The Supplementation of Bee Bread Methanolic Extract to Egg Yolk or Soybean Lecithin Extenders Can Improve the Quality of Cryopreserved Ram Semen
Abstract
:1. Introduction
2. Materials and Methods
2.1. BB Extraction Procedure
2.2. BBE Analysis
2.3. Animals, Semen Collection, and Initial Evaluation
2.4. Preparation of Semen Extenders and Freezing–Thawing Procedure
2.5. Semen Analysis
2.5.1. Progressive Motility
2.5.2. Determination of the Proportion of Alive and Abnormal Sperms
2.5.3. Plasma Membrane Integrity
2.5.4. Acrosome Morphology
2.5.5. Sperm Apoptosis and Necrosis (Annexin V/Propidium Iodide [PI] Assay)
- A− and PI− spermatozoa (no fluorescent signal detected) were classified as viable and recorded as live without plasma membrane dysfunction (live sperm).
- A+ and PI− spermatozoa were classified as early apoptotic but viable (live sperm).
- A+ and PI+ spermatozoa were classified as apoptotic with damaged/permeable plasma membranes (dead sperm).
- A− and PI+ spermatozoa were classified as necrotic as they had completely lost the sperm plasma membrane without signs of apoptosis (dead sperm).
2.6. Biochemical Analysis of the Extenders after Thawing
2.7. Statistical Analysis
3. Results
3.1. BBE Analysis
3.2. Effects of the Extender Type and BBE Concentration
3.2.1. Sperm Characteristics after Equilibration
3.2.2. Sperm Characteristics in Thawed Ram Semen
3.2.3. Sperm Characteristics in Thawed Ram Semen Incubated at 37 °C and 5% CO2 for 2 h
3.2.4. Antioxidant and Oxidative Markers in the Extender after Thawing Ram Semen
3.2.5. Enzymatic Activity in the Extender after the Thawing of Ram Semen
3.2.6. Quantification of Viable, Early Apoptotic, Apoptotic, and Necrotic Sperms in Ram Semen after Thawing Using Annexin V/PI Assays
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alcay, S.; Cakmak, S.; Cakmak, I.; Mulkpinar, E.; Gokce, E.; Ustuner, B.; Sen, H.; Nur, Z. Successful cryopreservation of honey bee drone spermatozoa with royal jelly supplemented extenders. Cryobiology 2019, 87, 28–31. [Google Scholar] [CrossRef]
- Sies, H. Oxidative stress: A concept in redox biology and medicine. Redox Biol. 2015, 4, 180–183. [Google Scholar] [CrossRef] [Green Version]
- Akalin, P.P.; Bucak, M.N.; Gungor, Ş.; Başpinar, N.; Coyan, K.; Dursun, Ş.; Pınar, İ.; Aksoy, A.; KaraşÖr, Ö.F.; Bilgili, A. Influence of lycopene and cysteamine on sperm and oxidative stress parameters during liquid storage of ram semen at 5 °C. Small Rumin. Res. 2016, 137, 117–123. [Google Scholar] [CrossRef]
- Bucak, M.N.; Bodu, M.; Başpınar, N.; Güngör, Ş.; İli, P.; Acibaeva, B.; Topraggaleh, T.R.; Dursun, Ş. Influence of ellagic acid and ebselen on sperm and oxidative stress parameters during liquid preservation of ram semen. Cell J. Yakhteh 2019, 21, 7–13. [Google Scholar]
- Ustuner, B.; Alcay, S.; Toker, M.B.; Nur, Z.; Gokce, E.; Sonat, F.A.; Gul, Z.; Duman, M.; Ceniz, C.; Uslu, A.; et al. Effect of rainbow trout (Oncorhynchus mykiss) seminal plasma on the post-thaw quality of ram semen cryopreserved in a soybean lecithin-based or egg yolk-based extender. Anim. Reprod. Sci. 2016, 164, 97–104. [Google Scholar] [CrossRef]
- Alves, M.A.G.; Anzar, M.; Rajapaksha, K.; Boswall, L. Egg yolk-free cryopreservation of bull semen. PLoS ONE 2019, 14, e0223977. [Google Scholar]
- Mafolo, K.; Pilane, C.; Chitura, T.; Nedambale, T. Use of phosphatidylcholine in tris-based extender with or without egg yolk to freeze bapedi ram semen. S. Afr. J. Anim. Sci. 2020, 50, 389–396. [Google Scholar] [CrossRef]
- Layek, S.; Mohanty, T.; Kumaresan, A.; Parks, J. Cryopreservation of bull semen: Evolution from egg yolk based to soybean based extenders. Anim. Reprod. Sci. 2016, 172, 1–9. [Google Scholar] [CrossRef]
- Motlagh, M.K.; Sharafi, M.; Zhandi, M.; Mohammadi-Sangcheshmeh, A.; Shakeri, M.; Soleimani, M.; Zeinoaldini, S. Antioxidant effect of rosemary (Rosmarinus officinalis L.) extract in soybean lecithin-based semen extender following freeze–thawing process of ram sperm. Cryobiology 2014, 69, 217–222. [Google Scholar] [CrossRef]
- Amini, S.; Masoumi, R.; Rostami, B.; Shahir, M. Effects of adding royal jelly to tris-egg yolk extender on afshari ram sperm parameters after liquid storage of semen. J. Comp. Pathobiol. 2018, 15, 2553–2560. [Google Scholar]
- Atalla, H.; Eser, A.; Demir, K.; Selin, Y.; Arıcı, R.; Ersoy, N.; Evecen, M.; Ak, K.; Birler, S.; Pabuccuoğlu, S. Impacts of supplementary royal jelly on characteristics of post-thawed ram semen. Int. J. Curr. Res. Biosci. Plant Biol. 2019, 6, 6–11. [Google Scholar] [CrossRef]
- El-Sheshtawy, R.I.; El-Nattat, W.S.; Sabra, H.A.; Ali, A.H. Effect of honey solution on semen preservability of local breeds of cattle bulls. World Appl. Sci. J. 2014, 32, 2076–2078. [Google Scholar]
- Raeeszadeh, M.; Akbari, A. The effects of broccoli and caraway extracts on serum oxidative markers, testicular structure and function, and sperm quality before and after sperm cryopreservation. Cryobiology 2021, 99, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Raeeszadeh, M.; Shokrollahi, B.; Akbari, A. Superior effect of broccoli methanolic extract on control of oxidative damage of sperm cryopreservation and reproductive performance in rats: A comparison with vitamin c and e antioxidant. Theriogenology 2022, 181, 50–58. [Google Scholar] [CrossRef]
- El-Harairy, M.; Khalil, W.; Khalifa, E.; Saber, A.A. Effect of propolis ethanolic extract supplementation to ram semen extenders on sperm characteristics, lipid peroxidation and some enzymatic activities in seminal plasma in chilled semen. J. Anim. Poult. Prod. 2018, 9, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Manav, S.; Yilmaz, M.; Baytekin, H.; Çelik, K.; Çağli, A. The use of propolis as an antimicrobial in livestock-an overview. Agric. Sci. Technol. 2020, 12, 205–209. [Google Scholar] [CrossRef]
- Mohamed, M.; Abdel-Hafez, M. Possibility of using propolis as natural antibiotic instead of synthetic antibiotics in ram semen extenders. Egypt. J. Sheep Goats Sci. 2019, 11, 1–14. [Google Scholar]
- Arboud, M.M.; Waheeb, R.S.; El-Sheshtawy, R.I.; El-Amrawi, G.A. Effect of different concentrations of tris royal jelly-enriched extender on cooled and post-thawed bull semen. Alex. J. Vet. Sci. 2021, 68, 107–112. [Google Scholar] [CrossRef]
- Elsheshtawy, R. Effect of royal jelly tris-enriched extender on buffalo semen cryopreservation. Egypt. J. Vet. Sci. 2020, 51, 405–411. [Google Scholar] [CrossRef]
- Amsah, A.; Khalif, R.I.A.R.; Pitchayapipatkul, J.; Rusli, N.D.; Mat, K.; Rahman, M.M. Effect of extender supplemented with date palm pollen grain on bovine semen qualities. J. Trop. Resour. Sustain. Sci. 2020, 8, 103–107. [Google Scholar] [CrossRef]
- El-Sheshtawy, R.I.; El-Nattat, W.S.; Shalaby, S.I.; Shahba, M.I.; Al-Se’dawy, I.E. Chilled and post-thawed semen characteristics of buffalo semen diluted in tris extender enriched with date palm pollen grains (tpg). Asian Pac. J. Reprod. 2016, 5, 252–255. [Google Scholar] [CrossRef]
- El-Sisy, G.; El-Badry, D.; El-Sheshtawy, R.; El-Nattat, W. Effects of phoenix dactylifera pollen grains extract supplementation on post-thaw quality of arabian stallion semen. Bulg. J. Vet. Med. 2018, 21, 40–49. [Google Scholar] [CrossRef]
- El Ghouizi, A.; El Menyiy, N.; Falcão, S.I.; Vilas-Boas, M.; Lyoussi, B. Chemical composition, antioxidant activity, and diuretic effect of moroccan fresh bee pollen in rats. Vet. World 2020, 13, 1251–1261. [Google Scholar] [CrossRef] [PubMed]
- Bakour, M.; Fernandes, Â.; Barros, L.; Sokovic, M.; Ferreira, I.C. Bee bread as a functional product: Chemical composition and bioactive properties. LWT- Food Sci. Technol. 2019, 109, 276–282. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, S.M.; Mahmud-Ab-Rashid, N.-K.; Zawawi, N. Botanical origin and nutritional values of bee bread of stingless bee (Heterotrigona itama) from malaysia. J. Food Qual. 2020, 2020, 2845757. [Google Scholar] [CrossRef]
- Hashem, N.M.; Hassanein, E.M.; Simal-Gandara, J. Improving reproductive performance and health of mammals using honeybee products. Antioxidants 2021, 10, 336. [Google Scholar] [CrossRef]
- Markiewicz-Zukowska, R.; Naliwajko, S.K.; Bartosiuk, E.; Moskwa, J.; Isidorov, V.; Soroczynska, J.; Borawska, M.H. Chemical composition and antioxidant activity of beebread, and its influence on the glioblastoma cell line (u87mg). J. Apic. Sci. 2013, 57, 147. [Google Scholar] [CrossRef] [Green Version]
- Boly, R.; Lamkami, T.; Lompo, M.; Dubois, J.; Guissou, I. Dpph free radical scavenging activity of two extracts from agelanthus dodoneifolius (loranthaceae) leaves. Int. J. Toxicol. Pharmacol. Res. 2016, 8, 29–34. [Google Scholar]
- Chen, Z.; Bertin, R.; Froldi, G. Ec50 estimation of antioxidant activity in dpph assay using several statistical programs. Food Chem. 2013, 138, 414–420. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Attard, E. A rapid microtitre plate folin-ciocalteu method for the assessment of polyphenols. Cent. Eur. J. Biol. 2013, 8, 48–53. [Google Scholar] [CrossRef]
- Kiranmai, M.; Kumar, C.M.; Mohammed, I. Comparison of total flavanoid content of azadirachta indica root bark extracts prepared by different methods of extraction. Res. J. Pharm. Biol. Chem. Sci. 2011, 2, 254–261. [Google Scholar]
- Gerhardt, P.; Murray, R.G.E.; Wood, W.A.; Krieg, N.R. Methods for General and Molecular Bacteriology; ASM: Washington, DC, USA, 1994. [Google Scholar]
- Khalil, W.A.; Abdel-Khalek, A.-K.E.; Falchi, L.; El-Saidy, B.E.; Yousif, A.I. Effects of extender and packaging method on morphological and functional characteristics of cryopreserved ossimi ram semen. Asian Pac. J. Reprod. 2020, 9, 148–155. [Google Scholar] [CrossRef]
- Moskovtsev, S.I.; Librach, C.L. Methods of sperm vitality assessment. In Spermatogenesis: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2013; pp. 13–19. [Google Scholar]
- Menon, A.G.; Thundathil, J.C.; Wilde, R.; Kastelic, J.P.; Barkema, H.W. Validating the assessment of bull sperm morphology by veterinary practitioners. Can. Vet. J. 2011, 52, 407. [Google Scholar]
- Neild, D.; Chaves, G.; Flores, M.; Mora, N.; Beconi, M.; Agüero, A. Hypoosmotic test in equine spermatozoa. Theriogenology 1999, 51, 721–727. [Google Scholar] [CrossRef]
- Ismail, A.A.; Abdel-Khalek, A.-K.E.; Khalil, W.A.; Yousif, A.I.; Saadeldin, I.M.; Abomughaid, M.M.; El-Harairy, M.A. Effects of mint, thyme, and curcumin extract nanoformulations on the sperm quality, apoptosis, chromatin decondensation, enzyme activity, and oxidative status of cryopreserved goat semen. Cryobiology 2020, 97, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Chaveiro, A.; Santos, P.; Da Silva, F. Assessment of sperm apoptosis in cryopreserved bull semen after swim-up treatment: A flow cytometric study. Reprod. Domest. Anim. 2007, 42, 17–21. [Google Scholar] [CrossRef]
- Masters, A.; Harrison, P. Platelet counting with the bd accuritm c6 flow cytometer. Platelets 2014, 25, 175–180. [Google Scholar] [CrossRef]
- Peña, F.J.; Johannisson, A.; Wallgren, M.; Rodríguez-Martínez, H. Assessment of fresh and frozen–thawed boar semen using an annexin-v assay: A new method of evaluating sperm membrane integrity. Theriogenology 2003, 60, 677–689. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [PubMed]
- Koracevic, D.; Koracevic, G.; Djordjevic, V.; Andrejevic, S.; Cosic, V. Method for the measurement of antioxidant activity in human fluids. J. Clin. Pathol. 2001, 54, 356–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 1957, 28, 56–63. [Google Scholar] [CrossRef]
- Kind, P.; King, E. Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine. J. Clin. Pathol. 1954, 7, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belfield, A.; Goldberg, D. Revised assay for serum phenyl phosphatase activity using 4-amino-antipyrine. Enzyme 1971, 12, 561–573. [Google Scholar] [CrossRef] [PubMed]
- Duncan, D.B. Multiple range and multiple f tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Tomás, A.; Falcão, S.I.; Russo-Almeida, P.; Vilas-Boas, M. Potentialities of beebread as a food supplement and source of nutraceuticals: Botanical origin, nutritional composition and antioxidant activity. J. Apic. Res. 2017, 56, 219–230. [Google Scholar] [CrossRef]
- Di Cagno, R.; Filannino, P.; Cantatore, V.; Gobbetti, M. Novel solid-state fermentation of bee-collected pollen emulating the natural fermentation process of bee bread. Food Microbiol. 2019, 82, 218–230. [Google Scholar] [CrossRef]
- Pełka, K.; Otłowska, O.; Worobo, R.W.; Szweda, P. Bee bread exhibits higher antimicrobial potential compared to bee pollen. Antibiotics 2021, 10, 125. [Google Scholar] [CrossRef]
- Dranca, F.; Ursachi, F.; Oroian, M. Bee bread: Physicochemical characterization and phenolic content extraction optimization. Foods 2020, 9, 1358. [Google Scholar] [CrossRef]
- Othman, Z.; Noordin, L.; Ghazali, W.S.W.; Omar, N.; Mohamed, M. Nutritional, phytochemical and antioxidant analysis of bee bread from different regions of malaysia. Indian J. Pharm. Sci. 2019, 81, 955–960. [Google Scholar] [CrossRef] [Green Version]
- Adaškevičiūtė, V.; Kaškonienė, V.; Kaškonas, P.; Barčauskaitė, K.; Maruška, A. Comparison of physicochemical properties of bee pollen with other bee products. Biomolecules 2019, 9, 819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegazy, M.; Abdel-Khalek, A.; Sakr, A.; MR, B.; Rawash, Z. Effect of level and time of l-arginine addition to semen extender on the freezability and fertilizing potentials of buffalo spermatozoa. Assiut Vet. Med. J. 2020, 66, 19–30. [Google Scholar] [CrossRef]
- Asadpour, R.; Taravat, M.; Rahbar, M.; Khoshniyat, M.; Hamidian, G. Effects of vitamin d supplementation in extender on sperm kinematics and apoptosis following the freeze-thaw process in normozoospermic and asthenozoospermic holstein bulls. Basic Clin. Androl. 2021, 31, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Raeeszadeh, M.; Karimfar, B.; Amiri, A.A.; Akbari, A. Protective effect of nano-vitamin c on infertility due to oxidative stress induced by lead and arsenic in male rats. J. Chem. 2021, 2021, 9589345. [Google Scholar] [CrossRef]
- Khalil, W.A.; El-Harairy, M.A.; Zeidan, A.E.; Hassan, M.A. Impact of selenium nano-particles in semen extender on bull sperm quality after cryopreservation. Theriogenology 2019, 126, 121–127. [Google Scholar] [CrossRef]
- Soares de Arruda, V.A.; Vieria dos Santos, A.; Figueiredo Sampaio, D.; da Silva Araujo, E.; de Castro Peixoto, A.L.; Estevinho, L.M.; de Almeida-Muradian, L.B. Brazilian bee pollen: Phenolic content, antioxidant properties and antimicrobial activity. J. Apic. Res. 2021, 60, 775–783. [Google Scholar] [CrossRef]
- Omar, A.; Ahmed, M.; sabah Asker, A.; Majeed, A.; Awad, R. Effects of addition of melatonin and l-arginine on cooled semen parameter of iraqi local breed rams in vitro. Indian J. Forensic Med. Toxicol. 2021, 15, 2732–2759. [Google Scholar]
- Shahin, M.A.; Khalil, W.A.; Saadeldin, I.M.; Swelum, A.A.-A.; El-Harairy, M.A. Comparison between the effects of adding vitamins, trace elements, and nanoparticles to shotor extender on the cryopreservation of dromedary camel epididymal spermatozoa. Animals 2020, 10, 78. [Google Scholar] [CrossRef]
- Raseona, A.; Ajao, O.; Nethengwe, L.; Madzhie, L.; Nedambale, T.; Barry, D. Viability of bull semen extended with commercial semen extender and two culture media stored at 24 c. S. Afr. J. Anim. Sci. 2017, 47, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Patel, H.A.; Siddiquee, G.; Chaudhari, D.V.; Suthar, V.S. Effect of different antioxidant additives in semen diluent on cryopreservability (−196 °C) of buffalo semen. Vet. World 2016, 9, 299–303. [Google Scholar] [CrossRef]
- Acharya, M.; Burke, J.; Smyth, E.; Davis, A.; Lester, T.; Rorie, R. Effect of semen extender and storage temperature on ram sperm motility over time. J. Anim. Sci. 2016, 94, 53. [Google Scholar] [CrossRef]
- Mohamed, M.; Abd El-Hafeez, A.M.; Shaarawy, A. Influence of adding different energy sources to the bull and ram spermatozoa exposed to different refrigerating times. Egypt. J. Sheep Goats Sci. 2019, 14, 1–18. [Google Scholar]
- Sobeh, M.; Hassan, S.A.; Hassan, M.A.; Khalil, W.A.; Abdelfattah, M.A.; Wink, M.; Yasri, A. A polyphenol-rich extract from entada abyssinica reduces oxidative damage in cryopreserved ram semen. Front. Vet. Sci. 2020, 7, 604477. [Google Scholar] [CrossRef] [PubMed]
- Hassan, S.A.; Khalil, W.A.; Hassan, M.A.; Yousif, A.I.; Sabry, O.M.; Wink, M.; Sobeh, M. Antioxidant and antiapoptotic effects of a turraea fischeri leaf extract on cryopreserved goat sperm. Animals 2021, 11, 2840. [Google Scholar] [CrossRef]
- Suleiman, J.B.; Mohamed, M.; Abu Bakar, A.B.; Zakaria, Z.; Othman, Z.A.; Nna, V.U. Therapeutic effects of bee bread on obesity-induced testicular-derived oxidative stress, inflammation, and apoptosis in high-fat diet obese rat model. Antioxidants 2022, 11, 255. [Google Scholar] [CrossRef] [PubMed]
- Suleiman, J.B.; Nna, V.U.; Zakaria, Z.; Othman, Z.A.; Eleazu, C.O.; Bakar, A.B.A.; Ahmad, A.; Usman, U.Z.; Rahman, W.F.W.A.; Mohamed, M. Protective effects of bee bread on testicular oxidative stress, nf-κb-mediated inflammation, apoptosis and lactate transport decline in obese male rats. Biomed. Pharmacother. 2020, 131, 110781. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Fan, W.; Wu, C.; Zhang, S.; Dai, J.; Zhang, D. Effect of substituting different concentrations of soybean lecithin and egg yolk in tris-based extender on goat semen cryopreservation. Cryobiology 2020, 92, 146–150. [Google Scholar] [CrossRef]
- Lima-Verde, I.; Johannisson, A.; Ntallaris, T.; Al-Essawe, E.; Al-Kass, Z.; Nongbua, T.; Dórea, F.; Lundeheim, N.; Kupisiewicz, K.; Edman, A. Effect of freezing bull semen in two non-egg yolk extenders on post-thaw sperm quality. Reprod. Domest. Anim. 2018, 53, 127–136. [Google Scholar] [CrossRef]
Sample | TSC µg GE/mg Extract | TPC mg GAE/g Extract | TFC mg/g Extract | DPPH EC50 µg/mL | FRAP (µM TE/mg Extract) |
---|---|---|---|---|---|
BBE | 678.54 ± 32.02 | 17.23 ± 0.71 | 4.98 ± 0.25 | 579.6 ± 22.17 | 26.68 ± 2.01 |
Trolox (µM) * | - | - | - | 24.42 ± 0.87 | - |
Progressive Motility | Vitality | Membrane Integrity | Abnormality | |
---|---|---|---|---|
Extender type | ||||
Egg Yolk (EYE) | 76.1 ± 0.65 | 77.9 ± 0.71 b | 77.0 ± 0.95 | 5.1 ± 0.28 a |
Soya been lecithin (SBLE) | 78.0 ± 0.72 | 80.1 ± 0.74 a | 78.5 ± 0.81 | 4.0 ± 0.26 b |
p value | 0.06 | 0.03 | 0.24 | 0.01 |
BBE concentration | ||||
0 µg/mL (Control) | 74.3 ± 1.16 | 76.0 ± 1.17 b | 75.3 ± 1.59 | 4.3 ± 0.44 |
250 µg/mL | 77.1 ± 1.01 | 78.4 ± 1.06 ab | 77.0 ± 1.62 | 4.5 ± 0.42 |
500 µg/mL | 77.9 ± 1.01 | 79.6 ± 0.97 a | 78.2 ± 1.26 | 5.0 ± 0.39 |
750 µg/mL | 77.5 ± 0.87 | 80.0 ± 1.02 a | 78.9 ± 1.16 | 5.1 ± 0.58 |
1000 µg/mL | 78.6 ± 1.22 | 81.0 ± 1.32 a | 79.1 ± 1.25 | 4.0 ± 0.39 |
p value | 0.06 | 0.02 | 0.29 | 0.30 |
Extender type × BBE concentration | ||||
EYE × 0 µg/mL | 73.6 ± 1.43 | 74.6 ± 1.45 c | 73.9 ± 2.11 | 4.6 ± 0.53 |
EYE × 250 µg/mL | 76.4 ± 1.43 | 77.6 ± 1.70 bc | 77.0 ± 2.87 | 4.9 ± 0.63 |
EYE × 500 µg/mL | 77.1 ± 1.49 | 79.4 ± 1.15 abc | 78.6 ± 2.27 | 5.6 ± 0.57 |
EYE × 750 µg/mL | 76.4 ± 0.92 | 78.9 ± 1.06 abc | 77.9 ± 1.62 | 6.3 ± 0.71 |
EYE × 1000 µg/mL | 77.1 ± 1.84 | 79.1 ± 2.03 abc | 77.6 ± 1.67 | 4.4 ± 0.53 |
SBLE × 0 µg/mL | 75.0 ± 1.89 | 77.4 ± 1.78 bc | 76.7 ± 2.41 | 4.0 ± 0.72 |
SBLE × 250 µg/mL | 77.9 ± 1.49 | 79.1 ± 1.32 abc | 77.0 ± 1.77 | 4.1 ± 0.55 |
SBLE × 500 µg/mL | 78.6 ± 1.43 | 79.7 ± 1.66 ab | 77.9 ± 1.32 | 4.4 ± 0.48 |
SBLE × 750 µg/mL | 78.6 ± 1.43 | 81.1 ± 1.71 ab | 80.0 ± 1.68 | 4.0 ± 0.72 |
SBLE × 1000 µg/mL | 80.0 ± 1.54 | 82.9 ± 1.52 a | 80.7 ± 1.77 | 3.6 ± 0.57 |
p value | 0.16 | 0.05 | 0.54 | 0.09 |
Progressive Motility | Vitality | Membrane Integrity | Acrosome Integrity | Abnormality | |
---|---|---|---|---|---|
Extender type | |||||
EYE | 34.9 ± 0.60 | 36.6 ± 0.69 b | 34.6 ± 0.68 | 91.8 ± 0.38 | 9.2 ± 0.32 a |
SBLE | 36.1 ± 0.62 | 38.7 ± 0.63 a | 35.9 ± 0.80 | 90.9 ± 0.38 | 7.7 ± 0.35 b |
p value | 0.08 | 0.01 | 0.20 | 0.12 | 0.005 |
BBE concentration | |||||
0 µg/mL (Control) | 32.1 ± 0.69 b | 34.3 ± 0.84 c | 32.4 ± 0.85 b | 90.8 ± 0.58 | 8.6 ± 0.70 |
250 µg/mL | 34.3 ± 1.03 b | 36.4 ± 1.14 bc | 33.7 ± 1.24 ab | 91.3 ± 0.59 | 8.5 ± 0.59 |
500 µg/mL | 36.8 ± 0.85 a | 38.8 ± 0.95 ab | 36.3 ± 1.01 a | 91.6 ± 0.58 | 8.9 ± 0.46 |
750 µg/mL | 37.1 ± 0.69 a | 39.4 ± 0.72 a | 36.6 ± 1.26 a | 91.1 ± 0.66 | 8.4 ± 0.52 |
1000 µg/mL | 37.1 ± 0.86 a | 39.4 ± 1.03 a | 37.1 ± 1.11 a | 91.9 ± 0.69 | 7.9 ± 0.53 |
p value | <0.0001 | 0.0003 | 0.02 | 0.73 | 0.76 |
Extender type × BBE concentration | |||||
EYE × 0 µg/mL | 31.4 ± 0.92 c | 32.6 ± 0.84 d | 32.1 ± 1.12 | 90.7 ± 0.89 | 9.7 ± 0.81 |
EYE × 250 µg/mL | 32.9 ± 1.01 bc | 34.7 ± 1.11 cd | 32.6 ± 1.13 | 91.6 ± 0.84 | 8.9 ± 0.91 |
EYE × 500 µg/mL | 37.1 ± 1.01 a | 38.4 ± 1.39 abc | 35.7 ± 0.97 | 92.6 ± 0.78 | 9.6 ± 0.57 |
EYE × 750 µg/mL | 37.1 ± 1.01 a | 39.6 ± 1.21 ab | 36.6 ± 1.72 | 91.3 ± 1.02 | 9.6 ± 0.57 |
EYE × 1000 µg/mL | 35.7 ± 1.30 ab | 37.7 ± 1.57 abc | 35.9 ± 1.92 | 92.7 ± 0.75 | 8.1 ± 0.67 |
SBLE × 0 µg/mL | 32.9 ± 1.01 bc | 36.0 ± 1.18 bcd | 32.7 ± 1.36 | 90.9 ± 0.80 | 7.6 ± 1.04 |
SBLE × 250 µg/mL | 35.7 ± 1.70 ab | 38.0 ± 1.88 abc | 34.9 ± 2.22 | 91.0 ± 0.87 | 8.1 ± 0.80 |
SBLE × 500 µg/mL | 36.4 ± 1.43 ab | 39.1 ± 1.39 ab | 36.9 ± 1.83 | 90.6 ± 0.72 | 8.1 ± 0.63 |
SBLE × 750 µg/mL | 37.1 ± 1.01 a | 39.3 ± 0.89 ab | 36.6 ± 1.97 | 90.9 ± 0.91 | 7.3 ± 0.64 |
SBLE × 1000 µg/mL | 38.6 ± 0.92 a | 41.0 ± 1.09 a | 38.4 ± 1.04 | 91.1 ± 1.14 | 7.6 ± 0.87 |
p value | 0.0004 | 0.001 | 0.09 | 0.68 | 0.20 |
Progressive Motility | Vitality | Membrane Integrity | Abnormality | |
---|---|---|---|---|
Extender type | ||||
EYE | 29.0 ± 0.67 b | 30.5 ± 0.65 b | 27.8 ± 0.65 b | 11.0 ± 0.33 a |
SBLE | 31.3 ± 0.78 a | 32.9 ± 0.82 a | 30.7 ± 0.79 a | 9.7 ± 0.34 b |
p value | 0.02 | 0.02 | 0.004 | 0.01 |
BBE concentration | ||||
0 µg/mL (Control) | 26.8 ± 1.00 c | 28.3 ± 0.92 b | 26.2 ± 1.11 c | 10.3 ± 0.67 |
250 µg/mL | 28.6 ± 1.10 bc | 30.7 ± 1.28 ab | 27.9 ± 1.13 bc | 10.4 ± 0.58 |
500 µg/mL | 31.1 ± 1.19 ab | 32.8 ± 1.28 a | 29.6 ± 1.13 ab | 10.9 ± 0.51 |
750 µg/mL | 31.8 ± 1.24 a | 33.0 ± 1.21 a | 31.0 ± 1.24 ab | 10.3 ± 0.53 |
1000 µg/mL | 32.5 ± 0.69 a | 33.7 ± 0.81 a | 31.4 ± 0.95 a | 9.9 ± 0.54 |
p value | 0.001 | 0.01 | 0.01 | 0.79 |
Extender type × BBE concentration | ||||
EYE × 0 µg/mL | 25.0 ± 1.09 d | 27.1 ± 0.91 c | 24.9 ± 1.58 d | 11.4 ± 0.81 |
EYE × 250 µg/mL | 27.1 ± 1.01 cd | 29.4 ± 1.34 bc | 26.3 ± 1.04 cd | 10.7 ± 1.02 |
EYE × 500 µg/mL | 30.7 ± 1.30 abc | 31.9 ± 1.39 abc | 28.6 ± 1.19 abcd | 11.7 ± 0.52 |
EYE × 750 µg/mL | 30.7 ± 1.70 abc | 31.7 ± 1.80 abc | 29.9 ± 1.70 abc | 11.1 ± 0.63 |
EYE × 1000 µg/mL | 31.4 ± 0.92 abc | 32.4 ± 1.04 ab | 29.3 ± 1.04 abcd | 10.0 ± 0.65 |
SBLE × 0 µg/mL | 28.6 ± 1.43 bcd | 29.4 ± 1.54 bc | 27.6 ± 1.49 bcd | 9.1 ± 0.91 |
SBLE × 250 µg/mL | 30.0 ± 1.89 abc | 32.0 ± 2.17 abc | 29.6 ± 1.89 abcd | 10.0 ± 0.62 |
SBLE × 500 µg/mL | 31.4 ± 2.10 abc | 33.7 ± 2.20 ab | 30.7 ± 1.92 abc | 10.0 ± 0.79 |
SBLE × 750 µg/mL | 32.9 ± 1.84 ab | 34.3 ± 1.60 ab | 32.1 ± 1.82 ab | 9.4 ± 0.75 |
SBLE × 1000 µg/mL | 33.6 ± 0.92 a | 35.0 ± 1.09 a | 33.4 ± 1.17 a | 9.7 ± 0.92 |
p value | 0.004 | 0.02 | 0.01 | 0.28 |
TAC (mM/L) | MDA (nmol/mL) | H2O2 (mM/L) | |
---|---|---|---|
Extender type | |||
EYE | 0.31 ± 0.02 b | 21.2 ± 0.75 a | 0.082 ± 0.002 a |
SBLE | 0.58 ± 0.02 a | 8.8 ± 0.72b | 0.045 ± 0.002 b |
p value | <0.0001 | <0.0001 | <0.0001 |
BBE concentration | |||
0 µg/mL (Control) | 0.30 ± 0.03 c | 20.0 ± 2.69 a | 0.074 ± 0.006 a |
250 µg/mL | 0.45 ± 0.05 b | 15.9 ± 2.04 b | 0.068 ± 0.007 b |
500 µg/mL | 0.47 ± 0.05 ab | 14.3 ± 2.24 bc | 0.063 ± 0.007 cb |
750 µg/mL | 0.49 ± 0.05 ab | 13.3 ± 2.08 cd | 0.059 ± 0.007 c |
1000 µg/mL | 0.52 ± 0.05 a | 11.6 ± 1.84 d | 0.053 ± 0.006 d |
p value | <0.0001 | <0.0001 | <0.0001 |
Extender type × BBE concentration | |||
EYE × 0 µg/mL | 0.21 ± 0.02 d | 27.1 ± 0.69 a | 0.090 ± 0.003 a |
EYE × 250 µg/mL | 0.31 ± 0.04 c | 21.9 ± 0.88 b | 0.088 ± 0.002 ab |
EYE × 500 µg/mL | 0.32 ± 0.02 bc | 20.9 ± 0.94 b | 0.082 ± 0.002 bc |
EYE × 750 µg/mL | 0.35 ± 0.03 bc | 19.5 ± 0.85 bc | 0.080 ± 0.003 c |
EYE × 1000 µg/mL | 0.37 ± 0.02 bc | 17.0 ± 0.37 c | 0.070 ± 0.003 d |
SBLE × 0 µg/mL | 0.39 ± 0.02 b | 12.9 ± 2.66 d | 0.058 ± 0.002 e |
SBLE × 250 µg/mL | 0.59 ± 0.03 a | 10.0 ± 0.64 de | 0.048 ± 0.002 f |
SBLE × 500 µg/mL | 0.61 ± 0.02 a | 7.8 ± 0.54 ef | 0.044 ± 0.002 fg |
SBLE × 750 µg/mL | 0.64 ± 0.01 a | 7.2 ± 0.39 ef | 0.038 ± 0.002 gh |
SBLE × 1000 µg/mL | 0.66 ± 0.02 a | 6.2 ± 0.68 f | 0.036 ± 0.002 h |
p value | <0.0001 | <0.0001 | <0.0001 |
AST (U/mL) | ALT (U/mL) | ALP (IU/L) | TAP (U/L) | |
---|---|---|---|---|
Extender type | ||||
EYE | 42.4 ± 0.93 b | 9.4 ± 0.47 b | 89.7 ± 2.84 a | 8.6 ± 0.20 a |
SBLE | 49.3 ± 1.18 a | 18.2 ± 0.49 a | 50.8 ± 2.14 b | 6.4 ± 0.19 b |
p value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
BBE concentration | ||||
0 µg/mL (Control) | 46.4 ± 2.21 | 13.4 ± 1.87 | 71.2 ± 7.32 | 7.3 ± 0.54 |
250 µg/mL | 47.4 ± 1.76 | 13.0 ± 1.77 | 70.4 ± 7.92 | 7.6 ± 0.45 |
500 µg/mL | 45.1 ± 2.17 | 13.8 ± 1.62 | 69.7 ± 7.64 | 7.5 ± 0.42 |
750 µg/mL | 44.8 ± 2.40 | 14.3 ± 1.37 | 69.9 ± 7.28 | 7.6 ± 0.61 |
1000 µg/mL | 45.6 ± 1.64 | 14.4 ± 1.56 | 70.1 ± 8.16 | 7.5 ± 0.42 |
p value | 0.83 | 0.67 | 1.00 | 0.98 |
Extender type × BBE concentration | ||||
EYE × 0 µg/mL | 41.6 ± 1.47 cd | 8.0 ± 0.71 b | 89.5 ± 5.29 a | 8.4 ± 0.59 a |
EYE × 250 µg/mL | 43.0 ± 0.89 cd | 8.0 ± 1.05 b | 90.9 ± 8.21 a | 8.6 ± 0.27 a |
EYE × 500 µg/mL | 43.6 ± 3.33 bcd | 9.6 ± 1.12 b | 88.7 ± 7.06 a | 8.5 ± 0.32 a |
EYE × 750 µg/mL | 40.6 ± 2.04 d | 10.6 ± 0.93 b | 88.4 ± 6.96 a | 8.9 ± 0.80 a |
EYE × 1000 µg/mL | 43.2 ± 2.44 cd | 10.8 ± 1.07 b | 90.9 ± 6.81 a | 8.7 ± 0.20 a |
SBLE × 0 µg/mL | 51.2 ± 2.89 ab | 18.8 ± 0.86 a | 52.9 ± 6.73 b | 6.2 ± 0.58 b |
SBLE × 250 µg/mL | 51.8 ± 1.85 a | 18.0 ± 0.71 a | 49.8 ± 1.80 b | 6.5 ± 0.52 b |
SBLE × 500 µg/mL | 46.6 ± 3.01 abcd | 18.0 ± 1.34 a | 50.7 ± 5.69 b | 6.4 ± 0.39 b |
SBLE × 750 µg/mL | 49.0 ± 3.59 abc | 18.0 ± 0.84 a | 51.4 ± 4.31 b | 6.3 ± 0.41 b |
SBLE × 1000 µg/mL | 48.0 ± 1.82 abcd | 18.0 ± 1.84 a | 49.2 ± 5.97 b | 6.4 ± 0.31 b |
p value | 0.02 | <0.0001 | <0.0001 | <0.0001 |
Viable (%) | Early Apoptotic (%) | Apoptotic (%) | Necrotic (%) | |
---|---|---|---|---|
Extender type | ||||
EYE | 38.6 ± 2.63 | 17.7 ± 0.32 b | 22.6 ± 2.24 b | 21.1 ± 0.47 a |
SBLE | 39.3 ± 2.30 | 19.9 ± 0.51 a | 25.6 ± 2.16 a | 15.1 ± 0.35 b |
p value | 0.14 | <0.0001 | <0.0001 | <0.0001 |
BBE concentration | ||||
0 µg/mL (Control) | 24.8 ± 1.06 e | 20.2 ± 0.35 a | 38.2 ± 0.79 a | 16.8 ± 1.73 c |
250 µg/mL | 34.8 ± 0.38 d | 20.1 ± 0.78 ab | 25.8 ± 0.64 b | 19.3 ± 1.63 a |
500 µg/mL | 38.0 ± 0.80 c | 19.0 ± 1.06 b | 24.2 ± 1.07 b | 18.9 ± 1.55 a |
750 µg/mL | 46.5 ± 0.66 b | 17.0 ± 0.46 c | 18.1 ± 0.64 c | 18.4 ± 1.39 ab |
1000 µg/mL | 50.8 ± 0.68 a | 17.8 ± 0.23 c | 14.3 ± 0.79 d | 17.2 ± 0.58 bc |
p value | <0.0001 | <0.0001 | <0.0001 | 0.0003 |
Extender type × BBE concentration | ||||
EYE × 0 µg/mL | 22.9 ± 0.78 f | 19.5 ± 0.20 bc | 37.1 ± 1.01 a | 20.7 ± 0.43 ab |
EYE × 250 µg/mL | 34.1 ± 0.36 d | 18.4 ± 0.36 cd | 24.6 ± 0.64 bc | 22.9 ± 0.64 a |
EYE × 500 µg/mL | 39.2 ± 1.07 c | 16.7 ± 0.17 d | 21.9 ± 0.46 cd | 22.2 ± 0.67 a |
EYE × 750 µg/mL | 45.3 ± 0.55 b | 16.5 ± 0.58 d | 16.9 ± 0.58 ef | 21.4 ± 0.61 a |
EYE × 1000 µg/mL | 51.6 ± 0.14 a | 17.6 ± 0.36 cd | 12.6 ± 0.20 de | 18.3 ± 0.06 bc |
SBLE × 0 µg/mL | 26.8 ± 1.04 e | 21.0 ± 0.03 ab | 39.3 ± 0.92 a | 13.0 ± 0.14 e |
SBLE × 250 µg/mL | 35.5 ± 0.38 cd | 21.8 ± 0.12 a | 27.1 ± 0.43 b | 15.7 ± 0.17 d |
SBLE × 500 µg/mL | 36.8 ± 0.78 cd | 21.3 ± 0.57 ab | 26.5 ± 0.52 b | 15.5 ± 0.33 de |
SBLE × 750 µg/mL | 47.7 ± 0.64 ab | 17.5 ± 0.67 cd | 19.3 ± 0.52 g | 15.5 ± 0.77 de |
SBLE × 1000 µg/mL | 50.0 ± 1.28 a | 17.9 ± 0.33 cd | 16.0 ± 0.28 f | 16.1 ± 0.67 cd |
p value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharaf, A.E.; Khalil, W.A.; Khalifa, E.I.; Nassan, M.A.; Swelum, A.A.; El-Harairy, M.A. The Supplementation of Bee Bread Methanolic Extract to Egg Yolk or Soybean Lecithin Extenders Can Improve the Quality of Cryopreserved Ram Semen. Cells 2022, 11, 3403. https://doi.org/10.3390/cells11213403
Sharaf AE, Khalil WA, Khalifa EI, Nassan MA, Swelum AA, El-Harairy MA. The Supplementation of Bee Bread Methanolic Extract to Egg Yolk or Soybean Lecithin Extenders Can Improve the Quality of Cryopreserved Ram Semen. Cells. 2022; 11(21):3403. https://doi.org/10.3390/cells11213403
Chicago/Turabian StyleSharaf, Asmaa E., Wael A. Khalil, Ezz I. Khalifa, Mohamed A. Nassan, Ayman A. Swelum, and Mostafa A. El-Harairy. 2022. "The Supplementation of Bee Bread Methanolic Extract to Egg Yolk or Soybean Lecithin Extenders Can Improve the Quality of Cryopreserved Ram Semen" Cells 11, no. 21: 3403. https://doi.org/10.3390/cells11213403
APA StyleSharaf, A. E., Khalil, W. A., Khalifa, E. I., Nassan, M. A., Swelum, A. A., & El-Harairy, M. A. (2022). The Supplementation of Bee Bread Methanolic Extract to Egg Yolk or Soybean Lecithin Extenders Can Improve the Quality of Cryopreserved Ram Semen. Cells, 11(21), 3403. https://doi.org/10.3390/cells11213403