The Role of the Heat-Shock Proteins in Esophagogastric Cancer
Abstract
:1. Introduction
2. Methods
3. Literature Review
3.1. Role of HSP in Carcinogenesis of Esophagogastric Cancer
3.2. Role of HSPs in Prognostication of Esophagogastric Cancer
3.3. Role of HSP in New Treatments for Esophagogastric Cancer
3.4. Perspectives for HSP in Esophagogastric Cancer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ritossa, F. A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia 1962, 18, 571–573. [Google Scholar] [CrossRef]
- Kattaia, A.A.; El-Baset, A.; Samia, A.; Mohamed, E.M. Heat shock proteins in oxidative and nitrosative stress. Heat Shock Proteins Stress 2018, 15, 127–138. [Google Scholar]
- De Maio, A.; Santoro, M.G.; Tanguay, R.M.; Hightower, L.E. Ferruccio Ritossa’s scientific legacy 50 years after his discovery of the heat shock response: A new view of biology, a new society, and a new journal. Cell Stress Chaperones 2012, 17, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, H.; Vígh, L. The small heat shock proteins and their clients. Experientia 2007, 64, 294–306. [Google Scholar] [CrossRef]
- Dubrez, L.; Causse, S.; Bonan, N.B.; Dumétier, B.; Garrido, C. Heat-shock proteins: Chaperoning DNA repair. Oncogene 2020, 39, 516–529. [Google Scholar] [CrossRef]
- Zininga, T.; Ramatsui, L.; Shonhai, A. Heat Shock Proteins as Immunomodulants. Molecules 2018, 23, 2846. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Q.; Lin, H. Correlation between Clinicopathology and Expression of Heat Shock Protein 72 and Glycoprotein 96 in Human Esophageal Squamous Cell Carcinoma. Clin. Dev. Immunol. 2010, 2010, 212537. [Google Scholar] [CrossRef]
- Zhao, P.; Javed, S.; Shi, X.; Wu, B.; Zhang, D.; Xu, S.; Wang, X. Varying Architecture of Heat Shock Elements Contributes to Distinct Magnitudes of Target Gene Expression and Diverged Biological Pathways in Heat Stress Response of Bread Wheat. Front. Genet. 2020, 11, 30. [Google Scholar] [CrossRef]
- Aswad, A.; Liu, T. Targeting heat shock protein 90 for anti-cancer drug development. In Advances in Cancer Research; Academic Press: Cambridge, MA, USA, 2021; Volume 152, pp. 179–204. [Google Scholar] [CrossRef]
- Bepperling, A.; Alte, F.; Kriehuber, T.; Braun, N.; Weinkauf, S.; Groll, M.; Haslbeck, M.; Buchner, J. Alternative bacterial two-component small heat shock protein systems. Proc. Natl. Acad. Sci. USA 2012, 109, 20407–20412. [Google Scholar] [CrossRef]
- Rodríguez-Iturbe, B.; Johnson, R.J. Heat shock proteins and cardiovascular disease. Physiol. Int. 2018, 105, 19–37. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Liang, L.; Yang, H.B.; Shu, X.M.; Lu, X.; Wang, G.C.; Peng, Q.L. Identification of a novel autoantibody against heat shock factor 1 in idiopathic inflammatory myopathy. Clin. Exp. Rheumatol. 2020, 38, 1191–1200. [Google Scholar] [PubMed]
- Calil, I.L.; Tustumi, F.; de Sousa, J.H.B.; Tomazini, B.M.; Cruz, R.J.; Saliba, G.N.; Pécora, R.A.; D’Albuquerque, L.A. What is the role of heat shock protein in abdominal organ transplantation? Einstein 2022, 20, eRB6181. [Google Scholar] [CrossRef] [PubMed]
- Skoie, I.M.; Bårdsen, K.; Nilsen, M.M.; Eidem, L.E.; Grimstad, T.; Dalen, I.; Omdal, R. Fatigue and expression of heat-shock protein genes in plaque psoriasis. Clin. Exp. Dermatol. 2021, 47, 1068–1077. [Google Scholar] [CrossRef] [PubMed]
- Yun, C.W.; Kim, H.J.; Lim, J.H.; Lee, S.H. Heat Shock Proteins: Agents of Cancer Development and Therapeutic Targets in An-ti-Cancer Therapy. Cells 2019, 9, 60. [Google Scholar] [CrossRef]
- Albakova, Z.; Siam, M.K.S.; Sacitharan, P.K.; Ziganshin, R.H.; Ryazantsev, D.Y.; Sapozhnikov, A.M. Extracellular heat shock proteins and cancer: New perspectives. Transl. Oncol. 2021, 14, 100995. [Google Scholar] [CrossRef]
- Global Cancer Observatory. Available online: https://gco.iarc.fr/ (accessed on 17 July 2022).
- Tustumi, F.; Kimura, C.M.S.; Takeda, F.R.; Uema, R.H.; Salum, R.A.A.; Ribeiro-Junior, U.; Cecconello, I. Prognostic factors and sur-vival analysis in esophageal carcinoma. ABCD Arq. Bras. Cir. Dig. 2016, 29, 138–141. [Google Scholar] [CrossRef]
- Ciocca, D.R.; Calderwood, S.K. Heat shock proteins in cancer: Diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 2005, 10, 86–103. [Google Scholar] [CrossRef]
- Neckers, L. Heat Shock Protein 90: The Cancer Chaperone. Heat Shock Proteins Cancer 2007, 2, 231–252. [Google Scholar] [CrossRef]
- Noguchi, T.; Takeno, S.; Shibata, T.; Uchida, Y.; Yokoyama, S.; Müller, W. Expression of heat shock protein 70 in grossly resected esophageal squamous cell carcinoma. Ann. Thorac. Surg. 2002, 74, 222–226. [Google Scholar] [CrossRef]
- Carrasco, V.; Canfrán, S.; Rodrí-guez-Franco, F.; Benito, A.; Sáinz, A.; Rodrí-guez-Bertos, A. Canine gastric carcinoma: Immuno-histochemical expression of cell cycle proteins (p53, p21, and p16) and heat shock proteins (Hsp27 and Hsp70). Vet. Pathol. 2011, 48, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Ando, K.; Oki, E.; Zhao, Y.; Ikawa-Yoshida, A.; Kitao, H.; Saeki, H.; Kimura, Y.; Ida, S.; Morita, M.; Kusumoto, T.; et al. Mortalin is a prognostic factor of gastric cancer with normal p53 function. Gastric Cancer 2014, 17, 255–262. [Google Scholar] [CrossRef] [PubMed]
- Hamel, C.; Ahmadzai, N.; Beck, A.; Thuku, M.; Skidmore, B.; Pussegoda, K.; Bjerre, L.; Chatterjee, A.; Dennis, K.; Ferri, L.; et al. Screening for esophageal adenocarcinoma and precancerous conditions (dysplasia and Barrett’s esophagus) in patients with chronic gastroesophageal reflux disease with or without other risk factors: Two systematic reviews and one overview of reviews to inform a guideline of the Canadian Task Force on Preventive Health Care (CTFPHC). Syst. Rev. 2020, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.X.; Wang, Z.Q.; Lin, W.B.; Chu, Z.H.; Chen, L.H.; Ji, Z.Q. Expression of heat shock protein 27 in the esophageal tissue of rats with reflux esophagitis. Chin. Med. J. 2011, 124, 2347–2353. [Google Scholar]
- Dutta, S.M.; Mustafi, S.B.; Raha, S.; Chakraborty, S.K. Assessment of thermal stress adaptation by monitoring Hsp70 and MnSOD in the freshwater gastropod, Bellamya bengalensis (Lamark 1882). Environ. Monit. Assess. 2014, 186, 8961–8967. [Google Scholar] [CrossRef] [PubMed]
- Rafiee, P.; Theriot, M.E.; Nelson, V.M.; Heidemann, J.; Kanaa, Y.; Horowitz, S.A.; Rogaczewski, A.; Johnson, C.P.; Ali, I.; Shaker, R.; et al. Human esophageal microvascular endothelial cells respond to acidic pH stress by PI3K/AKT and p38 MAPK-regulated induction of Hsp70 and Hsp27. Am. J. Physiol. Physiol. 2006, 291, C931–C945. [Google Scholar] [CrossRef] [PubMed]
- Mauchley, D.; Meng, X.; Johnson, T.; Teitelbaum, J.; Babu, A.; Fullerton, D.A.; Weyant, M.J. Heat shock protein 27: Induction by gastroduodenal reflux in vivo and augmentation of human esophageal mucosal cell growth in vitro. J. Thorac. Cardiovasc. Surg. 2010, 139, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Concannon, C.G.; Gorman, A.M.; Samali, A. On the role of Hsp27 in regulating apoptosis. Apoptosis 2003, 8, 61–70. [Google Scholar] [CrossRef]
- Shehata, A.M.; Saadeldin, I.M.; Tukur, H.A.; Habashy, W.S. Modulation of Heat-Shock Proteins Mediates Chicken Cell Survival against Thermal Stress. Animals 2020, 10, 2407. [Google Scholar] [CrossRef]
- Zhang, R.-G.; Wang, C.-S.; Gao, C.-F. Prevalence and pathogenesis of Barrett’s esophagus in Luoyang, China. Asian Pac. J. Cancer Prev. 2012, 13, 2185–2191. [Google Scholar] [CrossRef]
- Stögbauer, L.; Stummer, W.; Senner, V.; Brokinkel, B. Telomerase activity, TERT expression, hTERT promoter alterations, and alternative lengthening of the telomeres (ALT) in meningiomas—A systematic review. Neurosurg. Rev. 2020, 903–910. [Google Scholar]
- Hao, Y.; Gu, X.; Wang, X. Overexpression of heat shock protein 70 and its relationship to intestine under acute heat stress in broilers: 1. Intestinal structure and digestive function. Poult. Sci. 2012, 91, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Dargiene, G.; Streleckiene, G.; Skieceviciene, J.; Leja, M.; Link, A.; Wex, T.; Kupcinskas, L.; Malfertheiner, P.; Kupcinskas, J. TLR1 and PRKAA1 Gene Polymorphisms in the Development of Atrophic Gastritis and Gastric Cancer. J. Gastrointest. Liver Dis. 2018, 27, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.L.; Chen, S.J.; Chen, Y.; Sun, L.M.; Zhang, W.; Zeng, Y.M.; Zhou, T.H.; Si, J.M. Protective effects of heat shock protein70 induced by geranyl- geranylacetone in atrophic gastritis in rats. Acta Pharmacol. Sin. 2007, 28, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Liu, W.; Shang, Y.; SI, J. The expression of heat shock protein 70/90 in patients with atrophic gastritis or gastric cancer and its significance. Chin. J. Dig. 2009, 12, 164–167. [Google Scholar]
- Nagata, Y.; Kudo, M.; Nagai, T.; Watanabe, T.; Kawasaki, M.; Asakuma, Y.; Hagiwara, S.; Nishida, N.; Matsui, S.; Kashida, H.; et al. Heat Shock Protein 27 Expression is Inversely Correlated with Atrophic Gastritis and Intraepithelial Neoplasia. Am. J. Dig. Dis. 2012, 58, 381–388. [Google Scholar] [CrossRef]
- Rajendra, S.; Pavey, D.; McKay, O.; Merrett, N.; Gautam, S.D. Human papillomavirus infection in esophageal squamous cell car-cinoma and esophageal adenocarcinoma: A concise review. Ann. N. Y. Acad. Sci. 2020, 1482, 36–48. [Google Scholar] [CrossRef]
- Bognár, L.; Hegedűs, I.; Bellyei, S.; Pozsgai, É.; Zoltán, L.; Gombos, K.; Horváth, P.; Vereczkei, A.; Papp, A. Prognostic role of HPV infection in esophageal squamous cell carcinoma. Infect. Agents Cancer 2018, 13, 38. [Google Scholar] [CrossRef]
- Deng, W.; Zhang, Y.; Gu, L.; Cui, J.; Duan, B.; Wang, Y.; Du, J. Heat shock protein 27 downstream of P38-PI3K/Akt signaling antag-onizes melatonin-induced apoptosis of SGC-7901 gastric cancer cells. Cancer Cell Int. 2016, 16, 5. [Google Scholar] [CrossRef]
- Tavakoli, A.; Monavari, S.H.; Mohammadi, F.S.; Kiani, S.J.; Armat, S.; Farahmand, M. Association between Epstein-Barr virus infection and gastric cancer: A systematic review and meta-analysis. BMC Cancer 2020, 20, 493. [Google Scholar] [CrossRef]
- Fukagawa, Y.; Nishikawa, J.; Kuramitsu, Y.; Iwakiri, D.; Takada, K.; Imai, S.; Satake, M.; Okamoto, T.; Fujimoto, M.; Okita, K.; et al. Epstein-Barr virus upregulates phosphorylated heat shock protein 27 kDa in carcinoma cells using the phosphoinositide 3-kinase/Akt pathway. Electrophoresis 2008, 29, 3192–3200. [Google Scholar] [CrossRef]
- Calderwood, S.K.; Gong, J. Heat Shock Proteins Promote Cancer: It’s a Protection Racket. Trends Biochem. Sci. 2016, 41, 311–323. [Google Scholar] [PubMed]
- Zhang, X.; Liu, T.; Zheng, S.; Liu, Q.; Shen, T.; Han, X.; Zhang, Q.; Yang, L.; Lu, X. SUMOylation of HSP27 regulates PKM2 to promote esophageal squamous cell carcinoma progression. Oncol. Rep. 2020, 44, 1355–1364. [Google Scholar] [CrossRef]
- Nakajima, M.; Kuwano, H.; Miyazaki, T.; Masuda, N.; Kato, H. Significant correlation between expression of heat shock proteins 27, 70 and lymphocyte infiltration in esophageal squamous cell carcinoma. Cancer Lett. 2002, 178, 99–106. [Google Scholar] [CrossRef]
- Faried, A.; Sohda, M.; Nakajima, M.; Miyazaki, T.; Kato, H.; Kuwano, H. Expression of heat-shock protein Hsp60 correlated with the apoptotic index and patient prognosis in human oesophageal squamous cell carcinoma. Eur. J. Cancer 2004, 40, 2804–2811. [Google Scholar] [CrossRef] [PubMed]
- Kawanishi, K.; Shiozaki, H.; Doki, Y.; Sakita, I.; Inoue, M.; Yano, M.; Tsujinaka, T.; Shamma, A.; Monden, M. Prognostic significance of heat shock proteins 27 and 70 in patients with squamous cell carcinoma of the esophagus. Cancer 1999, 85, 1649–1657. [Google Scholar] [CrossRef]
- Shiozaki, H.; Doki, Y.; Kawanishi, K.; Shamma, A.; Yano, M.; Inoue, M.; Monden, M. Clinical application of malignancy potential grading as a prognostic factor of human esophageal cancers. Surgery 2000, 127, 552–561. [Google Scholar] [CrossRef] [PubMed]
- Zoltan, L.; Farkas, R.; Schally, A.V.; Pozsgai, E.; Papp, A.; Bognár, L.; Tornoczki, T.; Mangel, L.; Bellyei, S. Possible Predictive Markers of Response to Therapy in Esophageal Squamous Cell Cancer. Pathol. Oncol. Res. 2019, 25, 279–288. [Google Scholar] [CrossRef]
- Slotta-Huspenina, J.; Becker, K.-F.; Feith, M.; Walch, A.; Langer, R. Heat Shock Protein 90 (HSP90) and Her2 in Adenocarcinomas of the Esophagus. Cancers 2014, 6, 1382–1393. [Google Scholar] [CrossRef]
- Söderström, H.K.; Kauppi, J.T.; Oksala, N.; Paavonen, T.; Krogerus, L.; Räsänen, J.; Rantanen, T. Overexpression of HSP27 and HSP70 is associated with decreased survival among patients with esophageal adenocarcinoma. World J. Clin. Cases 2019, 7, 260–269. [Google Scholar] [CrossRef]
- Kapranos, N.; Kominea, A.; Konstantinopoulos, P.; Savva, S.; Artelaris, S.; Vandoros, G.; Sotiropoulou-Bonikou, G.; Papavassiliou, A. Expression of the 27-kDa heat shock protein (HSP27) in gastric carcinomas and adjacent normal, metaplastic, and dysplastic gastric mucosa, and its prognostic significance. J. Cancer Res. Clin. Oncol. 2002, 128, 426–432. [Google Scholar]
- Zhai, E.; Liang, W.; Lin, Y.; Huang, L.; He, X.; Cai, S.; Chen, J.; Zhang, N.; Li, J.; Zhang, Q.; et al. HSP70/HSP90-Organizing Protein Contributes to Gastric Cancer Pro-gression in an Autocrine Fashion and Predicts Poor Survival in Gastric Cancer. Cell. Physiol. Biochem. 2018, 47, 879–892. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Albakova, Z.; Mangasarova, Y.; Sapozhnikov, A. Heat Shock Proteins in Lymphoma Immunotherapy. Front. Immunol. 2021, 12, 660085. [Google Scholar] [CrossRef] [PubMed]
- Shevtsov, M.; Multhoff, G. Heat Shock Protein–Peptide and HSP-Based Immunotherapies for the Treatment of Cancer. Front. Immunol. 2016, 7, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Liu, T.; Rios, Z.; Mei, Q.; Lin, X.; Cao, S. Heat Shock Proteins and Cancer. Trends Pharmacol. Sci. 2017, 38, 226–256. [Google Scholar]
- Shimizu, Y.; Yoshikawa, T.; Kojima, T.; Shoda, K.; Nosaka, K.; Mizuno, S.; Wada, S.; Fujimoto, Y.; Sasada, T.; Kohashi, K.; et al. Heat shock protein 105 peptide vaccine could induce antitumor immune reactions in a phase I clinical trial. Cancer Sci. 2019, 110, 3049–3060. [Google Scholar] [CrossRef]
- Zhang, K.; Peng, Z.; Huang, X.; Qiao, Z.; Wang, X.; Wang, N.; Xi, H.; Cui, J.; Gao, Y.; Huang, X.; et al. Phase II Trial of Adjuvant Immunotherapy with Autologous Tumor-derived Gp96 Vaccination in Patients with Gastric Cancer. J. Cancer 2017, 8, 1826–1832. [Google Scholar] [CrossRef]
- Killock, D. Pembrolizumab for HER2+ gastric cancer. Nat. Rev. Clin. Oncol. 2022, 19, 150. [Google Scholar] [CrossRef]
- Langer, R.; Rauser, S.; Feith, M.; Nährig, J.M.; Feuchtinger, A.; Friess, H.; Höfler, H.; Walch, A. Assessment of ErbB2 (Her2) in oesophageal adenocar-cinomas: Summary of a revised immunohistochemical evaluation system, bright field double in situ hybridisation and fluo-rescence in situ hybridisation. Mod. Pathol. 2011, 24, 908–916. [Google Scholar] [CrossRef]
- Neckers, L.; Workman, P. Hsp90 molecular chaperone inhibitors: Are we there yet? Clin. Cancer Res. 2012, 18, 64–76. [Google Scholar] [CrossRef]
- Berezowska, S.; Novotny, A.; Bauer, K.; Feuchtinger, A.; Slotta-Huspenina, J.; Becker, K.; Langer, R.; Walch, A. Association between HSP90 and Her2 in Gastric and Gastroesophageal Carcinomas. PLoS ONE 2013, 8, e69098. [Google Scholar] [CrossRef]
- Meng, L.; Hunt, C.; Yaglom, J.A.; Gabai, V.L.; Sherman, M.Y. Heat shock protein Hsp72 plays an essential role in Her2-induced mammary tumorigenesis. Oncogene 2011, 30, 2836–2845. [Google Scholar] [CrossRef] [PubMed]
- Xi, C.; Hu, Y.; Buckhaults, P.; Moskophidis, D.; Mivechi, N.F. Heat Shock Factor Hsf1 Cooperates with ErbB2 (Her2/Neu) Protein to Promote Mammary Tumorigenesis and Metastasis. J. Biol. Chem. 2012, 287, 35646. [Google Scholar] [CrossRef] [PubMed]
- Matsui, H.M.; Hazama, S.; Nakajima, M.; Xu, M.; Matsukuma, S.; Tokumitsu, Y.; Shindo, Y.; Tomochika, S.; Yoshida, S.; Iida, M.; et al. Novel adjuvant dendritic cell therapy with transfection of heat-shock protein 70 messenger RNA for patients with hepato-cellular carcinoma: A phase I/II prospective randomized controlled clinical trial. Cancer Immunol. Immunother. 2021, 70, 945–957. [Google Scholar] [CrossRef]
- Lee, Y.T.; Tan, Y.J.; Oon, C.E. Molecular targeted therapy: Treating cancer with specificity. Eur. J. Pharmacol. 2018, 834, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Carbonero, R.; Carnero, A.; Paz-Ares, L. Inhibition of HSP90 molecular chaperones: Moving into the clinic. Lancet Oncol. 2013, 14, e358–e369. [Google Scholar] [CrossRef]
- Birbo, B.; Madu, E.E.; Madu, C.O.; Jain, A.; Lu, Y. Role of HSP90 in Cancer. Int. J. Mol. Sci. 2021, 22, 10317. [Google Scholar] [CrossRef]
- Solárová, Z.; Mojžiš, J.; Solár, P. Hsp90 inhibitor as a sensitizer of cancer cells to different therapies (review). Int. J. Oncol. 2015, 46, 907–926. [Google Scholar]
- Li, Y.; Zhang, T.; Schwartz, S.J.; Sun, D. New developments in Hsp90 inhibitors as anti-cancer therapeutics: Mechanisms, clinical perspective and more potential. Drug Resist. Updat. 2009, 12, 17–27. [Google Scholar] [CrossRef]
- Vesci, L.; Milazzo, F.M.; Carollo, V.; Pace, S.; Giannini, G.; Carolo, V.; Gianini, G. Preclinical antitumor activity of SST0116CL1: A novel heat shock protein 90 inhibitor. Int. J. Oncol. 2014, 45, 1421–1429. [Google Scholar] [CrossRef]
- Goyal, L.; Chaudhary, S.P.; Kwak, E.L.; Abrams, T.A.; Carpenter, A.N.; Wolpin, B.M.; Wadlow, R.C.; Allen, J.N.; Heist, R.; McCleary, N.J.; et al. A phase 2 clinical trial of the heat shock protein 90 (HSP 90) inhibitor ganetespib in patients with refractory advanced esophagogastric cancer. Investig. New Drugs 2020, 38, 1533–1539. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-T.; Bao, C.-H.; Jia, Y.-B.; Wang, N.; Ma, W.; Liu, F.; Wang, C.; Wang, J.-B.; Song, Q.-X.; Cheng, Y.-F. BIIB021, a novel Hsp90 inhibitor, sensitizes esophageal squamous cell carcinoma to radiation. Biochem. Biophys. Res. Commun. 2014, 452, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Farkas, S.R.; Pozsgai, E.; Bellyei, S.Z.; Cseke, L.; Szigeti, A.; Vereczkei, A.; Marton, S.; Mangel, L.; Horvath, O.P.; Papp, A. Correlation between Tumor-associated Proteins and Response to Neoadjuvant Treatment in Patients with Advanced Squamous-cell Esophageal Cancer. Anticancer Res. 2011, 31, 1769–1775. [Google Scholar]
- Langer, R.; Ott, K.; Specht, K.; Becker, K.; Lordick, F.; Burian, M.; Herrmann, K.; Schrattenholz, A.; Cahill, M.A.; Schwaiger, M.; et al. Protein Expression Profiling in Esophageal Adenocarcinoma Patients Indicates Association of Heat-Shock Protein 27 Expression and Chemotherapy Response. Clin. Cancer Res. 2008, 14, 8279–8287. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Rutherford, M.J.; Bardot, A.; Ferlay, J.; Andersson, T.M.; Myklebust, T.Å.; Tervonen, H.; Thursfield, V.; Ransom, D.; Shack, L.; et al. Progress in cancer survival, mortality, and incidence in seven high-income countries 1995–2014 (ICBP SUR-VMARK-2): A population-based study. Lancet Oncol. 2019, 20, 1493–1505. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics 2020. CA A Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef]
- Malone, E.R.; Oliva, M.; Sabatini, P.J.B.; Stockley, T.; Siu, L.L. Molecular profiling for precision cancer therapies. Genome Med. 2020, 12, 8. [Google Scholar] [CrossRef] [Green Version]
- Chawla, A.; Janku, F.; Wheler, J.J.; Miller, V.A.; Ryan, J.; Anhorn, R.; Zhou, Z.; Signorovitch, J. Estimated cost of anticancer therapy directed by comprehensive genomic profiling in a single-center study. JCO Precis. Oncol. 2018, 2, 1–11. [Google Scholar] [CrossRef]
- Zhang, Q.; Fu, Q.; Bai, X.; Liang, T. Molecular Profiling–Based Precision Medicine in Cancer: A Review of Current Evidence and Challenges. Front. Oncol. 2020, 10, 532403. [Google Scholar] [CrossRef]
- Subbiah, V.; Kurzrock, R. Challenging Standard-of-Care Paradigms in the Precision Oncology Era. Trends Cancer 2018, 4, 101–109. [Google Scholar] [CrossRef]
- Tustumi, F.; Albenda, D.G.; Sallum, R.A.A.; Nahas, S.C.; Junior, U.R.; Buchpiguel, C.A.; Cecconello, I.; Duarte, P.S. 18F-FDG-PET/CT-measured parameters as potential predictors of residual disease after neoadjuvant chemoradiotherapy in patients with esophageal carcinoma. Radiol. Bras. 2022, 1, 1–7. [Google Scholar] [CrossRef]
- Farinha, H.T.; Digklia, A.; Schizas, D.; Demartines, N.; Schäfer, M.; Mantziari, S. Immunotherapy for Esophageal Cancer: State-of-the Art in 2021. Cancers 2022, 14, 554. [Google Scholar] [CrossRef] [PubMed]
- Dolcetti, R.; de Re, V.; Canzonieri, V. Immunotherapy for Gastric Cancer: Time for a Personalized Approach? Int. J. Mol. Sci. 2018, 19, 1602. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Kato, K.; Daiko, H.; Kojima, T.; Hara, H.; Abe, T.; Tsubosa, Y.; Nagashima, K.; Aoki, K.; Mizoguchi, Y.; et al. Feasibility study of nivolumab as neoadjuvant chemotherapy for locally esophageal carcinoma: FRONTiER (JCOG1804E). Future Oncol. 2020, 16, 1351–1357. [Google Scholar] [CrossRef]
- O’Donnell, J.S.; Hoefsmit, E.P.; Smyth, M.J.; Blank, C.U.; Teng, M.W.L. The Promise of Neoadjuvant Immunotherapy and Surgery for Cancer Treatment. Clin. Cancer Res. 2019, 25, 5743–5751. [Google Scholar] [CrossRef]
- Troian, M.; Nagliati, C.; Balani, A. Esophagogastric premalignant conditions. A literature review. J. Gastric Surg. 2020, 2, 79–83. [Google Scholar] [CrossRef]
- Latchford, A.; Jankowski, J.A. Premalignant Lesions of the Oesophagus: Identification to Management. In Upper Gastrointestinal Surgery; Springer: London, UK, 2005; pp. 259–269. [Google Scholar] [CrossRef]
- Guo, L.; Liu, S.; Zhang, S.; Chen, Q.; Zhang, M.; Quan, P.; Sun, X.B. Human papillomavirus-related esophageal cancer survival: A sys-tematic review and meta-analysis. Medicine 2016, 95, 46. [Google Scholar] [CrossRef]
HSP | Esophageal SCC | Esophageal Adenocarcinoma | Gastric Adenocarcinoma |
---|---|---|---|
HSP16.2 | =OS | . | . |
HSP27 | ↓ OS | ↓ OS | ↓ OS |
HSP60 | =OS | . | . |
HSP70 | =OS | ↓ OS | ↓ OS |
HSP90 | =OS | =OS | =OS |
HOP | . | . | ↓ OS |
HSP Family | HSP Function | HSP Inhibitors |
---|---|---|
HSP 27 | Inhibits p53 and p21, and suppresses cellular senescence; | HSP27 inhibitor J2 |
Interacts with Akt and blocks the Cyt C and block apoptosis; | ||
Associated with EBV infection in gastric cancer; | ||
Regulates chemotherapy and radiation response; | ||
HSP 40 | Interacts with HSP 70 proteins; | Col003, KNK437 |
Regulates p53-mediated apoptosis; | ||
HSP 70 | Protects tumor cells from TNF-induced cytotoxicity; | VER-155008, Apoptozole, MKT-077, Pifithrin-μ, CCT251236, HSP70-IN-1, KNK437, YK5, MAL3-101, GRP78-IN-1 |
Promotes gastrointestinal tumor proliferation by cell cycle regulation and signaling; | ||
Protects gastric cancer cells from apoptosis; | ||
HSPA9 (Mortalin) binds to p53 and prevents it from regulating cell cycle apoptosis; | ||
HSP 90 | Plays a central role in regulatory pathways such as cell signaling, apoptosis, and cell cycle; | Tanespimycinm, Geldanamycin, Ganetespib, Luminespib, Gamitrinib TPP hexafluorophosphate, Alvespimycin hydrochloride, Pimitespib, Grp94 Inhibitor-1, Onalespib, BIIB021, NVP-HSP990, XL888, Debio 0932, Radicicol, VER-82576, KW-2478, Retaspimycin Hydrochloride, Ethoxyquin, 3-Phenyltoxoflavin, VER-50589, VER-49009, Geldanamycin-FITC, Cucurbitacin D, HS-27, NMS-E973, Gedunin, NCT-58, Alvespimycin, Gamitrinib TPP, YZ129, Cemdomespib, Macbecin, Aminohexylgeldanamycin hydrochloride, HDAC/HSP90-IN-3, 17-AEP-GA, HDAC6/HSP90-IN-1, HSP90-IN-14, MPC-0767, CH5138303, Retaspimycin, Dihydroberberine, HSP90-IN-13, CCT018159, 17-GMB-APA-GA, Tamoxifen-d5, PROTAC HSP90 degrader BP3, Aminohexylgeldanamycin, Chetomin, YK5, Hsp90-IN-15, HSP90-IN-9 |
HPV infection seems to be related to HSP90 overexpression in squamous cell carcinoma; | ||
Activity of Her2 has been shown to be modulated by molecular chaperones as HSP 90; | ||
Contributes to the maturation and stabilization of the telomerase and a large range of oncogenic proteins; | ||
HSP 105 | Suppresses stress-induced apoptosis in cancer cells; | KNK437 |
HSF1 | Transcription factor that binds to heat shock elements; | NXP800, Rocaglamide, KRIBB11, HM03 |
Regulates cell proliferation and turnover; | ||
Suppresses apoptosis. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tustumi, F.; Agareno, G.A.; Galletti, R.P.; da Silva, R.B.R.; Quintas, J.G.; Sesconetto, L.d.A.; Szor, D.J.; Wolosker, N. The Role of the Heat-Shock Proteins in Esophagogastric Cancer. Cells 2022, 11, 2664. https://doi.org/10.3390/cells11172664
Tustumi F, Agareno GA, Galletti RP, da Silva RBR, Quintas JG, Sesconetto LdA, Szor DJ, Wolosker N. The Role of the Heat-Shock Proteins in Esophagogastric Cancer. Cells. 2022; 11(17):2664. https://doi.org/10.3390/cells11172664
Chicago/Turabian StyleTustumi, Francisco, Gabriel Andrade Agareno, Ricardo Purchio Galletti, Rafael Benjamim Rosa da Silva, Julia Grams Quintas, Lucas de Abreu Sesconetto, Daniel José Szor, and Nelson Wolosker. 2022. "The Role of the Heat-Shock Proteins in Esophagogastric Cancer" Cells 11, no. 17: 2664. https://doi.org/10.3390/cells11172664
APA StyleTustumi, F., Agareno, G. A., Galletti, R. P., da Silva, R. B. R., Quintas, J. G., Sesconetto, L. d. A., Szor, D. J., & Wolosker, N. (2022). The Role of the Heat-Shock Proteins in Esophagogastric Cancer. Cells, 11(17), 2664. https://doi.org/10.3390/cells11172664