma cell line through nuclear factor-kappaB activation. Cancer Res. 2006, 66, 4681–4686. [Google Scholar] [CrossRef] [PubMed]
- Kume, K.; Shimizu, T. Platelet-activating factor (PAF) induces growth stimulation, inhibition, and suppression of oncogenic transformation in NRK cells overexpressing the PAF receptor. J. Biol. Chem. 1997, 272, 22898–22904. [Google Scholar] [CrossRef] [PubMed]
- Aponte, M.; Jiang, W.; Lakkis, M.; Li, M.J.; Edwards, D.; Albitar, L.; Vitonis, A.; Mok, S.C.; Cramer, D.W.; Ye, B. Activation of platelet-activating factor receptor and pleiotropic effects on tyrosine phospho-EGFR/Src/FAK/paxillin in ovarian cancer. Cancer Res. 2008, 68, 5839–5848. [Google Scholar] [CrossRef]
- Braeuer, R.R.; Zigler, M.; Villares, G.J.; Dobroff, A.S.; Bar-Eli, M. Transcriptional control of melanoma metastasis: The importance of the tumor microenvironment. Semin. Cancer Biol. 2011, 21, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Melnikova, V.O.; Villares, G.J.; Bar-Eli, M. Emerging roles of PAR-1 and PAFR in melanoma metastasis. Cancer Microenviron. 2008, 1, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, M.; Zhang, X.; Cai, Q.; Hong, S.; Jiang, W.; Xu, C. Synergistic effects of combined platelet-activating factor receptor and epidermal growth factor receptor targeting in ovarian cancer cells. J. Hematol. Oncol. 2014, 7, 39. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Zhang, X.; Hong, S.; Zhang, M.; Cai, Q.; Zhang, M.; Jiang, W.; Xu, C. The expression of platelet-activating factor receptor modulates the cisplatin sensitivity of ovarian cancer cells: A novel target for combination therapy. Br. J. Cancer 2014, 111, 515–524. [Google Scholar] [CrossRef]
- Shamizadeh, S.; Brockow, K.; Ring, J. Rupatadine: Efficacy and safety of a non-sedating antihistamine with PAF-antagonist effects. Allergo J. Int. 2014, 23, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Mullol, J.; Bousquet, J.; Bachert, C.; Canonica, W.G.; Gimenez-Arnau, A.; Kowalski, M.L.; Marti-Guadano, E.; Maurer, M.; Picado, C.; Scadding, G.; et al. Rupatadine in allergic rhinitis and chronic urticaria. Allergy 2008, 63 (Suppl. 87), 5–28. [Google Scholar] [CrossRef]
- Deuster, E.; Mayr, D.; Hester, A.; Kolben, T.; Zeder-Goss, C.; Burges, A.; Mahner, S.; Jeschke, U.; Trillsch, F.; Czogalla, B. Correlation of the Aryl Hydrocarbon Receptor with FSHR in Ovarian Cancer Patients. Int. J. Mol. Sci. 2019, 20, 2862. [Google Scholar] [CrossRef] [PubMed]
- Scholz, C.; Heublein, S.; Lenhard, M.; Friese, K.; Mayr, D.; Jeschke, U. Glycodelin A is a prognostic marker to predict poor outcome in advanced stage ovarian cancer patients. BMC Res. Notes 2012, 5, 551. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Nakas, C.T.; Alonzo, T.A.; Yiannoutsos, C.T. Accuracy and cut-off point selection in three-class classification problems using a generalization of the Youden index. Stat. Med. 2010, 29, 2946–2955. [Google Scholar] [CrossRef] [PubMed]
- Fluss, R.; Faraggi, D.; Reiser, B. Estimation of the Youden Index and its associated cutoff point. Biom. J. 2005, 47, 458–472. [Google Scholar] [CrossRef] [PubMed]
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, D.; Jiang, W.; Edwards, D.; Qiu, W.; Barroilhet, L.M.; Rho, J.H.; Jin, L.; Seethappan, V.; Vitonis, A.; et al. Activated networking of platelet activating factor receptor and FAK/STAT1 induces malignant potential in BRCA1-mutant at-risk ovarian epithelium. Reprod. Biol. Endocrinol. 2010, 8, 74. [Google Scholar] [CrossRef]
- Nelson, H.D.; Pappas, M.; Cantor, A.; Haney, E.; Holmes, R. Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer in Women: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 2019, 322, 666–685. [Google Scholar] [CrossRef] [PubMed]
- Madariaga, A.; Lheureux, S.; Oza, A.M. Tailoring Ovarian Cancer Treatment: Implications of BRCA1/2 Mutations. Cancers 2019, 11, 416. [Google Scholar] [CrossRef]
- Li, H.; Sekine, M.; Tung, N.; Avraham, H.K. Wild-type BRCA1, but not mutated BRCA1, regulates the expression of the nuclear form of beta-catenin. Mol. Cancer Res. MCR 2010, 8, 407–420. [Google Scholar] [CrossRef]
- Kuchenbaecker, K.B.; Hopper, J.L.; Barnes, D.R.; Phillips, K.A.; Mooij, T.M.; Roos-Blom, M.J.; Jervis, S.; van Leeuwen, F.E.; Milne, R.L.; Andrieu, N.; et al. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA 2017, 317, 2402–2416. [Google Scholar] [CrossRef]
- Tsoupras, A.B.; Iatrou, C.; Frangia, C.; Demopoulos, C.A. The implication of platelet activating factor in cancer growth and metastasis: Potent beneficial role of PAF-inhibitors and antioxidants. Infect. Disord. Drug Targets 2009, 9, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Marques, S.A.; Dy, L.C.; Southall, M.D.; Yi, Q.; Smietana, E.; Kapur, R.; Marques, M.; Travers, J.B.; Spandau, D.F. The platelet-activating factor receptor activates the extracellular signal-regulated kinase mitogen-activated protein kinase and induces proliferation of epidermal cells through an epidermal growth factor-receptor-dependent pathway. J. Pharmacol. Exp. Ther. 2002, 300, 1026–1035. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, M.; Zhang, X.; Cai, Q.; Zhu, Z.; Jiang, W.; Xu, C. Transactivation of epidermal growth factor receptor through platelet-activating factor/receptor in ovarian cancer cells. J. Exp. Clin. Cancer Res. CR 2014, 33, 85. [Google Scholar] [CrossRef]
- Jancar, S.; Chammas, R. PAF receptor and tumor growth. Curr. Drug Targets 2014, 15, 982–987. [Google Scholar] [CrossRef]
- Gao, T.; Yu, Y.; Cong, Q.; Wang, Y.; Sun, M.; Yao, L.; Xu, C.; Jiang, W. Human mesenchymal stem cells in the tumour microenvironment promote ovarian cancer progression: The role of platelet-activating factor. BMC Cancer 2018, 18, 999. [Google Scholar] [CrossRef]
- da Silva Junior, I.A.; Stone, S.C.; Rossetti, R.M.; Jancar, S.; Lepique, A.P. Modulation of Tumor-Associated Macrophages (TAM) Phenotype by Platelet-Activating Factor (PAF) Receptor. J. Immunol. Res. 2017, 2017, 5482768. [Google Scholar] [CrossRef]
- Merlos, M.; Giral, M.; Balsa, D.; Ferrando, R.; Queralt, M.; Puigdemont, A.; Garcia-Rafanell, J.; Forn, J. Rupatadine, a new potent, orally active dual antagonist of histamine and platelet-activating factor (PAF). J. Pharmacol. Exp. Ther. 1997, 280, 114–121. [Google Scholar] [PubMed]
- Cellai, C.; Laurenzana, A.; Vannucchi, A.M.; Caporale, R.; Paglierani, M.; Di Lollo, S.; Pancrazzi, A.; Paoletti, F. Growth inhibition and differentiation of human breast cancer cells by the PAFR antagonist WEB-2086. Br. J. Cancer 2006, 94, 1637–1642. [Google Scholar] [CrossRef]
- da Silva Junior, I.A.; de Sousa Andrade, L.N.; Jancar, S.; Chammas, R. Platelet activating factor receptor antagonists improve the efficacy of experimental chemo- and radiotherapy. Clinics 2018, 73, e792s. [Google Scholar] [CrossRef]
- Munoz-Cano, R.; Ainsua-Enrich, E.; Torres-Atencio, I.; Martin, M.; Sanchez-Lopez, J.; Bartra, J.; Picado, C.; Mullol, J.; Valero, A. Effects of Rupatadine on Platelet-Activating Factor-Induced Human Mast Cell Degranulation Compared With Desloratadine and Levocetirizine (The MASPAF Study). J. Investig. Allergol. Clin. Immunol. 2017, 27, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, Y.; Ikeda, J.-I.; Tian, T.; Sato, A.; Ohtsu, H.; Morii, E. Roles of histamine on the expression of aldehyde dehydrogenase 1 in endometrioid adenocarcinoma cell line. Cancer Med. 2014, 3, 1126–1135. [Google Scholar] [CrossRef]
- Valero, A.; de la Torre, F.; Castillo, J.A.; Rivas, P.; del Cuvillo, A.; Antepara, I.; Borja, J.; Donado, E.; Mola, O.; Izquierdo, I. Safety of rupatadine administered over a period of 1 year in the treatment of persistent allergic rhinitis: A multicentre, open-label study in Spain. Drug Saf. 2009, 32, 33–42. [Google Scholar] [CrossRef]
Parameters | N | Percentage |
---|---|---|
Histology | ||
serous | 110 | 70.5% |
clear cell | 12 | 7.7% |
endometrioid | 21 | 13.5% |
mucinous | 13 | 8.3% |
Lymph Node | ||
pNX | 61 | 39.1% |
pN0 | 43 | 27.6% |
pN1 | 52 | 33.3% |
Distant Metastasis | ||
pM0/X | 150 | 96.2% |
pM1 | 6 | 3.8% |
Grading | ||
serous | ||
low | 24 | 21.8% |
high | 80 | 72.7% |
endometrioid | ||
G1 | 6 | 28.6% |
G2 | 5 | 23.8% |
G3 | 8 | 38.1% |
mucinous | ||
G1 | 6 | 46.2% |
G2 | 6 | 46.2% |
G3 | 0 | 0% |
clear cell | ||
G3 | 12 | 100% |
FIGO | ||
I | 35 | 22.4% |
II | 10 | 6.4% |
III | 103 | 66.0% |
IV | 3 | 1.9% |
Age | ||
(median) years | 62 ± 12 | |
Deaths | 100 |
Variables | p | Correlation Coefficient |
---|---|---|
Histology | 0.011 | −0.222 |
FIGO | 0.749 | 0.029 |
Grading | ||
serous-low grading | 0.647 | 0.040 |
serous-high grading | 0.031 | 0.189 |
clear cell, endometrioid and mucinous-G1 to G3 | 0.051 | −0.174 |
Covariate | Coefficient (bi) | HR [Exp(bi)] | 95% CI | p-Value | |
---|---|---|---|---|---|
Lower | Upper | ||||
Histology | 0.335 | 1.398 | 0.809 | 2.418 | 0.230 |
FIGO (I, II vs. III, IV) | 1.462 | 4.316 | 2.222 | 8.384 | 0.000 |
Grading | |||||
serous low | −0.526 | 0.591 | 0.186 | 1.883 | 0.374 |
serous high | 0.692 | 1.999 | 0.742 | 5.386 | 0.171 |
clear cell, endometrioid and mucinous-G1 to G3 | 0.043 | 1.044 | 0.685 | 1.591 | 0.841 |
Patients’ age (≤45 vs. >45 years) | −0.196 | 0.822 | 0.416 | 1.624 | 0.572 |
PAFR cytoplasmicIRS > 3 | 1.403 | 4.069 | 1.031 | 16.059 | 0.045 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deuster, E.; Hysenaj, I.; Kahaly, M.; Schmoeckel, E.; Mayr, D.; Beyer, S.; Kolben, T.; Hester, A.; Kraus, F.; Chelariu-Raicu, A.; et al. The Platelet-Activating Factor Receptor’s Association with the Outcome of Ovarian Cancer Patients and Its Experimental Inhibition by Rupatadine. Cells 2021, 10, 2337. https://doi.org/10.3390/cells10092337
Deuster E, Hysenaj I, Kahaly M, Schmoeckel E, Mayr D, Beyer S, Kolben T, Hester A, Kraus F, Chelariu-Raicu A, et al. The Platelet-Activating Factor Receptor’s Association with the Outcome of Ovarian Cancer Patients and Its Experimental Inhibition by Rupatadine. Cells. 2021; 10(9):2337. https://doi.org/10.3390/cells10092337
Chicago/Turabian StyleDeuster, Eileen, Ivi Hysenaj, Maja Kahaly, Elisa Schmoeckel, Doris Mayr, Susanne Beyer, Thomas Kolben, Anna Hester, Fabian Kraus, Anca Chelariu-Raicu, and et al. 2021. "The Platelet-Activating Factor Receptor’s Association with the Outcome of Ovarian Cancer Patients and Its Experimental Inhibition by Rupatadine" Cells 10, no. 9: 2337. https://doi.org/10.3390/cells10092337
APA StyleDeuster, E., Hysenaj, I., Kahaly, M., Schmoeckel, E., Mayr, D., Beyer, S., Kolben, T., Hester, A., Kraus, F., Chelariu-Raicu, A., Burges, A., Mahner, S., Jeschke, U., Trillsch, F., & Czogalla, B. (2021). The Platelet-Activating Factor Receptor’s Association with the Outcome of Ovarian Cancer Patients and Its Experimental Inhibition by Rupatadine. Cells, 10(9), 2337. https://doi.org/10.3390/cells10092337