Molecular and Clinical Advances in Understanding Early Embryo Development
1. Introduction
2. Early Development
2.1. Oocytes
2.2. Preimplantation Development
2.3. Implantation
2.4. Second Lineage Differentiation
3. Epigenetics in Human Reproduction
4. Conclusions
- Amino acid transport and signaling in oocytes influence their mitochondrial metabolism, ROS production, and health; therefore, the replacement of damaged mitochondria in oocytes may soon improve ART in humans.
- During the preimplantation period, amino acid transport and signaling also foster more normal embryo development.
- It remains to be determined whether the healthiest preimplantation embryos develop in vitro in conditions that mimic the physiological environment in vivo or whether simpler conditions can also foster this development in vitro.
- Amino acid transport, metabolism, and signaling are also needed in blastocysts to maintain their pluripotent ICM cells and to foster the trophoblast invasion of the uterine epithelium during implantation in the uterus.
- The details of signaling needed to promote second cellular lineage differentiation in peri-implantation embryos varies among mammalian species used as models for human embryo development.
- Environmentally induced epigenetic changes in germ cells can render mammalian offspring less healthy, and these changes can be difficult to reverse.
Conflicts of Interest
References
- Van Winkle, L.J. Amino acid transport and metabolism regulate early embryo development: Species differences, clinical significance, and evolutionary implications. Cells 2021, 10, 3154. [Google Scholar] [CrossRef] [PubMed]
- Treleaven, T.; Hardy, M.L.; Guttman-Jones, M.; Morris, M.B.; Day, M.L. In vitro fertilization of mouse oocytes in L-Proline and L-Pipecolic acid improves subsequent development. Cells 2021, 10, 1352. [Google Scholar] [CrossRef] [PubMed]
- Podolak, A.; Woclawek-Potocka, I.; Lukaszuk, K. The Role of Mitochondria in Human Fertility and Early Embryo Development: What Can We Learn for Clinical Application of Assessing and Improving Mitochondrial DNA? Cells 2022, 11, 797. [Google Scholar] [CrossRef] [PubMed]
- Palmerini, M.G.; Antonouli, S.; Macchiarelli, G.; Cecconi, S.; Bianchi, S.; Khalili, M.A.; Nottola, S.A. Ultrastructural evaluation of the human oocyte at the germinal vesicle stage during the application of assisted reproductive technologies. Cells 2022, 11, 1636. [Google Scholar] [CrossRef] [PubMed]
- Treleaven, T.; Zada, M.; Nagarajah, R.; Bailey, C.G.; Rasko, J.E.; Morris, M.B.; Day, M.L. Stage-Specific L-Proline Uptake by Amino Acid Transporter Slc6a19/B0AT1 Is Required for Optimal Preimplantation Embryo Development in Mice. Cells 2023, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.B.; Ozsoy, S.; Zada, M.; Zada, M.; Zamfirescu, R.C.; Todorova, M.G.; Day, M.L. Selected amino acids promote mouse pre-implantation embryo development in a growth factor-like manner. Front. Physiol. 2020, 11, 140. [Google Scholar] [CrossRef] [PubMed]
- Van Winkle, L.J. Perspective: One-cell and cleavage-stage mouse embryos thrive in hyperosmotic oviductal fluid through expression of a glycine neurotransmitter transporter and a glycine-gated chloride channel: Clinical and transgenerational implications. Front. Physiol. 2020, 11, 613840. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.R.; Redel, B.K.; Kerns, K.C.; Spate, L.D.; Prather, R.S. Challenges and considerations during in vitro production of porcine embryos. Cells 2021, 10, 2770. [Google Scholar] [CrossRef] [PubMed]
- Saadeldin, I.M.; Tanga, B.M.; Bang, S.; Seo, C.; Koo, O.; Yun, S.H.; Kim, S.I.; Lee, S.; Cho, J. ROCK Inhibitor (Y-27632) Abolishes the Negative Impacts of miR-155 in the Endometrium-Derived Extracellular Vesicles and Supports Embryo Attachment. Cells 2022, 11, 3178. [Google Scholar] [CrossRef] [PubMed]
- Via y Rada, R.; Daniel, N.; Archilla, C.; Frambourg, A.; Jouneau, L.; Jaszczyszyn, Y.; Charpigny, G.; Duranthon, V.; Calderari, S. Identification of the Inner Cell Mass and the Trophectoderm Responses after an In Vitro Exposure to Glucose and Insulin during the Preimplantation Period in the Rabbit Embryo. Cells 2022, 11, 3766. [Google Scholar] [CrossRef] [PubMed]
- Duan, K.; Si, C.Y.; Zhao, S.M.; Ai, Z.Y.; Niu, B.H.; Yin, Y.; Xiang, L.F.; Ding, H.; Zheng, Y. The Long Terminal Repeats of ERV6 Are Activated in Pre-Implantation Embryos of Cynomolgus Monkey. Cells 2021, 10, 2710. [Google Scholar] [CrossRef] [PubMed]
- Springer, C.; Zakhartchenko, V.; Wolf, E.; Simmet, K. Hypoblast formation in bovine embryos does not depend on NANOG. Cells 2021, 10, 2232. [Google Scholar] [CrossRef] [PubMed]
- Quan, H.; Tian, H.; Liu, S.; Xue, Y.; Zhang, Y.; Xie, W.; Gao, Y.Q. Progressive domain segregation in early embryonic development and underlying correlation to genetic and epigenetic changes. Cells 2021, 10, 2521. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.; Zhang, Q.; Zhou, L.; Li, Z.; Wei, X.; Yang, W.; Zhang, J.; Li, H.; Xu, Z.; Cui, X.; et al. Intrachromosomal Looping and Histone K27 Methylation Coordinately Regulates the lncRNA H19-Fetal Mitogen IGF2 Imprinting Cluster in the Decidual Microenvironment of Early Pregnancy. Cells 2022, 11, 3130. [Google Scholar] [CrossRef] [PubMed]
- Multhaup, M.L.; Seldin, M.M.; Jaffe, A.E.; Lei, X.; Kirchner, H.; Mondal, P.; Li, Y.; Rodriguez, V.; Drong, A.; Hussain, M.; et al. Mouse-human experimental epigenetic analysis unmasks dietary targets and genetic liability for diabetic phenotypes. Cell Metab. 2015, 21, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Mintjens, S.; Van Poppel, M.N.; Groen, H.; Hoek, A.; Mol, B.W.; Painter, R.C.; Gemke, R.J.; Roseboom, T.J. The effects of a preconception lifestyle intervention on childhood cardiometabolic health—Follow-up of a randomized controlled trial. Cells 2022, 11, 41. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Winkle, L.J. Molecular and Clinical Advances in Understanding Early Embryo Development. Cells 2023, 12, 1171. https://doi.org/10.3390/cells12081171
Van Winkle LJ. Molecular and Clinical Advances in Understanding Early Embryo Development. Cells. 2023; 12(8):1171. https://doi.org/10.3390/cells12081171
Chicago/Turabian StyleVan Winkle, Lon J. 2023. "Molecular and Clinical Advances in Understanding Early Embryo Development" Cells 12, no. 8: 1171. https://doi.org/10.3390/cells12081171
APA StyleVan Winkle, L. J. (2023). Molecular and Clinical Advances in Understanding Early Embryo Development. Cells, 12(8), 1171. https://doi.org/10.3390/cells12081171