Xanthine Dehydrogenase Is a Modulator of Dopaminergic Neurodegeneration in Response to Bacterial Metabolite Exposure in C. elegans
Abstract
:1. Introduction
2. Materials and Methods
2.1. C. elegans Strains
2.2. Isolation and Extraction of S. venezuelae Metabolite
2.3. S. venezuelae Metabolite Treatment
2.4. C. elegans RNA Isolation Paradigm and Sample Preparation
2.5. RNA Isolation, Extraction
2.6. RNA Quality Control (QC)
2.7. Differentially Expressed Gene (DEG) Analysis, Selection, and Functional Annotation
2.8. DAF-16 Binding Motif Analysis
2.9. Neurodegeneration Analysis and Fluorescence Microscopy
2.10. RNA Interference (RNAi) Experiments
2.11. RNA Extraction and Reverse Transcription Real Time Quantitative PCR
2.12. Xanthine Oxidase Activity Measurement
2.13. EGTA Treatments
2.14. Statistical Analysis
3. Results
3.1. Induction of Differential Gene Expression in C. elegans in Response to S. ven Metabolite
3.2. Genes with DAF-16 Regulatory Motifs Are Enriched in an Age-Dependent Manner by the Metabolite
3.3. DAF-16 and PQM-1 Affect Gene Expression in Response to S. ven Metabolite
3.4. Knockdown of Innate Immunity-Associated DEGs Attenuates Metabolite-Induced DA Neurodegeneration
3.5. RNAi Reveals Distinct Effects of Phase I Gene Products in S. ven-Induced Neurodegeneration
3.6. Depletion of Phase II Detoxification Genes Attenuates S. ven-Induced DA Neurodegeneration
3.7. Non-CYP Phase I Gene Products Display Altered S. ven Neurotoxicity following Knockdown
3.8. The Neurotoxic Effect of the S. ven Metabolite Is Potentiated by Calcium Supplementation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dawson, T.M.; Ko, H.S.; Dawson, V.L. Genetic Animal Models of Parkinson’s Disease. Neuron 2010, 66, 646–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semchuk, K.M.; Love, E.J.; Lee, R.G. Parkinson’s Disease and Exposure to Agricultural Work and Pesticide Chemicals. Neurology 1992, 42, 1328–1335. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.R.; Quan, Y.; Sherer, T.B.; Greenamyre, J.T.; Miller, G.W. Paraquat Neurotoxicity Is Distinct from That of MPTP and Rotenone. Toxicol. Sci. 2005, 88, 193–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cannon, J.R.; Greenamyre, J.T. Neurotoxic in Vivo Models of Parkinson’s Disease. In Progress in Brain Research; Elsevier: Amsterdam, The Netherlands, 2010; Volume 184, pp. 17–33. [Google Scholar] [CrossRef]
- Lindahl, P.E.; Öberg, K.E. The Effect of Rotenone on Respiration and Its Point of Attack. Exp. Cell Res. 1961, 23, 228–237. [Google Scholar] [CrossRef]
- Barrientos, A.; Moraes, C.T. Titrating the Effects of Mitochondrial Complex I Impairment in the Cell Physiology*. J. Biol. Chem. 1999, 274, 16188–16197. [Google Scholar] [CrossRef] [Green Version]
- Caller, T.; Henegan, P.; Stommel, E. The Potential Role of BMAA in Neurodegeneration. Neurotox. Res. 2018, 33, 222–226. [Google Scholar] [CrossRef]
- Priyadarshi, A.; Khuder, S.A.; Schaub, E.A.; Priyadarshi, S.S. Environmental Risk Factors and Parkinson’s Disease: A Metaanalysis. Environ. Res. 2001, 86, 122–127. [Google Scholar] [CrossRef] [Green Version]
- Costello, S.; Cockburn, M.; Bronstein, J.; Zhang, X.; Ritz, B. Parkinson’s Disease and Residential Exposure to Maneb and Paraquat from Agricultural Applications in the Central Valley of California. Am. J. Epidemiol. 2009, 169, 919–926. [Google Scholar] [CrossRef] [Green Version]
- Tanner, C.M.; Ross, G.W.; Jewell, S.A.; Hauser, R.A.; Jankovic, J.; Factor, S.A.; Bressman, S.; Deligtisch, A.; Marras, C.; Lyons, K.E.; et al. Occupation and Risk of Parkinsonism: A Multicenter Case-Control Study. Arch. Neurol. 2009, 66, 1106–1113. [Google Scholar] [CrossRef]
- Roesch, L.F.W.; Fulthorpe, R.R.; Riva, A.; Casella, G.; Hadwin, A.K.M.; Kent, A.D.; Daroub, S.H.; Camargo, F.A.O.; Farmerie, W.G.; Triplett, E.W. Pyrosequencing Enumerates and Contrasts Soil Microbial Diversity. ISME J. 2007, 1, 283–290. [Google Scholar] [CrossRef]
- Janssen, P.H. Identifying the Dominant Soil Bacterial Taxa in Libraries of 16S RRNA and 16S RRNA Genes. Appl. Environ. Microbiol. 2006, 72, 1719–1728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, Y.; Omura, S. Metabolism and Products of Actinomycetes—An Introduction. Actinomycetologica 1990, 4, 13–14. [Google Scholar] [CrossRef]
- Fenteany, G.; Standaert, R.F.; Lane, W.S.; Choi, S.; Corey, E.J.; Schreiber, S.L. Inhibition of Proteasome Activities and Subunit-Specific Amino-Terminal Threonine Modification by Lactacystin. Science 1995, 268, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, K.A.; Thies, J.L.; Caldwell, G.A. No Country for Old Worms: A Systematic Review of the Application of C. Elegans to Investigate a Bacterial Source of Environmental Neurotoxicity in Parkinson’s Disease. Metabolites 2018, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, K.A.; Tucci, M.L.; Armagost, J.; Hodges, T.W.; Chen, J.; Memon, S.B.; Blalock, J.E.; DeLeon, S.M.; Findlay, R.H.; Ruan, Q.; et al. Investigating Bacterial Sources of Toxicity as an Environmental Contributor to Dopaminergic Neurodegeneration. PLoS ONE 2009, 4, e7227. [Google Scholar] [CrossRef] [Green Version]
- Ray, A.; Martinez, B.A.; Berkowitz, L.A.; Caldwell, G.A.; Caldwell, K.A. Mitochondrial Dysfunction, Oxidative Stress, and Neurodegeneration Elicited by a Bacterial Metabolite in a C. Elegans Parkinson’s Model. Cell Death Dis. 2014, 5, e984. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Perentis, R.J.; Caldwell, G.A.; Caldwell, K.A. Gene-by-Environment Interactions That Disrupt Mitochondrial Homeostasis Cause Neurodegeneration in C. Elegans Parkinson’s Models. Cell Death Dis. 2018, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kenyon, C.J. The Genetics of Ageing. Nature 2010, 464, 504–512. [Google Scholar] [CrossRef]
- Ritter, J.K. Roles of Glucuronidation and UDP-Glucuronosyltransferases in Xenobiotic Bioactivation Reactions. Chem.-Biol. Interact. 2000, 129, 171–193. [Google Scholar] [CrossRef]
- Malfatti, M.A.; Ubick, E.A.; Felton, J.S. The Impact of Glucuronidation on the Bioactivation and DNA Adduction of the Cooked-Food Carcinogen 2-Amino-1-Methyl-6-Phenylimidazo[4,5-b]Pyridine in vivo. Carcinogenesis 2005, 26, 2019–2028. [Google Scholar] [CrossRef]
- Guengerich, F.P. Cytochrome P450s and Other Enzymes in Drug Metabolism and Toxicity. AAPS J. 2006, 8, E101–E111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishino, T.; Okamoto, K.; Eger, B.T.; Pai, E.F.; Nishino, T. Mammalian Xanthine Oxidoreductase—Mechanism of Transition from Xanthine Dehydrogenase to Xanthine Oxidase. FEBS J. 2008, 275, 3278–3289. [Google Scholar] [CrossRef] [PubMed]
- Baker, M.S.; Austin, L. The Pathological Damage in Duchenne Muscular Dystrophy May Be Due to Increased Intracellular Oxy-Radical Generation Caused by the Absence of Dystrophin and Subsequent Alterations in Ca2+ Metabolism. Med. Hypotheses 1989, 29, 187–193. [Google Scholar] [CrossRef] [PubMed]
- McNally, J.S.; Saxena, A.; Cai, H.; Dikalov, S.; Harrison, D.G. Regulation of Xanthine Oxidoreductase Protein Expression by Hydrogen Peroxide and Calcium. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 1623–1628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsay, A.; McCourt, P.M.; Karachunski, P.; Lowe, D.A.; Ervasti, J.M. Xanthine Oxidase Is Hyper-Active in Duchenne Muscular Dystrophy. Free Radic. Biol. Med. 2018, 129, 364–371. [Google Scholar] [CrossRef]
- Brenner, S. The Genetics of Caenorhabditis elegans. Genetics 1974, 77, 71–94. [Google Scholar] [CrossRef] [PubMed]
- Martinez, B.A.; Kim, H.; Ray, A.; Caldwell, G.A.; Caldwell, K.A. A Bacterial Metabolite Induces Glutathione-Tractable Proteostatic Damage, Proteasomal Disturbances, and PINK1-Dependent Autophagy in C. elegans. Cell Death Dis. 2015, 6, e1908. [Google Scholar] [CrossRef] [Green Version]
- Durieux, J.; Wolff, S.; Dillin, A. The Cell Non-Autonomous Nature of Electron Transport Chain-Mediated Longevity. Cell 2011, 144, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Martinez, B.A.; Caldwell, K.A.; Caldwell, G.A.C. Elegans as a Model System to Accelerate Discovery for Parkinson Disease. Curr. Opin. Genet. Dev. 2017, 44, 102–109. [Google Scholar] [CrossRef]
- Patro, R.; Duggal, G.; Love, M.I.; Irizarry, R.A.; Kingsford, C. Salmon: Fast and Bias-Aware Quantification of Transcript Expression Using Dual-Phase Inference. Nat Methods 2017, 14, 417–419. [Google Scholar] [CrossRef] [Green Version]
- Love, M.I.; Huber, W.; Anders, S. Moderated Estimation of Fold Change and Dispersion for RNA-Seq Data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolde, R. Pheatmap: Pretty Heatmaps. R Package Version 2015, 1, 726. [Google Scholar]
- Holdorf, A.D.; Higgins, D.P.; Hart, A.C.; Boag, P.R.; Pazour, G.J.; Walhout, A.J.M.; Walker, A.K. WormCat: An Online Tool for Annotation and Visualization of Caenorhabditis elegans Genome-Scale Data. Genetics 2020, 214, 279–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamath, R.S.; Fraser, A.G.; Dong, Y.; Poulin, G.; Durbin, R.; Gotta, M.; Kanapin, A.; Le Bot, N.; Moreno, S.; Sohrmann, M.; et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003, 421, 231–237. [Google Scholar] [CrossRef]
- Thompson, M.L.; Chen, P.; Yan, X.; Kim, H.; Borom, A.R.; Roberts, N.B.; Caldwell, K.A.; Caldwell, G.A. TorsinA rescues ER-associated stress and locomotive defects in C. elegans models of ALS. Dis. Model. Mech. 2014, 7, 233–243. [Google Scholar] [CrossRef]
- Murphy, C.T.; McCarroll, S.A.; Bargmann, C.I.; Fraser, A.; Kamath, R.S.; Ahringer, J.; Li, H.; Kenyon, C. Genes That Act Downstream of DAF-16 to Influence the Lifespan of Caenorhabditis elegans. Nature 2003, 424, 277–283. [Google Scholar] [CrossRef]
- McElwee, J.; Bubb, K.; Thomas, J.H. Transcriptional Outputs of the Caenorhabditis elegans Forkhead Protein DAF-16. Aging Cell 2003, 2, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Yen, K.; Narasimhan, S.D.; Tissenbaum, H.A. DAF-16/Forkhead Box O Transcription Factor: Many Paths to a Single Fork(Head) in the Road. Antioxid. Redox Signal. 2011, 14, 623–634. [Google Scholar] [CrossRef] [Green Version]
- Accili, D.; Arden, K.C. FoxOs at the Crossroads of Cellular Metabolism, Differentiation, and Transformation. Cell 2004, 117, 421–426. [Google Scholar] [CrossRef] [Green Version]
- Iser, W.B.; Wilson, M.A.; Iii, W.H.W.; Becker, K.; Wolkow, C.A. Co-Regulation of the DAF-16 Target Gene, Cyp-35B1/Dod-13, by HSF-1 in C. elegans Dauer Larvae and Daf-2 Insulin Pathway Mutants. PLoS ONE 2011, 6, e17369. [Google Scholar] [CrossRef] [Green Version]
- Tepper, R.G.; Ashraf, J.; Kaletsky, R.; Kleemann, G.; Murphy, C.T.; Bussemaker, H.J. PQM-1 Complements DAF-16 as a Key Transcriptional Regulator of DAF-2-Mediated Development and Longevity. Cell 2013, 154, 676–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, L.; Li, H.; Huang, C.; Zhao, T.; Zhang, Y.; Ba, X.; Li, Z.; Zhang, Y.; Huang, B.; Lu, J.; et al. Muscle-Specific Histone H3K36 Dimethyltransferase SET-18 Shortens Lifespan of Caenorhabditis Elegans by Repressing Daf-16a Expression. Cell Rep. 2018, 22, 2716–2729. [Google Scholar] [CrossRef] [PubMed]
- Furuyama, T.; Nakazawa, T.; Nakano, I.; Mori, N. Identification of the Differential Distribution Patterns of MRNAs and Consensus Binding Sequences for Mouse DAF-16 Homologues. Biochem. J. 2000, 349 Pt 2, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Mukhopadhyay, A.; Dixit, B.L.; Raha, T.; Green, M.R.; Tissenbaum, H.A. Identification of Direct DAF-16 Targets Controlling Longevity, Metabolism and Diapause by Chromatin Immunoprecipitation. Nat. Genet. 2006, 38, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Park, H.-E.H.; Hwang, W.; Ham, S.; Kim, E.; Altintas, O.; Park, S.; Son, H.G.; Lee, Y.; Lee, D.; Heo, W.D.; et al. A PTEN Variant Uncouples Longevity from Impaired Fitness in Caenorhabditis elegans with Reduced Insulin/IGF-1 Signaling. Nat. Commun. 2021, 12, 5631. [Google Scholar] [CrossRef] [PubMed]
- Przybysz, A.J.; Choe, K.P.; Roberts, L.J.; Strange, K. Increased Age Reduces DAF-16 and SKN-1 Signaling and the Hormetic Response of Caenorhabditis elegans to the Xenobiotic Juglone. Mech. Ageing Dev. 2009, 130, 357–369. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Judy, M.; Lee, S.-J.; Kenyon, C. Direct and Indirect Gene Regulation by a Life-Extending FOXO Protein in C. elegans: Roles for GATA Factors and Lipid Gene Regulators. Cell Metab. 2013, 17, 85–100. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhao, H.; Zhang, P.; Liang, C.; Zhang, Y.; Hsu, A.; Dong, M. DAF-16 Stabilizes the Aging Transcriptome and Is Activated in Mid-aged Caenorhabditis elegans to Cope with Internal Stress. Aging Cell 2019, 18, e12896. [Google Scholar] [CrossRef] [Green Version]
- Melo, J.A.; Ruvkun, G. Inactivation of Conserved C. elegans Genes Engages Pathogen- and Xenobiotic-Associated Defenses. Cell 2012, 149, 452–466. [Google Scholar] [CrossRef] [Green Version]
- Runkel, E.D.; Liu, S.; Baumeister, R.; Schulze, E. Surveillance-Activated Defenses Block the ROS–Induced Mitochondrial Unfolded Protein Response. PLoS Genet. 2013, 9, e1003346. [Google Scholar] [CrossRef] [Green Version]
- Pukkila-Worley, R.; Feinbaum, R.L.; McEwan, D.L.; Conery, A.L.; Ausubel, F.M. The Evolutionarily Conserved Mediator Subunit MDT-15/MED15 Links Protective Innate Immune Responses and Xenobiotic Detoxification. PLoS Pathog. 2014, 10, e1004143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibson, C.L.; Balbona, J.T.; Niedzwiecki, A.; Rodriguez, P.; Nguyen, K.C.Q.; Hall, D.H.; Blakely, R.D. Glial Loss of the Metallo β-Lactamase Domain Containing Protein, SWIP-10, Induces Age- and Glutamate-Signaling Dependent, Dopamine Neuron Degeneration. PLoS Genet. 2018, 14, e1007269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, W. Salivary Trefoil Factor Family (TFF) Peptides and Their Roles in Oral and Esophageal Protection: Therapeutic Potential. Int. J. Mol. Sci. 2021, 22, 12221. [Google Scholar] [CrossRef] [PubMed]
- Hazell, G.G.J.; Peachey, A.M.G.; Teasdale, J.E.; Sala-Newby, G.B.; Angelini, G.D.; Newby, A.C.; White, S.J. PI16 Is a Shear Stress and Inflammation-Regulated Inhibitor of MMP2. Sci. Rep. 2016, 6, 39553. [Google Scholar] [CrossRef] [Green Version]
- Bakun, M.; Senatorski, G.; Rubel, T.; Lukasik, A.; Zielenkiewicz, P.; Dadlez, M.; Paczek, L. Urine Proteomes of Healthy Aging Humans Reveal Extracellular Matrix (ECM) Alterations and Immune System Dysfunction. Age 2014, 36, 299–311. [Google Scholar] [CrossRef] [Green Version]
- Lupsa, N.; Érsek, B.; Horváth, A.; Bencsik, A.; Lajkó, E.; Silló, P.; Oszvald, Á.; Wiener, Z.; Reményi, P.; Mikala, G.; et al. Skin-Homing CD8+ T Cells Preferentially Express GPI-Anchored Peptidase Inhibitor 16, an Inhibitor of Cathepsin K. Eur. J. Immunol. 2018, 48, 1944–1957. [Google Scholar] [CrossRef] [Green Version]
- Hope, C.M.; Welch, J.; Mohandas, A.; Pederson, S.; Hill, D.; Gundsambuu, B.; Eastaff-Leung, N.; Grosse, R.; Bresatz, S.; Ang, G.; et al. Peptidase Inhibitor 16 Identifies a Human Regulatory T-Cell Subset with Reduced FOXP3 Expression over the First Year of Recent Onset Type 1 Diabetes. Eur. J. Immunol. 2019, 49, 1235–1250. [Google Scholar] [CrossRef]
- Larigot, L.; Mansuy, D.; Borowski, I.; Coumoul, X.; Dairou, J. Cytochromes P450 of Caenorhabditis elegans: Implication in Biological Functions and Metabolism of Xenobiotics. Biomolecules 2022, 12, 342. [Google Scholar] [CrossRef]
- Jeffery, J.; Jörnvall, H. Sorbitol Dehydrogenase. Adv. Enzymol. Relat. Areas Mol. Biol. 1988, 61, 47–106. [Google Scholar] [CrossRef]
- Bogaerts, A.; Beets, I.; Temmerman, L.; Schoofs, L.; Verleyen, P. Proteome Changes of Caenorhabditis elegans upon a Staphylococcus Aureus Infection. Biol. Direct. 2010, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- O’Rourke, D.; Baban, D.; Demidova, M.; Mott, R.; Hodgkin, J. Genomic Clusters, Putative Pathogen Recognition Molecules, and Antimicrobial Genes Are Induced by Infection of C. elegans with M. nematophilum. Genome Res. 2006, 16, 1005–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saban-Ruiz, J.; Alonso-Pacho, A.; Fabregate-Fuente, M.; Gonzalez-Quevedo, C.D.L.P. Xanthine Oxidase Inhibitor Febuxostat as a Novel Agent Postulated to Act against Vascular Inflammation. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2013, 12, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Akaike, T.; Ando, M.; Oda, T.; Doi, T.; Ijiri, S.; Araki, S.; Maeda, H. Dependence on O2− Generation by Xanthine Oxidase of Pathogenesis of Influenza Virus Infection in Mice. J. Clin. Investig. 1990, 85, 739–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breckenridge, C.B.; Berry, C.; Chang, E.T.; Sielken, R.L.; Mandel, J.S. Association between Parkinson’s Disease and Cigarette Smoking, Rural Living, Well-Water Consumption, Farming and Pesticide Use: Systematic Review and Meta-Analysis. PLoS ONE 2016, 11, e0151841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mew, M.; Caldwell, K.; Caldwell, G. From Bugs to Bedside: Functional Annotation of Human Genetic Variation for Neurological Disorders Using Invertebrate Models. Hum. Mol. Genet. 2022, 31, R37–R46. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, F.; Mayberg, H.S.; Wager, T.D.; Stohler, C.S.; Zubieta, J.-K. Neurobiological Mechanisms of the Placebo Effect. J. Neurosci. 2005, 25, 10390–10402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menzel, R.; Bogaert, T.; Achazi, R. A Systematic Gene Expression Screen of Caenorhabditis elegans Cytochrome P450 Genes Reveals CYP35 as Strongly Xenobiotic Inducible. Arch. Biochem. Biophys. 2001, 395, 158–168. [Google Scholar] [CrossRef]
- Harlow, P.H.; Perry, S.J.; Stevens, A.J.; Flemming, A.J. Comparative Metabolism of Xenobiotic Chemicals by Cytochrome P450s in the Nematode Caenorhabditis elegans. Sci. Rep. 2018, 8, 13333. [Google Scholar] [CrossRef]
- Menzel, R.; Yeo, H.L.; Rienau, S.; Li, S.; Steinberg, C.E.W.; Stürzenbaum, S.R. Cytochrome P450s and Short-Chain Dehydrogenases Mediate the Toxicogenomic Response of PCB52 in the Nematode Caenorhabditis elegans. J. Mol. Biol. 2007, 370, 1–13. [Google Scholar] [CrossRef]
- Zhong, W.; Sternberg, P.W. Genome-Wide Prediction of C. elegans Genetic Interactions. Science 2006, 311, 1481–1484. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.; Lehner, B.; Crombie, C.; Wong, W.; Fraser, A.G.; Marcotte, E.M. A Single Gene Network Accurately Predicts Phenotypic Effects of Gene Perturbation in Caenorhabditis elegans. Nat. Genet. 2008, 40, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Cheng, G.; Hao, H.; Dai, M.; Wang, X.; Huang, L.; Liu, Z.; Yuan, Z. Mechanism of Porcine Liver Xanthine Oxidoreductase Mediated N-Oxide Reduction of Cyadox as Revealed by Docking and Mutagenesis Studies. PLoS ONE 2013, 8, e73912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandhi, S.; Abramov, A.Y. Mechanism of Oxidative Stress in Neurodegeneration. Oxidative Med. Cell. Longev. 2012, 2012, 428010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gangola, P.; Rosen, B.P. Maintenance of Intracellular Calcium in Escherichia coli. J. Biol. Chem. 1987, 262, 12570–12574. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, S.; Chen, Y. Hepatocyte Growth Factor Suppresses Hypoxia/Reoxygenation-Induced XO Activation in Cardiac Microvascular Endothelial Cells. Heart Vessel. 2015, 30, 534–544. [Google Scholar] [CrossRef]
- Frantseva, M.V.; Velazquez, J.L.P.; Hwang, P.A.; Carlen, P.L. Free Radical Production Correlates with Cell Death in an in vitro Model of Epilepsy. Eur. J. Neurosci. 2000, 12, 1431–1439. [Google Scholar] [CrossRef]
- Chinta, S.J.; Andersen, J.K. Redox Imbalance in Parkinson’s Disease. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2008, 1780, 1362–1367. [Google Scholar] [CrossRef] [Green Version]
- Nikoletopoulou, V.; Tavernarakis, N. Calcium Homeostasis in Aging Neurons. Front. Genet. 2012, 3, 00200. [Google Scholar] [CrossRef] [Green Version]
- Cipriani, S.; Bakshi, R.; Schwarzschild, M.A. Protection by Inosine in a Cellular Model of Parkinson’s Disease. Neuroscience 2014, 274, 242–249. [Google Scholar] [CrossRef] [Green Version]
- El-Shamarka, M.E.A.; Kozman, M.R.; Messiha, B.A.S. The Protective Effect of Inosine against Rotenone-Induced Parkinson’s Disease in Mice; Role of Oxido-Nitrosative Stress, ERK Phosphorylation, and A2AR Expression. Naunyn-Schmiedebergs Arch. Pharmacol. 2020, 393, 1041–1053. [Google Scholar] [CrossRef]
- Schwarzschild, M.A.; Ascherio, A.; Casaceli, C.; Curhan, G.C.; Fitzgerald, R.; Kamp, C.; Lungu, C.; Macklin, E.A.; Marek, K.; Mozaffarian, D.; et al. Effect of Urate-Elevating Inosine on Early Parkinson Disease Progression. JAMA 2021, 326, 926–939. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.-X.; Sen, I.; Janssens, G.E.; Zhou, X.; Fonslow, B.R.; Edgar, D.; Stroustrup, N.; Swoboda, P.; Yates, J.R.; Ruvkun, G.; et al. DAF-16/FOXO and HLH-30/TFEB Function as Combinatorial Transcription Factors to Promote Stress Resistance and Longevity. Nat. Commun. 2018, 9, 4400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Wormbase ID | Gene | Human Homolog(s) | Function | Fold Change | padj |
---|---|---|---|---|---|
Stress Response | |||||
WBGene00019471 | cyp-35B2 | CYP2C8 | Detoxification | 4.57 | 3.08 × 10−5 |
WBGene00044514 | R09E12.9 | n/a | Responsive to multiple stresses | 1.78 | 5.43 × 10−2 |
WBGene00015045 | cyp-34A10 | CYP2A6 | Detoxification | 1.71 | 2.20 × 10−2 |
WBGene00011672 | cyp-13A5 | CYP3A5 | Detoxification | (−)0.50 | 2.02 × 10−2 |
Metabolism | |||||
WBGene00001478 | fmo-3 | FMO5 | Monooxygenase | 0.83 | 7.64 × 10−3 |
WBGene00010790 | adh-1 | ADH4 | Mitochondria | (−)0.48 | 5.21 × 10−2 |
Proteolysis | |||||
WBGene00011841 | scl-25 | PI16 | Inhibitor (Peptidase) | 2.43 | 4.69 × 10−3 |
WBGene00008575 | scl-24 | PI16 | Inhibitor (Peptidase) | 1.96 | 9.72 × 10−9 |
WBGene00021731 | Y49G5A.1 | WFDC8 | Inhibitor (Cysteine) | 0.85 | 1.45 × 10−2 |
WBGene00003530 | nas-11 | TLL1 | Metallopeptidase | 0.28 | 2.02 × 10−2 |
Wormbase ID | Gene | Human Homolog(s) | Function | Fold Change | padj |
---|---|---|---|---|---|
Stress Response | |||||
WBGene00019471 | cyp-35B2 | CYP2C8 | Detoxification | 4.71 | 9.41 × 10−10 |
WBGene00044514 | R09E12.9 | n/a | Responsive to multiple stresses | 2.02 | 2.35 × 10−3 |
WBGene00019472 | cyp-35B1 | CYP2C8 | Detoxification | 1.62 | 7.75 × 10−4 |
WBGene00010706 | cyp-14A2 | CYP2E1 | Detoxification | 1.57 | 9.36 × 10−6 |
WBGene00015932 | C17H12.6 | n/a | Innate Immunity (Pathogen) | 1.47 | 5.66 × 10−2 |
WBGene00007455 | ugt-22 | UGT1A10 | Detoxification | 0.73 | 2.41 × 10−2 |
WBGene00016013 | ugt-66 | UGT1A3 | Detoxification | 0.73 | 3.45 × 10−2 |
WBGene00007717 | C25D7.5 | MBLAC1 | Innate Immunity (Pathogen) | 0.68 | 4.87 × 10−2 |
WBGene00010150 | F56D5.6 | n/a | Responsive to multiple stresses | (−)0.57 | 2.07 × 10−2 |
WBGene00020617 | T20D4.11 | n/a | Responsive to multiple stresses | (−)0.59 | 2.68 × 10−2 |
WBGene00009226 | cyp-37B1 | CYP4V2 | Detoxification | (−)0.80 | 2.38 × 10−2 |
WBGene00021121 | W09G12.7 | n/a | Responsive to multiple stresses | (−0.92 | 1.29 × 10−4 |
Protein Modification | |||||
WBGene00044070 | set-18 | SMYD3 | Methyltransferase | (−)0.71 | 2.38 × 10−2 |
Metabolism | |||||
WBGene00015894 | acdh-2 | ACADSB | Lipid; beta oxidation | 1.26 | 5.66 × 10−2 |
WBGene00009706 | argk-1 | CKMT1B, CKMT2, CKB | Creatine kinase | 0.87 | 5.66 × 10−2 |
WBGene00006927 | vit-3 | FCGBP | Lipid transport | 0.80 | 3.24 × 10−3 |
WBGene00010083 | xdh-1 | XDH, AOX1 | Oxidoreductase | (−)0.49 | 3.24 × 10−3 |
WBGene00012911 | acl-7 | GNPAT | Fatty acid metabolism | (−)0.55 | 2.68 × 10−2 |
Lysosome | |||||
WBGene00022245 | acp-6 | ACPP | Acid phosphatase | 0.78 | 2.38 × 10−2 |
Proteolysis | |||||
WBGene00008575 | scl-24 | PI16 | Peptidase Inhibitor | 2.02 | 1.64 × 10−8 |
WBGene00003092 | lys-3 | n/a | Lysozyme | (−)0.99 | 3.24 × 10−3 |
Extracellular Material | |||||
WBGene00000620 | col-43 | COL21A1 | Collagen | 1.42 | 3.27 × 10−2 |
WBGene00000716 | col-143 | COL6A5 | Collagen | 0.80 | 2.38 × 10−2 |
Unassigned | |||||
WBGene00010413 | H25K10.4 | n/a | Unassigned | 1.30 | 8.46 × 10−3 |
WBGene00010216 | F57G8.7 | n/a | Unassigned | 1.10 | 5.66 × 10−2 |
WBGene00017490 | pud-2.1 | n/a | Unassigned | 0.95 | 2.07 × 10−2 |
WBGene00021236 | pud-1.2 | n/a | Unassigned | 0.94 | 2.38 × 10−2 |
WBGene00013481 | Y69H2.3 | n/a | Unassigned | 0.44 | 3.62 × 10−3 |
Function | Category | Number of Genes in Category |
---|---|---|
Biological Process | Proteolysis | 5 |
Molecular Function | ↳ Inhibitor | 3 |
Cellular Process | ↳ Peptidase Inhibitor 16 | 2 |
Biological Process | Stress Response | 16 |
Molecular Function | ↳ Detoxification | 8 |
Cellular Process | ↳ Cytochrome | 6 |
C. elegans Gene Name | Gene Product Description | DAF-16 Regulatory Motifs; 1 Kb Upstream of ATG | Citation |
---|---|---|---|
cyp-34A10 | Cytochrome P450 | 1 DAE | this study |
fmo-3 | Dimethylaniline monooxygenase | 1 DAE | [42] |
adh-1 | Alcohol dehydrogenase | 1 DAE | [37,42] |
cyp-13A5 | Cytochrome P450 | [42] | |
cyp-14A2 | Cytochrome P450 | 1 DAE; 1 DBE | |
ugt-66 | UDP-glucuronosyltransferase | 1 DAE | [42] |
acdh-2 | Acyl-CoA dehydrogenase | 1 DBE | [42]; this study |
acl-7 | Dihydroxyacetone phosphate acyltransferase | 1 DAE | [42] |
acp-6 | Prostatic acid phosphatase | 1 DAE | |
col-43 | Collagen | 1 DAE | [42] |
F57G8.7 | Unknown | 2 DAE | |
T20D4.11 | Unknown | 1 DBE | |
W09G12.7 | Unknown | 1 DAE | |
Y69H2.3 | Unknown | 1 DBE | |
pud-1.2 | Upregulated in daf-2 mutants | 2 DAE | |
ud-2.1 | Upregulated in daf-2 mutants | 1 DAE | |
cyp-35B1 | Cytochrome P450 | [41]; this study | |
cyp-37B1 | Cytochrome P450 | [42] | |
ugt-22 | UDP-glucuronosyltransferase | [42] | |
C25D7.5 | Unknown | [37] | |
set-18 | SET domain containing | [42,43]; this study | |
F56D5.6 | Unknown | [42] | |
lys-3 | lysozyme | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thies, J.L.; Willicott, K.; Craig, M.L.; Greene, M.R.; DuGay, C.N.; Caldwell, G.A.; Caldwell, K.A. Xanthine Dehydrogenase Is a Modulator of Dopaminergic Neurodegeneration in Response to Bacterial Metabolite Exposure in C. elegans. Cells 2023, 12, 1170. https://doi.org/10.3390/cells12081170
Thies JL, Willicott K, Craig ML, Greene MR, DuGay CN, Caldwell GA, Caldwell KA. Xanthine Dehydrogenase Is a Modulator of Dopaminergic Neurodegeneration in Response to Bacterial Metabolite Exposure in C. elegans. Cells. 2023; 12(8):1170. https://doi.org/10.3390/cells12081170
Chicago/Turabian StyleThies, Jennifer L., Karolina Willicott, Maici L. Craig, Madeline R. Greene, Cassandra N. DuGay, Guy A. Caldwell, and Kim A. Caldwell. 2023. "Xanthine Dehydrogenase Is a Modulator of Dopaminergic Neurodegeneration in Response to Bacterial Metabolite Exposure in C. elegans" Cells 12, no. 8: 1170. https://doi.org/10.3390/cells12081170
APA StyleThies, J. L., Willicott, K., Craig, M. L., Greene, M. R., DuGay, C. N., Caldwell, G. A., & Caldwell, K. A. (2023). Xanthine Dehydrogenase Is a Modulator of Dopaminergic Neurodegeneration in Response to Bacterial Metabolite Exposure in C. elegans. Cells, 12(8), 1170. https://doi.org/10.3390/cells12081170