Stage-Specific L-Proline Uptake by Amino Acid Transporter Slc6a19/B0AT1 Is Required for Optimal Preimplantation Embryo Development in Mice
Abstract
:1. Introduction
2. Methods
2.1. Animals (Mus musculus)
2.2. Isolation of Oocytes and Embryos
2.3. Culture of Zygotes from WT and Slc6a19−/− Mice In Vitro
2.4. Measurement of L-[3H]-Pro Uptake in Oocytes and Embryos
2.5. Immunoflurescent Staining and Confocal Microscopy of COCs and Embryos
2.6. Statistical Analyses
3. Results
3.1. B0AT1 Is Expressed in Preimplantation Embryos
3.2. The B0AT1 Accessory Protein ACE2 Is Expressed in the Preimplantation Embryo
3.3. Fertility of Slc6a19−/− Mice Is Reduced
3.4. Pro Uptake by Embryos from WT and Slc6a19−/− Mice Is Dependent on Developmental Stage
3.5. Pro Is Taken up by B0AT1 and/or an Unknown Betaine-Sensitive Pro Transporter
3.6. B0AT1 Is Needed for Pro Uptake and Optimal Development at Day 4 of Development
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lane, M.; Gardner, D.K. Differential regulation of mouse embryo development and viability by amino acids. Reproduction 1997, 109, 153–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leese, H.J.; McKeegan, P.J.; Sturmey, R.G. Amino Acids and the Early Mammalian Embryo: Origin, Fate, Function and Life-Long Legacy. Int. J. Environ. Res. Public Health 2021, 18, 9874. [Google Scholar] [CrossRef]
- Van Winkle, L.J. Amino acid transport regulation and early embryo development. Biol. Reprod. 2001, 64, 1–12. [Google Scholar] [CrossRef]
- Morris, M.B.; Ozsoy, S.; Zada, M.; Zada, M.; Zamfirescu, R.C.; Todorova, M.G.; Day, M.L. Selected Amino Acids Promote Mouse Pre-implantation Embryo Development in a Growth Factor-Like Manner. Front. Physiol. 2020, 11, 140. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.E.; Gopichandran, N.; Picton, H.M.; Leese, H.J.; Orsi, N.M. Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology 2005, 64, 992–1006. [Google Scholar] [CrossRef] [PubMed]
- Guerin, P.; Menezo, Y. Hypotaurine and taurine in gamete and embryo environments: De novo synthesis via the cysteine sulfinic acid pathway in oviduct cells. Zygote 1995, 3, 333–343. [Google Scholar] [CrossRef]
- Gardner, D.K.; Lane, M. Amino acids and ammonium regulate mouse embryo development in culture. Biol. Reprod. 1993, 48, 377–385. [Google Scholar] [CrossRef]
- Richards, T.; Wang, F.; Liu, L.; Baltz, J.M. Rescue of postcompaction-stage mouse embryo development from hypertonicity by amino acid transporter substrates that may function as organic osmolytes. Biol. Reprod. 2010, 82, 769–777. [Google Scholar] [CrossRef]
- Epstein, C.J.; Smith, S.A. Amino acid uptake and protein synthesis in preimplanatation mouse embryos. Dev. Biol. 1973, 33, 171–184. [Google Scholar] [CrossRef]
- Phang, J.M.; Pandhare, J.; Liu, Y. The metabolism of proline as microenvironmental stress substrate. J. Nutr. 2008, 138, 2008S–2015S. [Google Scholar] [CrossRef]
- Krishnan, N.; Dickman, M.B.; Becker, D.F. Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic. Biol. Med. 2008, 44, 671–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treleaven, T.; Hardy, M.L.M.; Guttman-Jones, M.; Morris, M.B.; Day, M.L. In Vitro Fertilisation of Mouse Oocytes in L-Proline and L-Pipecolic Acid Improves Subsequent Development. Cells 2021, 10, 1352. [Google Scholar] [CrossRef] [PubMed]
- Washington, J.M.; Rathjen, J.; Felquer, F.; Lonic, A.; Bettess, M.D.; Hamra, N.; Semendric, L.; Tan, B.S.; Lake, J.A.; Keough, R.A.; et al. L-Proline induces differentiation of ES cells: A novel role for an amino acid in the regulation of pluripotent cells in culture. Am. J. Physiol.-Cell Physiol. 2010, 298, C982–C992. [Google Scholar] [CrossRef] [PubMed]
- Casalino, L.; Comes, S.; Lambazzi, G.; De Stefano, B.; Filosa, S.; De Falco, S.; De Cesare, D.; Minchiotti, G.; Patriarca, E.J. Control of embryonic stem cell metastability by L-proline catabolism. J. Mol. Cell Biol. 2011, 3, 108–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Aniello, C.; Fico, A.; Casalino, L.; Guardiola, O.; Di Napoli, G.; Cermola, F.; De Cesare, D.; Tate, R.; Cobellis, G.; Patriarca, E.J.; et al. A novel autoregulatory loop between the Gcn2-Atf4 pathway and L-Proline metabolism controls stem cell identity. Cell Death Differ. 2015, 22, 1234. [Google Scholar] [CrossRef] [Green Version]
- Comes, S.; Gagliardi, M.; Laprano, N.; Fico, A.; Cimmino, A.; Palamidessi, A.; De Cesare, D.; De Falco, S.; Angelini, C.; Scita, G.; et al. L-Proline induces a mesenchymal-like invasive program in embryonic stem cells by remodeling H3K9 and H3K36 methylation. Stem Cell Rep. 2013, 1, 307–321. [Google Scholar] [CrossRef] [Green Version]
- Colonna, R.; Mangia, F. Mechanisms of amino acid uptake in cumulus-enclosed mouse oocytes. Biol. Reprod. 1983, 28, 797–803. [Google Scholar] [CrossRef] [Green Version]
- Corbett, H.E.; Dube, C.D.; Slow, S.; Lever, M.; Trasler, J.M.; Baltz, J.M. Uptake of betaine into mouse cumulus-oocyte complexes via the SLC7A6 isoform of y+L transporter. Biol. Reprod. 2014, 90, 81. [Google Scholar] [CrossRef]
- Haghighat, N.; Van Winkle, L.J. Developmental change in follicular cell-enhanced amino acid uptake into mouse oocytes that depends on intact gap junctions and transport system Gly. J. Exp. Zool. 1990, 253, 71–82. [Google Scholar] [CrossRef]
- Van Winkle, L.J.; Campione, A.L.; Gorman, J.M. Na+-independent transport of basic and zwitterionic amino acids in mouse blastocysts by a shared system and by processes which distinguish between these substrates. J Biol Chem 1988, 263, 3150–3163. [Google Scholar] [CrossRef]
- Anas, M.K.; Hammer, M.A.; Lever, M.; Stanton, J.A.; Baltz, J.M. The organic osmolytes betaine and proline are transported by a shared system in early preimplantation mouse embryos. J. Cell. Physiol. 2007, 210, 266–277. [Google Scholar] [CrossRef] [PubMed]
- Jamshidi, M.B.; Kaye, P.L. Glutamine transport by mouse inner cell masses. Reproduction 1995, 104, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Tan, B.S.; Lonic, A.; Morris, M.B.; Rathjen, P.D.; Rathjen, J. The amino acid transporter SNAT2 mediates L-proline-induced differentiation of ES cells. Am. J. Physiol.-Cell Physiol. 2011, 300, C1270–C1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seow, H.F.; Broer, S.; Broer, A.; Bailey, C.G.; Potter, S.J.; Cavanaugh, J.A.; Rasko, J.E. Hartnup disorder is caused by mutations in the gene encoding the neutral amino acid transporter SLC6A19. Nat. Genet. 2004, 36, 1003–1007. [Google Scholar] [CrossRef] [Green Version]
- Kleta, R.; Romeo, E.; Ristic, Z.; Ohura, T.; Stuart, C.; Arcos-Burgos, M.; Dave, M.H.; Wagner, C.A.; Camargo, S.R.; Inoue, S.; et al. Mutations in SLC6A19, encoding B0AT1, cause Hartnup disorder. Nat. Genet. 2004, 36, 999–1002. [Google Scholar] [CrossRef] [PubMed]
- Broer, A.; Juelich, T.; Vanslambrouck, J.M.; Tietze, N.; Solomon, P.S.; Holst, J.; Bailey, C.G.; Rasko, J.E.; Broer, S. Impaired nutrient signaling and body weight control in a Na+ neutral amino acid cotransporter (Slc6a19)-deficient mouse. J. Biol. Chem. 2011, 286, 26638–26651. [Google Scholar] [CrossRef] [Green Version]
- Vanslambrouck, J.M.; Broer, A.; Thavyogarajah, T.; Holst, J.; Bailey, C.G.; Broer, S.; Rasko, J.E. Renal imino acid and glycine transport system ontogeny and involvement in developmental iminoglycinuria. Biochem. J. 2010, 428, 397–407. [Google Scholar] [CrossRef] [Green Version]
- Danilczyk, U.; Penninger, J.M. Angiotensin-converting enzyme II in the heart and the kidney. Circ. Res. 2006, 98, 463–471. [Google Scholar] [CrossRef]
- Kowalczuk, S.; Broer, A.; Tietze, N.; Vanslambrouck, J.M.; Rasko, J.E.; Broer, S. A protein complex in the brush-border membrane explains a Hartnup disorder allele. FASEB J. 2008, 22, 2880–2887. [Google Scholar] [CrossRef]
- Danilczyk, U.; Sarao, R.; Remy, C.; Benabbas, C.; Stange, G.; Richter, A.; Arya, S.; Pospisilik, J.A.; Singer, D.; Camargo, S.M.; et al. Essential role for collectrin in renal amino acid transport. Nature 2006, 444, 1088–1091. [Google Scholar] [CrossRef]
- Bailey, C.G.; Metierre, C.; Feng, Y.; Baidya, K.; Filippova, G.N.; Loukinov, D.I.; Lobanenkov, V.V.; Semaan, C.; Rasko, J.E. CTCF Expression is Essential for Somatic Cell Viability and Protection Against Cancer. Int. J. Mol. Sci. 2018, 19, 3832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camargo, S.M.; Makrides, V.; Virkki, L.V.; Forster, I.C.; Verrey, F. Steady-state kinetic characterization of the mouse B(0)AT1 sodium-dependent neutral amino acid transporter. Pflug. Arch. 2005, 451, 338–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broer, A.; Klingel, K.; Kowalczuk, S.; Rasko, J.E.; Cavanaugh, J.; Broer, S. Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder. J. Biol. Chem. 2004, 279, 24467–24476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnaiz, I.; Johnson, M.H.; Cook, D.I.; Day, M.L. Changing expression of chloride channels during preimplantation mouse development. Reproduction 2013, 145, 73–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonoda, M.; Okamoto, F.; Kajiya, H.; Inoue, Y.; Honjo, K.; Sumii, Y.; Kawarabayashi, T.; Okabe, K. Amino acid-permeable anion channels in early mouse embryos and their possible effects on cleavage. Biol. Reprod. 2003, 68, 947–953. [Google Scholar] [CrossRef] [Green Version]
- Baltz, J.M. Osmoregulation and cell volume regulation in the preimplantation embryo. Curr Top Dev Biol 2001, 52, 55–106. [Google Scholar] [CrossRef]
- Guastella, J.; Brecha, N.; Weigmann, C.; Lester, H.A.; Davidson, N. Cloning, expression, and localization of a rat brain high-affinity glycine transporter. Proc. Natl. Acad. Sci. USA 1992, 89, 7189–7193. [Google Scholar] [CrossRef] [Green Version]
- Hammer, M.A.; Baltz, J.M. Betaine is a highly effective organic osmolyte but does not appear to be transported by established organic osmolyte transporters in mouse embryos. Mol. Reprod. Dev. 2002, 62, 195–202. [Google Scholar] [CrossRef]
- Van Winkle, L.J.; Haghighat, N.; Campione, A.L.; Gorman, J.M. Glycine transport in mouse eggs and preimplantation conceptuses. Biochim. Biophys. Acta 1988, 941, 241–256. [Google Scholar] [CrossRef]
- Hobbs, J.G.; Kaye, P.L. Glycine uptake in pre-implantation mouse embryos: Kinetics and the effects of external [Na+]. Reprod. Fertil. Dev. 1990, 2, 651–660. [Google Scholar] [CrossRef]
- Hardy, M.L.M.; Day, M.L.; Morris, M.B. Redox Regulation and Oxidative Stress in Mammalian Oocytes and Embryos Developed In Vivo and In Vitro. Int. J. Environ. Res. Public Health 2021, 18, 11374. [Google Scholar] [CrossRef] [PubMed]
- Cuny, H.; Bozon, K.; Kirk, R.B.; Sheng, D.Z.; Broer, S.; Dunwoodie, S.L. Maternal heterozygosity of Slc6a19 causes metabolic perturbation and congenital NAD deficiency disorder in mice. Dis. Model. Mech. 2022, 16, dmm049647. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Treleaven, T.; Zada, M.; Nagarajah, R.; Bailey, C.G.; Rasko, J.E.J.; Morris, M.B.; Day, M.L. Stage-Specific L-Proline Uptake by Amino Acid Transporter Slc6a19/B0AT1 Is Required for Optimal Preimplantation Embryo Development in Mice. Cells 2023, 12, 18. https://doi.org/10.3390/cells12010018
Treleaven T, Zada M, Nagarajah R, Bailey CG, Rasko JEJ, Morris MB, Day ML. Stage-Specific L-Proline Uptake by Amino Acid Transporter Slc6a19/B0AT1 Is Required for Optimal Preimplantation Embryo Development in Mice. Cells. 2023; 12(1):18. https://doi.org/10.3390/cells12010018
Chicago/Turabian StyleTreleaven, Tamara, Matthew Zada, Rajini Nagarajah, Charles G. Bailey, John E. J. Rasko, Michael B. Morris, and Margot L. Day. 2023. "Stage-Specific L-Proline Uptake by Amino Acid Transporter Slc6a19/B0AT1 Is Required for Optimal Preimplantation Embryo Development in Mice" Cells 12, no. 1: 18. https://doi.org/10.3390/cells12010018
APA StyleTreleaven, T., Zada, M., Nagarajah, R., Bailey, C. G., Rasko, J. E. J., Morris, M. B., & Day, M. L. (2023). Stage-Specific L-Proline Uptake by Amino Acid Transporter Slc6a19/B0AT1 Is Required for Optimal Preimplantation Embryo Development in Mice. Cells, 12(1), 18. https://doi.org/10.3390/cells12010018