Independent and Complementary Functions of Caf1b and Hir1 for Chromatin Assembly in Tetrahymena thermophila
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains Culture and Mating
2.2. Identification of Caf1b and Hir1
2.3. Phylogenetic Tree Construction
2.4. Construct of HA-Tagged Caf1b and Hir1
2.5. Knockout of CAF1B and HIR1
2.6. Construction of Conditionally Induced Interference Mutants
2.7. RT-PCR and qPCR
2.8. Indirect Immunofluorescence Staining
2.9. Western Blotting
2.10. Micronuclear Integrity Assay
2.11. Co-Immunoprecipitation and Mass Spectrometry
2.12. Pull-Down Assay
3. Results
3.1. Characterization of Caf1b and Hir1
3.2. Dynamic Localization of Caf1b and Hir1
3.3. Colocalization of Caf1b and Hir1 with Pcna1
3.4. The Absence of HIR1 Resulted in the Loss of Chromatin in MIC
3.5. CAF1B Knockdown Affected Proliferation and Sexual Development of T. thermophila
3.6. Caf1b and Hir1 Are Functionally Complementary and Required for Sexual Reproduction
3.7. Caf1b and Hir1 Interacted with Different Interactors
3.8. Caf1b and Hir1 Interacted with Asf1 In Vitro
4. Discussion
4.1. Similar and Different Dynamic Distribution Patterns of Caf1b and Hir1 in T. thermophila
4.2. Caf1b and Hir1 Are Required for Proliferation and Sexual Reproduction of T. thermophila
4.3. Caf1b and Hir1 Interacted with Different Proteins
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Grover, P.; Asa, J.S.; Campos, E.I. H3–H4 histone chaperone pathways. Annu. Rev. Genet. 2018, 52, 109–130. [Google Scholar] [CrossRef] [PubMed]
- Wen, T.; Chen, Q.Y. Dynamic Activity of histone H3-specific chaperone complexes in oncogenesis. Front. Oncol. 2021, 11, 806974. [Google Scholar] [CrossRef] [PubMed]
- Gurard-Levin, Z.A.; Quivy, J.-P.; Almouzni, G. Histone chaperones: Assisting histone traffic and nucleosome dynamics. Annu. Rev. Biochem. 2014, 83, 487–517. [Google Scholar] [CrossRef] [PubMed]
- Avvakumov, N.; Nourani, A.; Côté, J. Histone chaperones: Modulators of chromatin marks. Mol. Cell 2011, 41, 502–514. [Google Scholar] [CrossRef] [PubMed]
- Ray-Gallet, D.; Woolfe, A.; Vassias, I.; Pellentz, C.; Lacoste, N.; Puri, A.; Schultz, D.C.; Pchelintsev, N.A.; Adams, P.D.; Jansen, L.E.T.; et al. Dynamics of histone H3 deposition in vivo reveal a nucleosome gap-filling mechanism for H3.3 to maintain chromatin integrity. Mol. Cell 2011, 44, 928–941. [Google Scholar] [CrossRef] [PubMed]
- Sykaras, A.G.; Pergaris, A.; Theocharis, S. Challenging, accurate and feasible: CAF-1 as a tumour proliferation marker of diagnostic and prognostic value. Cancers 2021, 13, 2575. [Google Scholar] [CrossRef] [PubMed]
- Tagami, H.; Ray-Gallet, D.; Almouzni, G.; Nakatani, Y. Histone H3.1 and H3.3 complexes mediate nucleosome assembly pathways dependent or independent of DNA synthesis. Cell 2004, 116, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Siddaway, R.; Milos, S.; Coyaud, É.; Yun, H.Y.; Morcos, S.M.; Pajovic, S.; Campos, E.I.; Raught, B.; Hawkins, C. The in vivo interaction landscape of histones H3.1 and H3.3. Mol. Cell Proteom. 2022, 21, 100411. [Google Scholar] [CrossRef]
- Dunleavy, E.M.; Roche, D.; Tagami, H.; Lacoste, N.; Ray-Gallet, D.; Nakamura, Y.; Daigo, Y.; Nakatani, Y.; Almouzni-Pettinotti, G. HJURP is a cell-cycle-dependent maintenance and deposition factor of CENP-A at centromeres. Cell 2009, 137, 485–497. [Google Scholar] [CrossRef]
- Winkler, D.D.; Zhou, H.; Dar, M.A.; Zhang, Z.; Luger, K. Yeast CAF-1 assembles histone (H3-H4) 2 tetramers prior to DNA deposition. Nucleic Acids Res. 2017, 45, 9811–9812. [Google Scholar] [CrossRef]
- Ransom, M.; Dennehey, B.K.; Tyler, J.K. Chaperoning histones during DNA replication and repair. Cell 2010, 140, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Quivy, J.-P.; Gérard, A.; Cook, A.J.L.; Roche, D.; Almouzni, G. The HP1-P150/CAF-1 interaction is required for pericentric heterochromatin replication and s-phase progression in mouse cells. Nat. Struct. Mol. Biol. 2008, 15, 972–979. [Google Scholar] [CrossRef] [PubMed]
- Baldeyron, C.; Soria, G.; Roche, D.; Cook, A.J.L.; Almouzni, G. HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. J. Cell Biol. 2011, 193, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Liu, J.; Deng, W.-M.; Jiao, R. Histone chaperone CAF-1: Essential roles in multi-cellular organism development. Cell Mol. Life Sci. 2015, 72, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Setiaputra, D.; Jung, T.; Chung, J.; Leitner, A.; Yoon, J.; Aebersold, R.; Hebert, H.; Yip, C.K.; Song, J.-J. Molecular architecture of yeast chromatin assembly factor 1. Sci. Rep. 2016, 6, 26702. [Google Scholar] [CrossRef] [PubMed]
- Maulión, E.; Gomez, M.S.; Bustamante, C.A.; Casati, P. AtCAF-1 mutants show different DNA damage responses after ultraviolet-B than those activated by other genotoxic agents in leaves. Plant Cell Environ. 2019, 42, 2730–2745. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, M.; Nehra, A.; Gill, S.S.; Gill, R. Unraveling CAF-1 family in Plasmodium falciparum: Comparative genome-wide identification and phylogenetic analysis among eukaryotes, expression profiling and protein-protein interaction studies. 3 Biotech 2020, 10, 143. [Google Scholar] [CrossRef]
- Liu, W.H.; Roemer, S.C.; Port, A.M.; Churchill, M.E.A. CAF-1-induced oligomerization of histones H3/H4 and Mutually Exclusive Interactions with Asf1 Guide H3/H4 transitions among histone chaperones and DNA. Nucleic Acids Res. 2012, 40, 11229–11239. [Google Scholar] [CrossRef]
- Tang, Y.; Poustovoitov, M.V.; Zhao, K.; Garfinkel, M.; Canutescu, A.; Dunbrack, R.; Adams, P.D.; Marmorstein, R. Structure of a human ASF1a-HIRA complex and insights into specificity of histone chaperone complex assembly. Nat. Struct. Mol. Biol. 2006, 13, 921–929. [Google Scholar] [CrossRef]
- Takami, Y.; Ono, T.; Fukagawa, T.; Shibahara, K.; Nakayama, T. Essential role of chromatin assembly factor-1–mediated rapid nucleosome assembly for DNA replication and cell division in vertebrate cells. Mol. Biol. Cell 2007, 18, 13. [Google Scholar] [CrossRef]
- Kaufman, P.D.; Kobayashi, R.; Stillman, B. Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev. 1997, 11, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, S.; Berman, J. Chromatin assembly factor I contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci. Genes Dev. 1998, 12, 219–232. [Google Scholar] [CrossRef] [PubMed]
- Hewawasam, G.S.; Dhatchinamoorthy, K.; Mattingly, M.; Seidel, C.; Gerton, J.L. Chromatin assembly factor-1 (CAF-1) chaperone regulates Cse4 deposition into chromatin in budding yeast. Nucleic Acids Res. 2018, 46, 4440–4455. [Google Scholar] [CrossRef]
- Shrestha, R.L.; Balachandra, V.; Kim, J.H.; Rossi, A.; Vadlamani, P.; Sethi, S.C.; Ozbun, L.; Lin, S.; Cheng, K.C.-C.; Chari, R.; et al. Histone H3/H4 chaperone CHAF1B prevents the mislocalization of CENP-A for chromosomal stability. J. Cell Sci. 2023, 136, jcs260944. [Google Scholar] [CrossRef]
- Volk, A.; Liang, K.; Suraneni, P.; Li, X.; Zhao, J.; Bulic, M.; Marshall, S.; Pulakanti, K.; Malinge, S.; Taub, J.; et al. A CHAF1B-dependent molecular switch in hematopoiesis and leukemia pathogenesis. Cancer Cell 2018, 34, 707–723.e7. [Google Scholar] [CrossRef] [PubMed]
- Elsaesser, S.J.; Allis, C.D. HIRA and Daxx constitute two independent histone H3.3-containing predeposition complexes. Cold Spring Harb. Symp. Quant. Biol. 2010, 75, 27–34. [Google Scholar] [CrossRef]
- Green, E.M.; Antczak, A.J.; Bailey, A.O.; Franco, A.A.; Wu, K.J.; Yates, J.R.; Kaufman, P.D. Replication-independent histone deposition by the HIR complex and Asf1. Curr. Biol. CB 2005, 15, 2044–2049. [Google Scholar] [CrossRef]
- Zhu, R.; Iwabuchi, M.; Ohsumi, K. The WD40 Domain of HIRA is essential for RI-nucleosome assembly in Xenopus Egg extracts. Cell Struct. Funct. 2017, 42, 37–48. [Google Scholar] [CrossRef]
- Blackwell, C.; Martin, K.A.; Greenall, A.; Pidoux, A.; Allshire, R.C.; Whitehall, S.K. The Schizosaccharomyces pombe HIRA-like protein Hip1 is required for the periodic expression of histone genes and contributes to the function of complex centromeres. Mol. Cell Biol. 2004, 24, 4309–4320. [Google Scholar] [CrossRef]
- Xiong, C.; Wen, Z.; Yu, J.; Chen, J.; Liu, C.-P.; Zhang, X.; Chen, P.; Xu, R.-M.; Li, G. UBN1/2 of HIRA complex is responsible for recognition and deposition of H3.3 at cis-regulatory elements of genes in mouse es cells. BMC Biol. 2018, 16, 110. [Google Scholar] [CrossRef]
- Horard, B.; Sapey-Triomphe, L.; Bonnefoy, E.; Loppin, B. ASF1 is required to load histones on the HIRA complex in preparation of paternal chromatin assembly at fertilization. Epigenetics Chromatin 2018, 11, 19. [Google Scholar] [CrossRef] [PubMed]
- Rai, T.S.; Puri, A.; McBryan, T.; Hoffman, J.; Tang, Y.; Pchelintsev, N.A.; van Tuyn, J.; Marmorstein, R.; Schultz, D.C.; Adams, P.D. Human CABIN1 is a functional member of the human HIRA/UBN1/ASF1a histone H3.3 chaperone complex. Mol. Cell Biol. 2011, 31, 4107–4118. [Google Scholar] [CrossRef] [PubMed]
- Roberts, C.; Sutherland, H.F.; Farmer, H.; Kimber, W.; Halford, S.; Carey, A.; Brickman, J.M.; Wynshaw-Boris, A.; Scambler, P.J. Targeted mutagenesis of the Hira gene results in gastrulation defects and patterning abnormalities of mesoendodermal derivatives prior to early embryonic lethality. Mol. Cell Biol. 2002, 22, 2318–2328. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.C.; Xu, X.; Kim, H.-S.; Fillingham, J.; Kislinger, T.; Mennella, T.A.; Keogh, M.-C. The replication-independent histone H3-H4 chaperones HIR, ASF1, and RTT106 co-operate to maintain promoter fidelity. J. Biol. Chem. 2012, 287, 1709–1718. [Google Scholar] [CrossRef] [PubMed]
- Nashun, B.; Hill, P.W.S.; Smallwood, S.A.; Dharmalingam, G.; Amouroux, R.; Clark, S.J.; Sharma, V.; Ndjetehe, E.; Pelczar, P.; Festenstein, R.J.; et al. Continuous histone replacement by Hira is essential for normal transcriptional regulation and de novo DNA methylation during mouse oogenesis. Mol. Cell 2015, 60, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Orias, E.; Cervantes, M.D.; Hamilton, E.P. Tetrahymena thermophila, a nicellular eukaryote with separate germline and somatic genomes. Res. Microbiol. 2011, 162, 578–586. [Google Scholar] [CrossRef]
- Cole, E.; Sugai, T. Developmental progression of Tetrahymena through the cell cycle and conjugation. Methods Cell Biol. 2012, 109, 177–236. [Google Scholar]
- Cui, B.; Liu, Y.; Gorovsky, M.A. Deposition and function of histone H3 variants in Tetrahymena thermophila. Mol. Cell Biol. 2006, 26, 7719–7730. [Google Scholar] [CrossRef]
- Mendiratta, S.; Gatto, A.; Almouzni, G. Histone supply: Multitiered regulation ensures chromatin dynamics throughout the cell cycle. J. Cell Biol. 2019, 218, 39–54. [Google Scholar] [CrossRef]
- Wei, F.; Pan, B.; Diao, J.; Wang, Y.; Sheng, Y.; Gao, S. The micronuclear histone H3 clipping in the unicellular eukaryote Tetrahymena Thermophila. Mar. Life Sci. Technol. 2022, 4, 584–594. [Google Scholar] [CrossRef]
- Lian, Y.; Hao, H.; Xu, J.; Bo, T.; Liang, A.; Wang, W. The Histone chaperone Nrp1 is required for chromatin stability and nuclear division in Tetrahymena thermophila. Epigenetics Chromatin 2021, 14, 34. [Google Scholar] [CrossRef] [PubMed]
- Lian, Y.; Hao, H.; Xu, J.; Bo, T.; Wang, W. Histone chaperone Nrp1 mutation affects the acetylation of H3K56 in Tetrahymena thermophila. Cells 2022, 11, 408. [Google Scholar] [CrossRef] [PubMed]
- Akiyama, T.; Suzuki, O.; Matsuda, J.; Aoki, F. Dynamic replacement of histone H3 variants reprograms epigenetic marks in early mouse embryos. PLoS Genet. 2011, 7, e1002279. [Google Scholar] [CrossRef] [PubMed]
- Schapira, M.; Tyers, M.; Torrent, M.; Arrowsmith, C.H. WD40 repeat domain proteins: A novel target class? Nat. Rev. Drug Discov. 2017, 16, 773–786. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, K.; Henikoff, S. The histone variant H3.3 marks active chromatin by replication-independent nucleosome assembly. Mol. Cell 2002, 9, 1191–1200. [Google Scholar] [CrossRef]
- Chakraborty, U.; George, C.M.; Lyndaker, A.M.; Alani, E. A delicate balance between repair and replication factors regulates recombination between divergent DNA sequences in Saccharomyces cerevisiae. Genetics 2016, 202, 525–540. [Google Scholar] [CrossRef]
- Fridman, Y.; Palgi, N.; Dovrat, D.; Ben-Aroya, S.; Hieter, P.; Aharoni, A. Subtle alterations in PCNA-partner interactions severely impair DNA replication and repair. PLoS Biol. 2010, 8, e1000507. [Google Scholar] [CrossRef]
- Martini, E.; Roche, D.M.J.; Marheineke, K.; Verreault, A.; Almouzni, G. Recruitment of phosphorylated chromatin assembly factor 1 to chromatin after UV irradiation of human cells. J. Cell Biol. 1998, 143, 563–575. [Google Scholar] [CrossRef]
- Nabeel-Shah, S.; Garg, J.; Ashraf, K.; Jeyapala, R.; Lee, H.; Petrova, A.; Burns, J.D.; Pu, S.; Zhang, Z.; Greenblatt, J.F.; et al. Multilevel interrogation of H3.3 reveals a primordial role in transcription regulation. Epigenetics Chromatin 2023, 16, 10. [Google Scholar] [CrossRef]
- Sauer, P.V.; Gu, Y.; Liu, W.H.; Mattiroli, F.; Panne, D.; Luger, K.; Churchill, M.E. Mechanistic insights into histone deposition and nucleosome assembly by the chromatin assembly factor-1. Nucleic Acids Res. 2018, 46, 9907–9917. [Google Scholar] [CrossRef]
- Cheloufi, S.; Hochedlinger, K. Emerging Roles of the histone chaperone CAF-1 in cellular plasticity. Curr. Opin. Genet. Dev. 2017, 46, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Seol, J.-H.; Yang, J.-H.; Kim, H.-J.; Han, J.-W.; Youn, H.-D.; Cho, E.-J. Dissecting the roles of the histone chaperones reveals the evolutionary conserved mechanism of transcription-coupled deposition of H3.3. Nucleic Acids Res. 2013, 41, 5199–5209. [Google Scholar] [CrossRef]
- Marheineke, K.; Krude, T. Nucleosome assembly activity and intracellular localization of human CAF-1 changes during the cell division cycle. J. Biol. Chem. 1998, 273, 15279–15286. [Google Scholar] [CrossRef] [PubMed]
- Ali, E.I.; Loidl, J.; Howard-Till, R.A. A streamlined cohesin apparatus is sufficient for mitosis and meiosis in the protist Tetrahymena. Chromosoma 2018, 127, 421–435. [Google Scholar] [CrossRef] [PubMed]
- Loidl, J. Tetrahymena meiosis: Simple yet ingenious. PLoS Genet. 2021, 17, e1009627. [Google Scholar] [CrossRef] [PubMed]
- Akematsu, T.; Fukuda, Y.; Garg, J.; Fillingham, J.S.; Pearlman, R.E.; Loidl, J. Post-meiotic DNA double-strand breaks occur in Tetrahymena, and require Topoisomerase II and Spo11. eLife 2017, 6, e26176. [Google Scholar] [CrossRef]
- Slade, K.M.; Freggiaro, S.; Cottrell, K.A.; Smith, J.J.; Wiley, E.A. Sirtuin-mediated nuclear differentiation and programmed degradation in Tetrahymena. BMC Cell Biol. 2011, 12, 40. [Google Scholar] [CrossRef]
- Padeken, J.; Heun, P. Nucleolus and nuclear periphery: Velcro for heterochromatin. Curr. Opin. Cell Biol. 2014, 28, 54–60. [Google Scholar] [CrossRef]
- Hall, C.; Nelson, D.M.; Ye, X.; Baker, K.; DeCaprio, J.A.; Seeholzer, S.; Lipinski, M.; Adams, P.D. HIRA, the human homologue of yeast Hir1p and Hir2p, is a novel cyclin-Cdk2 substrate whose expression blocks s-phase progression. Mol. Cell Biol. 2001, 21, 1854–1865. [Google Scholar] [CrossRef]
- Delbarre, E.; Ivanauskiene, K.; Küntziger, T.; Collas, P. DAXX-dependent supply of soluble (H3.3-H4) dimers to PML bodies pending deposition into chromatin. Genome Res. 2013, 23, 440–451. [Google Scholar] [CrossRef]
- Cui, B.; Gorovsky, M.A. Centromeric histone H3 is essential for vegetative cell division and for DNA elimination during conjugation in Tetrahymena thermophila. Mol. Cell Biol. 2006, 26, 4499–4510. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, M.D.; Xi, X.; Vermaak, D.; Yao, M.-C.; Malik, H.S. The CNA1 histone of the ciliate Tetrahymena thermophila is essential for chromosome segregation in the germline micronucleus. Mol. Biol. Cell 2006, 17, 485–497. [Google Scholar] [CrossRef]
- Dunleavy, E.M.; Almouzni, G.; Karpen, G.H. H3.3 is deposited at centromeres in s phase as a placeholder for newly assembled CENP-A in G1 phase. Nucl. Austin Tex 2011, 2, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Nabatiyan, A.; Krude, T. Silencing of chromatin assembly factor 1 in human cells leads to cell death and loss of chromatin assembly during DNA synthesis. Mol. Cell Biol. 2004, 24, 2853–2862. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.; Prykhozhij, S.; Rau, M.J.; Neumann, C.J. Mutation of zebrafish Caf-1b results in s phase arrest, defective differentiation, and P53-mediated apoptosis during organogenesis. Cell Cycle Georget. Tex 2007, 6, 2962–2969. [Google Scholar] [CrossRef] [PubMed]
- Inoue, A.; Zhang, Y. Nucleosome assembly is required for nuclear pore complex assembly in mouse zygotes. Nat. Struct. Mol. Biol. 2014, 21, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Murdaugh, R.L.; Hoegenauer, K.A.; Kitano, A.; Holt, M.V.; Hill, M.C.; Shi, X.; Tiessen, J.F.; Chapple, R.; Hu, T.; Tseng, Y.-J.; et al. The histone H3.3 chaperone HIRA restrains erythroid-biased differentiation of adult hematopoietic stem cells. Stem Cell Rep. 2021, 16, 2014–2028. [Google Scholar] [CrossRef]
- Lopes da Rosa, J.; Holik, J.; Green, E.M.; Rando, O.J.; Kaufman, P.D. Overlapping regulation of CenH3 localization and histone H3 turnover by CAF-1 and HIR proteins in Saccharomyces cerevisiae. Genetics 2011, 187, 9–19. [Google Scholar] [CrossRef]
- Smith, C.L.; Matheson, T.D.; Trombly, D.J.; Sun, X.; Campeau, E.; Han, X.; Yates, J.R.; Kaufman, P.D. A separable domain of the p150 subunit of human chromatin assembly factor-1 promotes protein and chromosome associations with nucleoli. Mol. Biol. Cell 2014, 25, 2866–2881. [Google Scholar] [CrossRef]
- Malay, A.D.; Umehara, T.; Matsubara-Malay, K.; Padmanabhan, B.; Yokoyama, S. Crystal structures of fission yeast histone chaperone Asf1 complexed with the Hip1 B-domain or the Cac2 C terminus. J. Biol. Chem. 2008, 283, 14022–14031. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Yuan, S.; Yu, H.; Zhang, Y.; Yang, X.; Xie, G.; Chen, Z.; Li, W.; Xu, B.; et al. Chromodomain protein CDYL is required for transmission/restoration of repressive histone marks. J. Mol. Cell Biol. 2017, 9, 178–194. [Google Scholar] [CrossRef] [PubMed]
- Latreille, D.; Bluy, L.; Benkirane, M.; Kiernan, R.E. Identification of histone 3 variant 2 interacting factors. Nucleic Acids Res. 2014, 42, 3542–3550. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Wen, Y.; Li, Y.; Ma, X.; Jing, Q.; Jiang, L.; Wei, G. PfSET2 is involved in genome organization of var gene family in Plasmodium falciparum. Microbiol. Spectr. 2023, 11, e03891-22. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, H.; Ren, C.; Lian, Y.; Zhao, M.; Bo, T.; Xu, J.; Wang, W. Independent and Complementary Functions of Caf1b and Hir1 for Chromatin Assembly in Tetrahymena thermophila. Cells 2023, 12, 2828. https://doi.org/10.3390/cells12242828
Hao H, Ren C, Lian Y, Zhao M, Bo T, Xu J, Wang W. Independent and Complementary Functions of Caf1b and Hir1 for Chromatin Assembly in Tetrahymena thermophila. Cells. 2023; 12(24):2828. https://doi.org/10.3390/cells12242828
Chicago/Turabian StyleHao, Huijuan, Chenhui Ren, Yinjie Lian, Min Zhao, Tao Bo, Jing Xu, and Wei Wang. 2023. "Independent and Complementary Functions of Caf1b and Hir1 for Chromatin Assembly in Tetrahymena thermophila" Cells 12, no. 24: 2828. https://doi.org/10.3390/cells12242828
APA StyleHao, H., Ren, C., Lian, Y., Zhao, M., Bo, T., Xu, J., & Wang, W. (2023). Independent and Complementary Functions of Caf1b and Hir1 for Chromatin Assembly in Tetrahymena thermophila. Cells, 12(24), 2828. https://doi.org/10.3390/cells12242828