The Potential Clinical Use of Stem/Progenitor Cells and Organoids in Liver Diseases
Abstract
:1. Introduction
2. Current Therapies for Liver Diseases
3. HLC Generation from MSCs
- LSCs that exhibit similar differentiation, immunosuppressive and regenerative characteristics to MSCs, and are negative for the expression of hematopoietic cell markers [45].
4. MSC Use in Clinical Trials for Liver Diseases
5. HLC Use in Clinical Trials for Liver Diseases
6. Generation of Liver Organoids
- A combination of iPSCs with human umbilical vein endothelial cells (HUVECs) and MSCs;
- Hepatocytes and stromal cells;
- Primary liver tumor cells or damaged liver cells [80].
6.1. Single Cell-Type Culture for Organoid Development
6.2. Multi-Type Cell Co-Culture for Organoid Development
7. Clinical Applications of Liver Organoids
8. Future Liver Therapy Perspectives
9. Discussion
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Trefts, E.; Gannon, M.; Wasserman, D.H. The Liver. Curr. Biol. 2017, 27, R1147–R1151. [Google Scholar] [CrossRef] [PubMed]
- Forbes, S.J.; Newsome, P.N. Liver regeneration—Mechanisms and models to clinical application. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Ostapowicz, G.; Fontana, R.J.; Schiødt, F.V.; Larson, A.; Davern, T.J.; Han, S.H.; McCashland, T.M.; Shakil, A.O.; Hay, J.E.; Hynan, L.; et al. Results of a Prospective Study of Acute Liver Failure at 17 Tertiary Care Centers in the United States. Ann. Intern. Med. 2002, 137, 947–954. [Google Scholar] [CrossRef]
- Sass, D.A.; Shakil, A.O. Fulminant hepatic failure. Liver Transplant. 2005, 11, 594–605. [Google Scholar] [CrossRef] [PubMed]
- Furuta, T.; Furuya, K.; Zheng, Y.-W.; Oda, T. Novel alternative transplantation therapy for orthotopic liver transplantation in liver failure: A systematic review. World J. Transplant. 2020, 10, 64–78. [Google Scholar] [CrossRef] [PubMed]
- Kwak, K.-A.; Lee, S.-P.; Yang, J.-Y.; Park, Y.-S. Current Perspectives regarding Stem Cell-Based Therapy for Alzheimer’s Disease. Stem Cells Int. 2018, 2018, 6392986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anker, P.S.I.T.; Scherjon, S.A.; der Keur, C.K.; de Groot-Swings, G.M.J.S.; Claas, F.H.J.; Fibbe, W.E.; Kanhai, H.H.H. Isolation of Mesenchymal Stem Cells of Fetal or Maternal Origin from Human Placenta. Stem Cells 2004, 22, 1338–1345. [Google Scholar] [CrossRef]
- Roubelakis, M.G.; Bitsika, V.; Zagoura, D.; Trohatou, O.; Pappa, K.I.; Makridakis, M.; Antsaklis, A.; Vlahou, A.; Anagnou, N.P. In vitro and in vivo properties of distinct populations of amniotic fluid mesenchymal progenitor cells. J. Cell. Mol. Med. 2011, 15, 1896–1913. [Google Scholar] [CrossRef] [Green Version]
- Roubelakis, M.G.; Pappa, K.I.; Bitsika, V.; Zagoura, D.; Vlahou, A.; Papadaki, H.A.; Antsaklis, A.; Anagnou, N.P. Molecular and Proteomic Characterization of Human Mesenchymal Stem Cells Derived from Amniotic Fluid: Comparison to Bone Marrow Mesenchymal Stem Cells. Stem Cells Dev. 2007, 16, 931–951. [Google Scholar] [CrossRef] [Green Version]
- Zagoura, D.S.; Roubelakis, M.G.; Bitsika, V.; Trohatou, O.; Pappa, K.I.; Kapelouzou, A.; Antsaklis, A.; Anagnou, N.P. Therapeutic potential of a distinct population of human amniotic fluid mesenchymal stem cells and their secreted molecules in mice with acute hepatic failure. Gut 2012, 61, 894–906. [Google Scholar] [CrossRef]
- Zagoura, D.; Trohatou, O.; Makridakis, M.; Kollia, A.; Kokla, N.; Mokou, M.; Psaraki, A.; Eliopoulos, A.G.; Vlahou, A.; Roubelakis, M.G. Functional secretome analysis reveals Annexin-A1 as important paracrine factor derived from fetal mesenchymal stem cells in hepatic regeneration. EBioMedicine 2019, 45, 542–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, Z.; Ma, Y.; Zhang, Q.; Wang, Y.; Liu, T.; Liu, X.; Piao, C.; Liu, B.; Wang, H. The adipose-derived mesenchymal stem cell secretome promotes hepatic regeneration in miniature pigs after liver ischaemia-reperfusion combined with partial resection. Stem Cell Res. Ther. 2021, 12, 218. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Cheng, X.; Wang, H.; Huang, W.; Hu, Z.L.G.; Wang, D.; Zhang, K.; Zhang, H.; Xue, Z.; Da, Y.; et al. Mesenchymal stem cells and their secreted molecules predominantly ameliorate fulminant hepatic failure and chronic liver fibrosis in mice respectively. J. Transl. Med. 2016, 14, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Psaraki, A.; Ntari, L.; Karakostas, C.; Korrou-Karava, D.; Roubelakis, M.G. Extracellular vesicles derived from mesenchymal stem/stromal cells: The regenerative impact in liver diseases. Hepatology 2021, 1–14. [Google Scholar] [CrossRef]
- Boyd, A.; Newsome, P.; Lu, W.-Y. The role of stem cells in liver injury and repair. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 623–631. [Google Scholar] [CrossRef]
- Hsia, G.S.P.; Esposito, J.; da Rocha, L.A.; Ramos, S.L.G.; Okamoto, O.K. Clinical Application of Human Induced Pluripotent Stem Cell-Derived Organoids as an Alternative to Organ Transplantation. Stem Cells Int. 2021, 6632160. [Google Scholar] [CrossRef]
- Saidi, R.F.; Jabbour, N.; Li, Y.; Shah, S.A.; Bozorgzadeh, A. Outcomes in partial liver transplantation: Deceased donor split-liver vs. live donor liver transplantation. HPB 2011, 13, 797–801. [Google Scholar] [CrossRef] [Green Version]
- Moreno, R.; Berenguer, M. Post-liver transplantation medical complications. Ann. Hepatol. 2006, 5, 77–85. [Google Scholar] [CrossRef]
- Adam, R.; Karam, V.; Cailliez, V.; Grady, J.G.O.; Mirza, D.; Cherqui, D.; Klempnauer, J.; Salizzoni, M.; Pratschke, J.; Jamieson, N.; et al. 2018 Annual Report of the European Liver Transplant Registry (ELTR)-50-year evolution of liver transplantation. Transpl. Int. 2018, 31, 1293–1317. [Google Scholar] [CrossRef] [Green Version]
- Messina, A.; Luce, E.; Hussein, M.; Dubart-Kupperschmitt, A. Pluripotent-Stem-Cell-Derived Hepatic Cells: Hepatocytes and Organoids for Liver Therapy and Regeneration. Cells 2020, 9, 420. [Google Scholar] [CrossRef] [Green Version]
- Skwarek, A.; Grodzicki, M.; Nyckowski, P.; Kotulski, M.; Zieniewicz, K.; Michalowicz, B.; Patkowski, W.; Grzelak, I.; Paczkowska, A.; Giercuszkiewicz, D.; et al. The Use Prometheus FPSA System in the Treatment of Acute Liver Failure: Preliminary Results. Transplant. Proc. 2006, 38, 209–211. [Google Scholar] [CrossRef] [PubMed]
- Gerth, H.U.; Pohlen, M.; Thölking, G.; Pavenstädt, H.; Brand, M.; Wilms, C.; Hüsing-Kabar, A.; Görlich, D.; Kabar, I.; Schmidt, H.H.J. Molecular Adsorbent Recirculating System (MARS) in Acute Liver Injury and Graft Dysfunction: Results from a Case-Control Study. PLoS ONE 2017, 12, e0175529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Tripathi, A.; Jain, S. Extracorporeal Bioartificial Liver for Treating Acute Liver Diseases. J. Extra. Corpor. Technol. 2011, 43, 195–206. [Google Scholar] [PubMed]
- Ali, S.; Haque, N.; Azhar, Z.; Saeinasab, M.; Sefat, F. Regenerative Medicine of Liver: Promises, Advances and Challenges. Biomimetics 2021, 6, 62. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.; Liang, L.; Li, J.; Demirci, U.; Wang, S.Q. A Decade of Progress in Liver Regenerative Medicine. Biomaterials 2018, 157, 161–176. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, H.J.; Choi, D. Cell Sources, Liver Support Systems and Liver Tissue Engineering: Alternatives to Liver Transplantation. Int. J. Stem Cells 2015, 8, 36–47. [Google Scholar] [CrossRef]
- Godoy, P.; Hewitt, N.J.; Albrecht, U.; Andersen, M.E.; Ansari, N.; Bhattacharya, S.; Bode, J.G.; Bolleyn, J.; Borner, C.; Böttger, J.; et al. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch. Toxicol. 2013, 87, 1315–1530. [Google Scholar] [CrossRef] [Green Version]
- Iansante, V.; Mitry, R.R.; Filippi, C.; Fitzpatrick, E.; Dhawan, A. Human hepatocyte transplantation for liver disease: Current status and future perspectives. Pediatr. Res. 2018, 83, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Smets, F.; Najimi, M.; Sokal, E.M. Cell transplantation in the treatment of liver diseases. Pediatr. Transplant. 2008, 12, 6–13. [Google Scholar] [CrossRef]
- Ogawa, S.; Miyagawa, S. Potentials of regenerative medicine for liver disease. Surg. Today 2009, 39, 1019–1025. [Google Scholar] [CrossRef]
- Neuberger, J. An update on liver transplantation: A critical review. J. Autoimmun. 2016, 66, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Soltys, K.A.; Soto-Gutiérrez, A.; Nagaya, M.; Baskin, K.; Deutsch, M.; Ito, R.; Shneider, B.L.; Squires, R.; Vockley, J.; Guha, C.; et al. Barriers to the successful treatment of liver disease by hepatocyte transplantation. J. Hepatol. 2010, 53, 769–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alwahsh, S.M.; Rashidi, H.; Hay, D.C. Liver cell therapy: Is this the end of the beginning? Cell. Mol. Life Sci. 2018, 75, 1307–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Green, C.J.; Charlton, C.A.; Wang, L.-M.; Silva, M.; Morten, K.J.; Hodson, L. The isolation of primary hepatocytes from human tissue: Optimising the use of small non-encapsulated liver resection surplus. Cell Tissue Bank. 2017, 18, 597–604. [Google Scholar] [CrossRef] [Green Version]
- Elaut, G.; Henkens, T.; Papeleu, P.; Snykers, S.; Vinken, M.; Vanhaecke, T.; Rogiers, V. Molecular Mechanisms Underlying the Dedifferentiation Process of Isolated Hepatocytes and Their Cultures. Curr. Drug Metab. 2006, 7, 629–660. [Google Scholar] [CrossRef] [PubMed]
- Takeichi, M. Self-Organization of Animal Tissues: Cadherin-Mediated Processes. Dev. Cell 2011, 21, 24–26. [Google Scholar] [CrossRef] [Green Version]
- Takayama, K.; Kawabata, K.; Nagamoto, Y.; Kishimoto, K.; Tashiro, K.; Sakurai, F.; Tachibana, M.; Kanda, K.; Hayakawa, T.; Furue, M.; et al. 3D spheroid culture of hESC/hiPSC-derived hepatocyte-like cells for drug toxicity testing. Biomaterials 2013, 34, 1781–1789. [Google Scholar] [CrossRef]
- Du, Y.; Wang, J.; Jia, J.; Song, N.; Xiang, C.; Xu, J.; Hou, Z.; Su, X.; Liu, B.; Jiang, T.; et al. Human Hepatocytes with Drug Metabolic Function Induced from Fibroblasts by Lineage Reprogramming. Cell Stem Cell 2014, 14, 394–403. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.-R.; Leung, A.W. Next generation organoids for biomedical research and applications. Biotechnol. Adv. 2018, 36, 132–149. [Google Scholar] [CrossRef]
- Wang, W.; Huang, Y.; Grujicic, M.; Chrisey, U.B. Study of Impact-Induced Mechanical Effects in Cell Direct Writing Using Smooth Particle Hydrodynamic Method. J. Manuf. Sci. Eng. 2008, 130, 021012. [Google Scholar] [CrossRef]
- Gruene, M.; Unger, C.; Koch, L.; Deiwick, A.; Chichkov, B. Dispensing pico to nanolitre of a natural hydrogel by laser-assisted bioprinting. Biomed. Eng. 2011, 10, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Xin, J.; Zhang, L.; Wu, J.; Jiang, L.; Zhou, Q.; Guo, J.; Cao, H.; Li, L. Human Hepatic Progenitor Cells Express Hematopoietic Cell Markers CD45 and CD109. Int. J. Med. Sci. 2014, 11, 65–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yong, K.S.M.; Keng, C.T.; Tan, S.Q.; Loh, E.; Chang, K.T.E.; Tan, T.C.; Hong, W.; Chen, Q. Human CD34loCD133lo Fetal Liver Cells Support the Expansion of Human CD34hiCD133hi Hematopoietic Stem Cells. Cell. Mol. Immunol. 2016, 13, 605–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, S.; Tang, J.; Cai, X. Founder cells for hepatocytes during liver regeneration: From identification to application. Cell. Mol. Life Sci. 2020, 77, 2887–2898. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Choi, J.; Kang, S.; Kim, J.; Lee, R.; So, S.; Yoon, Y.-I.; Kirchner, V.A.; Song, G.-W.; Hwang, S.; et al. Hepatogenic Potential and Liver Regeneration Effect of Human Liver-derived Mesenchymal-Like Stem Cells. Cells 2020, 9, 1521. [Google Scholar] [CrossRef]
- Spada, M.; Porta, F.; Righi, D.; Gazzera, C.; Tandoi, F.; Ferrero, I.; Fagioli, F.; Sanchez, M.B.H.; Calvo, P.L.; Biamino, E.; et al. Intrahepatic Administration of Human Liver Stem Cells in Infants with Inherited Neonatal-Onset Hyperammonemia: A Phase I Study. Stem Cell Rev. Rep. 2020, 16, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Smets, F.; Dobbelaere, D.; McKiernan, P.; Dionisi-Vici, C.; Broué, P.; Jacquemin, E.; Lopes, A.I.; Gonçalves, I.; Mandel, H.; Pawlowska, J.; et al. Phase I/II Trial of Liver–derived Mesenchymal Stem Cells in Pediatric Liver–based Metabolic Disorders: A Prospective, Open Label, Multicenter, Partially Randomized, Safety Study of One Cycle of Heterologous Human Adult Liver-derived Progenitor Cells (HepaStem) in Urea Cycle Disorders and Crigler-Najjar Syndrome Patients. Transplantation 2019, 103, 1903–1915. [Google Scholar] [CrossRef]
- Bruno, S.; Sanchez, M.B.H.; Chiabotto, G.; Fonsato, V.; Navarro-Tableros, V.; Pasquino, C.; Tapparo, M.; Camussi, G. Human Liver Stem Cells: A Liver-Derived Mesenchymal Stromal Cell-Like Population With Pro-regenerative Properties. Front. Cell Dev. Biol. 2021, 9, 1055. [Google Scholar] [CrossRef]
- Bogliotti, Y.S.; Wu, J.; Vilarino, M.; Okamura, D.; Soto, D.A.; Zhong, C.; Sakurai, M.; Sampaio, R.V.; Suzuki, K.; Belmonte, J.C.I.; et al. Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proc. Natl. Acad. Sci. USA 2018, 115, 2090–2095. [Google Scholar] [CrossRef] [Green Version]
- Tricot, T.; Verfaillie, C.M.; Kumar, M. Current Status and Challenges of Human Induced Pluripotent Stem Cell-Derived Liver Models in Drug Discovery. Cells 2022, 11, 442. [Google Scholar] [CrossRef]
- Pasqua, M.; Di Gesù, R.; Chinnici, C.; Conaldi, P.; Francipane, M. Generation of Hepatobiliary Cell Lineages from Human Induced Pluripotent Stem Cells: Applications in Disease Modeling and Drug Screening. Int. J. Mol. Sci. 2021, 22, 8227. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Shimada, M.; Utsunomiya, T.; Ikemoto, T.; Yamada, S.; Morine, Y.; Imura, S.; Mori, H.; Sugimoto, K.; Iwahashi, S.; et al. The protective effect of adipose-derived stem cells against liver injury by trophic molecules. J. Surg. Res. 2013, 180, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Shimada, M.; Utsunomiya, T.; Ikemoto, T.; Yamada, S.; Morine, Y.; Imura, S.; Mori, H.; Arakawa, Y.; Kanamoto, M.; et al. Homing effect of adipose-derived stem cells to the injured liver: The shift of stromal cell-derived factor 1 expressions. J. Hepato-Biliary-Pancreat. Sci. 2014, 21, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Azandeh, S.; Gharravi, A.M.; Orazizadeh, M.; Khodadi, A.; Tabar, M.H. Improvement of mesenchymal stem cell differentiation into the endoderm lineage by four step sequential method in biocompatible biomaterial. BioImpacts 2016, 6, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Afshari, A.; Shamdani, S.; Uzan, G.; Naserian, S.; Azarpira, N. Different approaches for transformation of mesenchymal stem cells into hepatocyte-like cells. Stem Cell Res. Ther. 2020, 11, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davoodian, N.; Lotfi, A.S.; Soleimani, M.; Mowla, S.J. MicroRNA-122 Overexpression Promotes Hepatic Differentiation of Human Adipose Tissue-Derived Stem Cells. J. Cell. Biochem. 2014, 115, 1582–1593. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Ikemoto, T.; Morine, Y.; Shimada, M. Current status of hepatocyte-like cell therapy from stem cells. Surg. Today 2021, 51, 340–349. [Google Scholar] [CrossRef]
- Takayama, K.; Hagihara, Y.; Toba, Y.; Sekiguchi, K.; Sakurai, F.; Mizuguchi, H. Enrichment of high-functioning human iPS cell-derived hepatocyte-like cells for pharmaceutical research. Biomaterials 2018, 161, 24–32. [Google Scholar] [CrossRef]
- Berebichez-Fridman, R.; Montero-Olvera, P.R. Sources and Clinical Applications of Mesenchymal Stem Cells: State-of-the-art review. Sultan Qaboos Univ. Med. J. 2018, 18, e264–e277. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.C.; Meng, Q.H. Current understanding of mesenchymal stem cells in liver diseases. World J. Stem Cells 2021, 13, 1349–1359. [Google Scholar] [CrossRef]
- Nazarie, S.R.; Gharbia, S.; Hermenean, A.; Dinescu, S.; Costache, M. Regenerative Potential of Mesenchymal Stem Cells’ (MSCs) Secretome for Liver Fibrosis Therapies. Int. J. Mol. Sci. 2021, 22, 13292. [Google Scholar] [CrossRef] [PubMed]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef] [PubMed]
- Gupta, P.K.; Chullikana, A.; Seetharam, R.N.; Kolkundar, U.; Shivashankar, P.; Viswanathan, P.; Chandrashekar, M.; Thej, C.; Prasanth, K.V.; Abraham, J.; et al. A Phase II Dose Escalation Study of Intraarterial (Hepatic) Adult Human Bone Marrow Derived, Cultured, Pooled, Allogeneic Mesenchymal Stromal Cells (Stempeucel®) in Patients with Alcoholic Liver Cirrhosis. Int. J. Regen. Med. 2021, 2021, 1–19. [Google Scholar] [CrossRef]
- Suk, K.T.; Yoon, J.-H.; Kim, M.Y.; Kim, C.W.; Kim, J.K.; Park, H.; Hwang, S.G.; Kim, D.J.; Lee, B.S.; Lee, S.H.; et al. Transplantation with autologous bone marrow-derived mesenchymal stem cells for alcoholic cirrhosis: Phase 2 trial. Hepatology 2016, 64, 2185–2197. [Google Scholar] [CrossRef]
- Kim, M.; Baik, S.; Park, S.; Hong, J.; Kwon, S.; Cheon, G.; Kim, Y.; Jang, Y.-O.; Hwang, H.; Kim, H.; et al. 373 The evaluation of effectiveness and safety for new therapy with bone marrow derived autologous mesenchymal stem cell for hepatic failure caused by alcoholic liver cirrhosis.; Phase II study. J. Hepatol. 2012, 56, S151. [Google Scholar] [CrossRef]
- Kantarcıoğlu, M.; Demirci, H.; Avcu, F.; Karslioglu, Y.; Babayiğit, M.A.; Karaman, B.; Öztürk, K.; Gürel, H.; Kayhan, M.A.; Kaçar, S.; et al. Efficacy of autologous mesenchymal stem cell transplantation in patients with liver cirrhosis. Turk. J. Gastroenterol. 2015, 26, 244–250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholamrezanezhad, A.; Mirpour, S.; Bagheri, M.; Mohamadnejad, M.; Alimoghaddam, K.; Abdolahzadeh, L.; Saghari, M.; Malekzadeh, R. In vivo tracking of 111In-oxine labeled mesenchymal stem cells following infusion in patients with advanced cirrhosis. Nucl. Med. Biol. 2011, 38, 961–967. [Google Scholar] [CrossRef]
- Peng, L.; Xie, D.-Y.; Lin, B.-L.; Liu, J.; Zhu, H.-P.; Xie, C.; Zheng, Y.-B.; Gao, Z.-L. Autologous bone marrow mesenchymal stem cell transplantation in liver failure patients caused by hepatitis B: Short-term and long-term outcomes. Hepatology 2011, 54, 820–828. [Google Scholar] [CrossRef]
- Shi, M.; Li, Y.-Y.; Xu, R.-N.; Meng, F.-P.; Yu, S.-J.; Fu, J.-L.; Hu, J.-H.; Li, J.-X.; Wang, L.-F.; Jin, L.; et al. Mesenchymal stem cell therapy in decompensated liver cirrhosis: A long-term follow-up analysis of the randomized controlled clinical trial. Hepatol. Int. 2021, 15, 1431–1441. [Google Scholar] [CrossRef]
- Xu, W.-X.; He, H.-L.; Pan, S.-W.; Chen, Y.-L.; Zhang, M.-L.; Zhu, S.; Gao, Z.-L.; Peng, L.; Li, J.-G. Combination Treatments of Plasma Exchange and Umbilical Cord-Derived Mesenchymal Stem Cell Transplantation for Patients with Hepatitis B Virus-Related Acute-on-Chronic Liver Failure: A Clinical Trial in China. Stem Cells Int. 2019, 2019, 4130757. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Liu, H.; Li, Y.; Fu, J.; Sun, Y.; Xu, R.; Lin, H.; Wang, S.; Lv, S.; et al. A pilot study of umbilical cord-derived mesenchymal stem cell transfusion in patients with primary biliary cirrhosis. J. Gastroenterol. Hepatol. 2013, 28, 85–92. [Google Scholar] [CrossRef]
- Sharma, M.; Pondugala, P.K.; Jaggaihgari, S.; Mitnala, S.; Krishna, V.V.; Jaishetwar, G.; Naik, P.; Kumar, P.; Kulkarni, A.; Gupta, R.; et al. Safety Assessment of Autologous Stem Cell Combination Therapy in Patients With Decompensated Liver Cirrhosis: A Pilot Study. J. Clin. Exp. Hepatol. 2021, 12, 80–88. [Google Scholar] [CrossRef]
- Lin, P.-C.; Chiou, T.-W.; Lin, Z.-S.; Huang, K.-C.; Lin, Y.-C.; Huang, P.-C.; Syu, W.-S.; Harn, H.-J.; Lin, S.-Z. A Proposed Novel Stem Cell Therapy Protocol for Liver Cirrhosis. Cell Transplant. 2015, 24, 533–540. [Google Scholar] [CrossRef] [Green Version]
- Kharaziha, P.; Hellström, P.M.; Noorinayer, B.; Farzaneh, F.; Aghajani, K.; Jafari, F.; Telkabadi, M.; Atashi, A.; Honardoost, M.; Zali, M.R.; et al. Improvement of liver function in liver cirrhosis patients after autologous mesenchymal stem cell injection: A phase I-II clinical trial. Eur. J. Gastroenterol. Hepatol. 2009, 21, 1199–1205. [Google Scholar] [CrossRef]
- Pietrosi, G.; Vizzini, G.; Luca, A.; Spada, M.; Conaldi, P.G.; Triolo, F.; Gerlach, J.; Gridelli, B. Is Human Fetal Liver Stem Cell Transplantation a Panacea for Alcohol-Induced Liver Decompensation? Cell Transplant. 2011, 20, 1497–1498. [Google Scholar] [CrossRef]
- Chang, M.; Bogacheva, M.S.; Lou, Y.-R. Challenges for the Applications of Human Pluripotent Stem Cell-Derived Liver Organoids. Front. Cell Dev. Biol. 2021, 9, 2715. [Google Scholar] [CrossRef]
- Brassard, J.A.; Lutolf, M.P. Engineering Stem Cell Self-organization to Build Better Organoids. Cell Stem Cell 2019, 24, 860–876. [Google Scholar] [CrossRef]
- Gamboa, C.M.; Wang, Y.; Xu, H.; Kalemba, K.; Wondisford, F.E.; Sabaawy, H.E. Optimized 3D Culture of Hepatic Cells for Liver Organoid Metabolic Assays. Cells 2021, 10, 3280. [Google Scholar] [CrossRef]
- Akbari, S.; Arslan, N.; Senturk, S.; Erdal, E. Next-Generation Liver Medicine Using Organoid Models. Front. Cell Dev. Biol. 2019, 7, 345. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, M.; Chen, Y.; Chen, Y.; Zhu, D. Application of Human Induced Pluripotent Stem Cell-Derived Cellular and Organoid Models for COVID-19 Research. Front. Cell Dev. Biol. 2021, 9, 720099. [Google Scholar] [CrossRef]
- Gómez-Mariano, G.; Matamala, N.; Martínez, S.; Justo, I.; Marcacuzco, A.; Jimenez, C.; Monzón, S.; Cuesta, I.; Garfia, C.; Martínez, M.T.; et al. Liver organoids reproduce alpha-1 antitrypsin deficiency-related liver disease. Hepatol. Int. 2020, 14, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Schneeberger, K.; Sánchez-Romero, N.; Ye, S.; van Steenbeek, F.G.; Oosterhoff, L.A.; Palacin, I.P.; Chen, C.; van Wolferen, M.E.; van Tienderen, G.; Lieshout, R.; et al. Large-Scale Production of LGR5-Positive Bipotential Human Liver Stem Cells. Hepatology 2020, 72, 257–270. [Google Scholar] [CrossRef] [Green Version]
- Hu, H.; Gehart, H.; Artegiani, B.; Löpez-Iglesias, C.; Dekkers, F.; Basak, O.; Van Es, J.; Chuva de Sousa Lopes, S.M.; Begthel, H.; Korving, J.; et al. Long-Term Expansion of Functional Mouse and Human Hepatocytes as 3D Organoids. Cell 2018, 175, 1591–1606.e19. [Google Scholar] [CrossRef] [Green Version]
- Hendriks, D.; Artegiani, B.; Hu, H.; Lopes, S.C.D.S.; Clevers, H. Establishment of human fetal hepatocyte organoids and CRISPR–Cas9-based gene knockin and knockout in organoid cultures from human liver. Nat. Protoc. 2021, 16, 182–217. [Google Scholar] [CrossRef]
- Kulkeaw, K.; Tubsuwan, A.; Tongkrajang, N.; Whangviboonkij, N. Generation of human liver organoids from pluripotent stem cell-derived hepatic endoderms. PeerJ 2020, 8, e9968. [Google Scholar] [CrossRef]
- Messina, A.; Luce, E.; Benzoubir, N.; Pasqua, M.; Pereira, U.; Humbert, L.; Eguether, T.; Rainteau, D.; Duclos-Vallée, J.-C.; Legallais, C.; et al. Evidence of Adult Features and Functions of Hepatocytes Differentiated from Human Induced Pluripotent Stem Cells and Self-Organized as Organoids. Cells 2022, 11, 537. [Google Scholar] [CrossRef]
- Caron, J.; Pène, V.; Tolosa, L.; Villaret, M.; Luce, E.; Fourrier, A.; Heslan, J.-M.; Saheb, S.; Bruckert, E.; Gómez-Lechón, M.J.; et al. Low-density lipoprotein receptor-deficient hepatocytes differentiated from induced pluripotent stem cells allow familial hypercholesterolemia modeling, CRISPR/Cas-mediated genetic correction, and productive hepatitis C virus infection. Stem Cell Res. Ther. 2019, 10, 221. [Google Scholar] [CrossRef] [Green Version]
- Dianat, N.; Dubois-Pot-Schneider, H.; Steichen, C.; Desterke, C.; Leclerc, P.; Raveux, A.; Combettes, L.; Weber, A.; Corlu, A.; Dubart-Kupperschmitt, A. Generation of functional cholangiocyte-like cells from human pluripotent stem cells and HepaRG cells. Hepatology 2014, 60, 700–714. [Google Scholar] [CrossRef] [Green Version]
- Tao, T.; Deng, P.; Wang, Y.; Zhang, X.; Guo, Y.; Chen, W.; Qin, J. Microengineered Multi-Organoid System from hiPSCs to Recapitulate Human Liver-Islet Axis in Normal and Type 2 Diabetes. Adv. Sci. 2021, 9, 2103495. [Google Scholar] [CrossRef]
- Gurevich, I.; Burton, S.A.; Munn, C.; Ohshima, M.; Goedland, M.E.; Czysz, K.; Rajesh, D. iPSC-derived hepatocytes generated from NASH donors provide a valuable platform for disease modeling and drug discovery. Biol. Open 2020, 9, bio055087. [Google Scholar] [CrossRef]
- Nguyen, R.; Da Won Bae, S.; Qiao, L.; George, J. Developing Liver Organoids from Induced Pluripotent Stem Cells (IPSCs): An Alternative Source of Organoid Generation for Liver Cancer Research. Cancer Lett. 2021, 508, 13–17. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, B.; He, Y.; Bao, J. Liver Organoids: Formation Strategies and Biomedical Applications. Tissue Eng. Regen. Med. 2021, 18, 573–585. [Google Scholar] [CrossRef]
- Takebe, T.; Sekine, K.; Enomura, M.; Koike, H.; Kimura, M.; Ogaeri, T.; Zhang, R.; Ueno, Y.; Zheng, Y.-W.; Koike, N.; et al. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 2013, 499, 481–484. [Google Scholar] [CrossRef]
- He, J.; Zhang, X.; Xia, X.; Han, M.; Li, F.; Li, C.; Li, Y.; Gao, D. Organoid technology for tissue engineering. J. Mol. Cell Biol. 2020, 12, 569–579. [Google Scholar] [CrossRef] [Green Version]
- Asai, A.; Aihara, E.; Watson, C.; Mourya, R.; Mizuochi, T.; Shivakumar, P.; Phelan, K.; Mayhew, C.; Helmrath, M.; Takebe, T.; et al. Paracrine signals regulate human liver organoid maturation from Induced Pluripotent Stem Cells. Development 2017, 144, 1056–1064. [Google Scholar] [CrossRef] [Green Version]
- Nie, Y.-Z.; Zheng, Y.-W.; Ogawa, M.; Miyagi, E.; Taniguchi, H. Human liver organoids generated with single donor-derived multiple cells rescue mice from acute liver failure. Stem Cell Res. Ther. 2018, 9, 5. [Google Scholar] [CrossRef] [Green Version]
- Qiu, R.; Murata, S.; Cheng, C.; Mori, A.; Nie, Y.; Mikami, S.; Hasegawa, S.; Tadokoro, T.; Okamoto, S.; Taniguchi, H. A Novel Orthotopic Liver Cancer Model for Creating a Human-like Tumor Microenvironment. Cancers 2021, 13, 3997. [Google Scholar] [CrossRef]
- Furuya, K.; Zheng, Y.-W.; Sako, D.; Iwasaki, K.; Zheng, D.-X.; Ge, J.-Y.; Liu, L.-P.; Furuta, T.; Akimoto, K.; Yagi, H.; et al. Enhanced hepatic differentiation in the subpopulation of human amniotic stem cells under 3D multicellular microenvironment. World J. Stem Cells 2019, 11, 705–721. [Google Scholar] [CrossRef]
- Takebe, T.; Sekine, K.; Suzuki, Y.; Enomura, M.; Tanaka, S.; Ueno, Y.; Zheng, Y.-W.; Taniguchi, H. Self-Organization of Human Hepatic Organoid by Recapitulating Organogenesis In Vitro. In Transplantation Proceedings; Elsevier BV: Amsterdam, The Netherlands, 2012; Volume 44, pp. 1018–1020. [Google Scholar]
- Yanagi, Y.; Nakayama, K.; Taguchi, T.; Enosawa, S.; Tamura, T.; Yoshimaru, K.; Matsuura, T.; Hayashida, M.; Kohashi, K.; Oda, Y.; et al. In vivo and ex vivo methods of growing a liver bud through tissue connection. Sci. Rep. 2017, 7, 14085. [Google Scholar] [CrossRef]
- Ober, E.A.; Lemaigre, F.P. Development of the liver: Insights into organ and tissue morphogenesis. J. Hepatol. 2018, 68, 1049–1062. [Google Scholar] [CrossRef] [Green Version]
- Saito, Y.; Muramatsu, T.; Kanai, Y.; Ojima, H.; Sukeda, A.; Hiraoka, N.; Arai, E.; Sugiyama, Y.; Matsuzaki, J.; Uchida, R.; et al. Establishment of Patient-Derived Organoids and Drug Screening for Biliary Tract Carcinoma. Cell Rep. 2019, 27, 1265–1276.e4. [Google Scholar] [CrossRef] [Green Version]
- Broutier, L.; Mastrogiovanni, G.; Verstegen, M.M.A.; Francies, H.E.; Gavarró, L.M.; Bradshaw, C.R.; Allen, G.E.; Arnes-Benito, R.; Sidorova, O.; Gaspersz, M.P.; et al. Human primary liver cancer–derived organoid cultures for disease modeling and drug screening. Nat. Med. 2017, 23, 1424–1435. [Google Scholar] [CrossRef]
- Vlachogiannis, G.; Hedayat, S.; Vatsiou, A.; Jamin, Y.; Fernández-Mateos, J.; Khan, K.; Lampis, A.; Eason, K.; Huntingford, I.; Burke, R.; et al. Human Primary Liver Cancer Organoids Reveal Intratumor and Interpatient Drug Response Heterogeneity. JCI Insight 2019, 4, e121490. [Google Scholar] [CrossRef] [Green Version]
- McCarron, S.; Bathon, B.; Conlon, D.M.; Abbey, D.; Rader, D.J.; Gawronski, K.; Brown, C.D.; Olthoff, K.M.; Shaked, A.; Raabe, T.D. Functional Characterization of Organoids Derived From Irreversibly Damaged Liver of Patients With NASH. Hepatology 2021, 74, 1825–1844. [Google Scholar] [CrossRef]
- Drost, J.; Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 2018, 18, 407–418. [Google Scholar] [CrossRef]
- Rao, S.; Hossain, T.; Mahmoudi, T. 3D human liver organoids: An in vitro platform to investigate HBV infection, replication and liver tumorigenesis. Cancer Lett. 2021, 506, 35–44. [Google Scholar] [CrossRef]
- Fiore, E.J.; Domínguez, L.M.; Bayo, J.; García, M.G.; Mazzolini, G.D. Taking advantage of the potential of mesenchymal stromal cells in liver regeneration: Cells and extracellular vesicles as therapeutic strategies. World J. Gastroenterol. 2018, 24, 2427–2440. [Google Scholar] [CrossRef]
- Meier, R.P.H.; Montanari, E.; Morel, P.; Pimenta, J.; Schuurman, H.-J.; Wandrey, C.; Gerber-Lemaire, S.; Mahou, R.; Bühler, L.H. Microencapsulation of Hepatocytes and Mesenchymal Stem Cells for Therapeutic Applications. Plant Horm. 2016, 1506, 259–271. [Google Scholar] [CrossRef]
- Kuse, Y.; Taniguchi, H. Present and Future Perspectives of Using Human-Induced Pluripotent Stem Cells and Organoid Against Liver Failure. Cell Transplant. 2019, 28, 160S–165S. [Google Scholar] [CrossRef] [Green Version]
Title | NCT Number | Year | Country | Status | Cell Source | Disease | Outcome | Bibliography |
---|---|---|---|---|---|---|---|---|
Efficacy of Invitro Expanded BM Derived Allogeneic MSC Transplantation via Portal Vein or Hepatic Artery or Peripheral Vein in Patients With Wilson Cirrhosis | NCT01378182 | 2014 | Turkey | completed | BM-MSCs | WD | (NS) | (NI) |
Dose Finding Study to Assess Safety and Efficacy of Stem Cells in LC | NCT01591200 | 2016 | India | completed | BM-MSCs | LC | Reasonably safe dose of up to 2.5 million cells/kg body weight | [63] |
REVIVE (Randomized Exploratory Clinical Trial to Evaluate the Safety and Effectiveness of Stem Cell Product in Alcoholic LC Patient) | NCT01875081 | 2016 | Korea | completed | BM-MSCs | LC | Reduction of collagen deposition | [64] |
The Effectiveness and Safety for MSCs for Alcoholic LC | NCT01741090 | 2012 | Korea | unknown | BM-MSCs | LC | Improved histology, Child Pugh’s Score | [65] |
Study to Evaluate Hepatic Artery Injection of Autologous hBM-MSCs in Patients With Alcoholic LC | NCT03838250 | 2020 | United States | recruiting | BM-MSCs | LC | (NS) | (NI) |
Clinical Trial to Evaluate the Efficacy and Safety of Cellgram-LC Administration in Patients With Alcoholic Cirrhosis (Cellgram-LC) | NCT04689152 | 2021 | Korea | recruiting | BM-MSCs | LC | (NS) | (NI) |
BM-MSC Transplantation in LC Via Portal Vein | NCT00993941 | 2010 | China | active, not recruiting | BM-MSCs | LC | (NS) | (NI) |
Autologous MSC Transplantation in LC | NCT01499459 | 2012 | Turkey | active, not recruiting | BM-MSCs | LC | Improvement in Alb and MELD scores | [66] |
MSC Transplantation in Decompensated Cirrhosis | NCT00476060 | 2011 | Iran | active, not recruiting | BM-MSCs | LC | No beneficial effect. | [67] |
Transplantation of Autologous MSCs in Decompensate Cirrhotic Patients With Pioglitazone | NCT01454336 | 2014 | Iran | completed | BM-MSCs | LC | (NS) | (NI) |
Therapeutic Effects of Liver Failure Patients Caused by Chronic Hepatitis B After Autologous MSC Transplantation | NCT00956891 | 2010 | China | completed | BM-MSCs | HBV-related LF | No markedly improved long-term outcomes | [68] |
Safety and Efficacy of Human BM-MSCs for Treatment of HBV-related Liver Cirrhosis | NCT01724697 | 2012 | China | unknown | BM-MSCs | LC | (NS) | (NI) |
Trial of MSC Transplantation in Decompensated LC | NCT03209986 | 2018 | China | unknown | MSCs | LC | (NS) | (NI) |
Human UC-MSC Transplantation for Patients With Decompensated Liver Cirrhosis | NCT01342250 | 2011 | China | completed | UC-MSCs | LC | (NS) | (NI) |
UC-MSCs for Patients With Liver Cirrhosis | NCT01220492 | 2018 | China | completed | UC-MSCs | LC | Improved liver function | [69] |
UC-MSCs for Decompensated Cirrhosis (MSC-DLC-1) | NCT05227846 | 2022 | China | not yet recruiting | UC-MSCs | LC | (NS) | (NI) |
MSC treatment for Decompensated LC | NCT03945487 | 2019 | China | recruiting | UC-MSCs | LC | (NS) | (NI) |
Treatment with UC-MSCs for Decompensated Cirrhosis | NCT05121870 | 2021 | China | recruiting | UC-MSCs | LC | (NS) | (NI) |
UC-MSCs for Decompensated Cirrhosis (MSC-DLC-2) | NCT05224960 | 2022 | China | not yet recruiting | UC-MSCs | LC | (NS) | (NI) |
UC -MSC Transplantation for Children Suffering From Biliary Atresia (UCMSCBA) | NCT04522869 | 2020 | Vietnam | recruiting | UC-MSCs | LC | (NS) | (NI) |
Study of Decompensated Alcoholic Cirrhosis Treatment by Stem Cells | NCT05155657 | 2022 | China | recruiting | UC-MSCs | LC | (NS) | (NI) |
UC-MSC Transplantation Combined With Plasma Exchange for Patients With Liver Failure | NCT01724398 | 2013 | China | unknown | UC-MSCs combined with PE | HBV-related LF | Decreased levels of total bilirubin, alanine aminotransferase, aspartate transaminase and MELD score | [70] |
Safety and Efficacy of UC-MSCs for Treatment of HBV-related Liver Cirrhosis | NCT01728727 | 2013 | China | unknown | UC-MSCs | LC | (NS) | (NI) |
Safety and Efficacy of hMSCs for Treatment of Liver Failure | NCT01218464 | 2013 | China | unknown | UC-MSCs | HBV-related LF | (NS) | (NI) |
UC-MSCs for Patients With Primary Biliary Cirrhosis | NCT01662973 | 2013 | China | recruiting | UC-MSCs | PBC | 1. Improvement in Alb, T-BIL and MELD score. 2. Decrease in serum alkaline phosphate andg-glutamilitransferase levels. | [71] |
Safety of UC-MSC Transfusion for ACLF Patients | NCT04822922 | 2021 | China | not yet recruiting | hUC-MSCs | ACLF | (NS) | (NI) |
UC-MSCs (19#iSCLife®-LC) in the Treatment of Decompensated Hepatitis b Cirrhosishepatitis b Cirrhosis | NCT03826433 | 2022 | China | recruiting | UC-MSCs | LC | (NS) | (NI) |
UC-MSC Transplantation for Decompensated Hepatitis B Cirrhosis | NCT05106972 | 2021 | China | recruiting | UC-MSCs | LC | (NS) | (NI) |
Combination of Autologous MSC and HSC Infusion in Patients with Decompensated Cirrhosis | NCT04243681 | 2020 | India | completed | HPCs (CD34+) combined with MSCs | LC | Improvement in the MELD score and in serum albumin levels | [72] |
A Clinical Study to Evaluate the Safety and Efficacy of MSCs in Liver Cirrhosis | NCT01877759 | 2013 | India | unknown | BM-MSCs and UC-MSCs | LC | (NS) | (NI) |
Safety and Efficacy of Diverse MSCs Transplantation for Liver Failure | NCT01844063 | 2013 | China | unknown | BM-MSCs and UC-MSCs | HBV-related LF | (NS) | (NI) |
Liver Regeneration Therapy by Intrahepatic Arterial Administration of Autologous Adipose Tissue Derived Stromal Cells | NCT01062750 | 2015 | Japan | completed | AD-MSCs | LC | (NS) | (NI) |
Clinical Trial Study About Human Adipose-Derived Stem Cells in the LC | NCT02297867 | 2018 | Taiwan | completed | AD-SCs | LC | Repaired liver fibrosis | [73] |
A Study of ADR-001 in Patients With LC | NCT03254758 | 2021 | Japan | recruiting | AD-MSCs | LC | (NS) | (NI) |
Improvement of Liver Function in LC Patients After Autologous MSC Injection: Phase I-II Clinical Trial | NCT00420134 | 2009 | Iran | completed | MSC-derived HLCs | LC | Improved liver function | [74] |
Stem Cell Transplantation in Cirrhotic Patients | NCT02943889 | 2016 | Egypt | unknown | MSC-derived HLCs | LC | (NS) | (NI) |
Human Fetal Liver Cell Transplantation for Treatment of Chronic Liver Failure | NCT01013194 | 2015 | Italy | completed | LPCs | LC | (NS) | [75] |
Title | NCT Number | Year | Country | Status | Cell Source | Disease | Outcome | Bibliography |
---|---|---|---|---|---|---|---|---|
Prospective, Multicenter HCCIS Evaluation Study (HCCIS) | NCT02718235 | 2016 | Germany | unknown | (NS) | HCC | (NS) | (NI) |
The PIONEER Initiative: Precision Insights On N-of-1 Ex Vivo Effectiveness Research Based on Individual Tumor Ownership (Precision Oncology) (PIONEER) | NCT03896958 | 2020 | United States | Recruiting | (NS) | HCC | (NS) | (NI) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikokiraki, C.; Psaraki, A.; Roubelakis, M.G. The Potential Clinical Use of Stem/Progenitor Cells and Organoids in Liver Diseases. Cells 2022, 11, 1410. https://doi.org/10.3390/cells11091410
Nikokiraki C, Psaraki A, Roubelakis MG. The Potential Clinical Use of Stem/Progenitor Cells and Organoids in Liver Diseases. Cells. 2022; 11(9):1410. https://doi.org/10.3390/cells11091410
Chicago/Turabian StyleNikokiraki, Christina, Adriana Psaraki, and Maria G. Roubelakis. 2022. "The Potential Clinical Use of Stem/Progenitor Cells and Organoids in Liver Diseases" Cells 11, no. 9: 1410. https://doi.org/10.3390/cells11091410
APA StyleNikokiraki, C., Psaraki, A., & Roubelakis, M. G. (2022). The Potential Clinical Use of Stem/Progenitor Cells and Organoids in Liver Diseases. Cells, 11(9), 1410. https://doi.org/10.3390/cells11091410