Assays to Monitor Autophagy Progression in Cell Cultures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods for the Direct Measurement of Autophagic Activity
2.1.1. The Turnover of Long-Lived Proteins
2.1.2. LDH Sequestration
2.2. Methods for the Indirect Measurement of Autophagic Activity
2.2.1. Western Blot-Based Assays
LC3 Lipidation
SQSTM1/p62 Turnover
Post-Translational Modifications during Autophagy
2.2.2. Fluorescence Microscopy-Based Methods
Distribution of Autophagosomal Protein Markers
Molecular Tandem Probes
2.2.3. Electron Microscopy
2.2.4. Flow Cytometry and Imaging Flow Cytometry
3. Conclusions
Acknowledgments
Conflicts of Interest
References
- Boya, P.; Reggiori, F.; Codogno, P. Emerging Regulation and Functions of Autophagy. Nat. Cell Biol. 2013, 15, 1017. [Google Scholar] [CrossRef]
- Turco, E.; Martens, S. Insights into Autophagosome Biogenesis from in Vitro Reconstitutions. J. Struct. Biol. 2016, 196, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Noda, T.; Fujita, N.; Yoshimori, T. The Late Stages of Autophagy: How Does the End Begin? Cell Death Differ. 2009, 16, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Reggiori, F.; Komatsu, M.; Finley, K.; Simonsen, A. Autophagy: More Than a Nonselective Pathway. Int. J. Cell Biol. 2012, 2012, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Pascual, C.; Klionsky, D.J. Autophagy: Machinery and Regulation. Microb. Cell 2016, 3, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Mizushima, N. Autophagy and Human Diseases. Cell Res. 2014, 24, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Reggiori, F.; Komatsu, M.; Finley, K.; Simonsen, A. Selective Types of Autophagy. Int. J. Cell Biol. 2012, 2012, 156272. [Google Scholar] [CrossRef] [PubMed]
- Bauckman, K.A.; Owusu-Boaitey, N.; Mysorekar, I.U. Selective Autophagy: Xenophagy. Methods 2015, 75, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, J.; Maejima, I.; Iwamoto, R.; Yoshimori, T. Selective Autophagy: Lysophagy. Methods 2015, 75, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Mizumura, K.; Choi, A.M.K.; Ryter, S.W. Emerging Role of Selective Autophagy in Human Diseases. Front. Pharmacol. 2014, 5, 244. [Google Scholar] [CrossRef] [PubMed]
- Dolman, N.J.; Chambers, K.M.; Mandavilli, B.; Batchelor, R.H.; Janes, M.S. Tools and Techniques to Measure Mitophagy Using Fluorescence Microscopy. Autophagy 2013, 9, 1653–1662. [Google Scholar] [CrossRef] [PubMed]
- Dupont, N.; Leroy, C.; Hamaï, A.; Codogno, P. Long-Lived Protein Degradation During Autophagy. Methods Enzymol. 2017, 588, 31–40. [Google Scholar] [PubMed]
- Wang, J.; Zhang, J.; Lee, Y.M.; Ng, S.; Shi, Y.; Hua, Z.-C.; Lin, Q.; Shen, H.-M. Nonradioactive Quantification of Autophagic Protein Degradation with L-Azidohomoalanine Labeling. Nat. Protoc. 2017, 12, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, J.; Lee, Y.-M.; Lim, T.-K.; Lin, Q.; Shen, H.-M. Chapter Four—Proteomic Profiling of De Novo Protein Synthesis in Starvation-Induced Autophagy Using Bioorthogonal Noncanonical Amino Acid Tagging. Methods Enzymol. 2017, 588, 41–59. [Google Scholar] [PubMed]
- Luhr, M.; Szalai, P.; Sætre, F.; Gerner, L.; Seglen, P.O.; Engedal, N. A Simple Cargo Sequestration Assay for Quantitative Measurement of Nonselective Autophagy in Cultured Cells. Methods Enzymol. 2017, 587, 351–364. [Google Scholar] [PubMed]
- Seglen, P.O.; Luhr, M.; Mills, I.G.; Sætre, F.; Szalai, P.; Engedal, N. Macroautophagic Cargo Sequestration Assays. Methods 2015, 75, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Arribas, M.; Yakhine-Diop, S.M.S.; Gonzalez-Polo, R.A.; Niso-Santano, M.; Fuentes, J.M. Turnover of Lipidated LC3 and Autophagic Cargoes in Mammalian Cells. Methods Enzymol. 2017, 587, 55–70. [Google Scholar] [PubMed]
- Sahani, M.H.; Itakura, E.; Mizushima, N. Expression of the Autophagy Substrate SQSTM1/p62 Is Restored during Prolonged Starvation Depending on Transcriptional Upregulation and Autophagy-Derived Amino Acids. Autophagy 2014, 10, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Tooze, S.A.; Dooley, H.C.; Jefferies, H.B.J.; Joachim, J.; Judith, D.; Lamb, C.A.; Razi, M.; Wirth, M. Assessing Mammalian Autophagy. Methods Mol. Biol. 2015, 1270, 155–165. [Google Scholar]
- Lee, I.H.; Yun, J.; Finkel, T. The Emerging Links between Sirtuins and Autophagy. Methods Mol. Biol. 2013, 1077, 259–271. [Google Scholar] [PubMed]
- Xie, Y.; Kang, R.; Tang, D. Assessment of Posttranslational Modifications of ATG Proteins. Methods Enzymol. 2017, 587, 171–188. [Google Scholar] [PubMed]
- Kimura, S.; Noda, T.; Yoshimori, T. Dissection of the Autophagosome Maturation Process by a Novel Reporter Protein, Tandem Fluorescent-Tagged LC3. Autophagy 2007, 3, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Kaizuka, T.; Morishita, H.; Hama, Y.; Tsukamoto, S.; Matsui, T.; Toyota, Y.; Kodama, A.; Ishihara, T.; Mizushima, T.; Mizushima, N. An Autophagic Flux Probe That Releases an Internal Control. Mol. Cell 2016, 64, 835–849. [Google Scholar] [CrossRef] [PubMed]
- Eskelinen, E.-L.; Reggiori, F.; Baba, M.; Kovács, A.L.; Seglen, P.O. Seeing Is Believing: The Impact of Electron Microscopy on Autophagy Research. Autophagy 2011, 7, 935–956. [Google Scholar] [CrossRef] [PubMed]
- Ligeon, L.-A.; Barois, N.; Werkmeister, E.; Bongiovanni, A.; Lafont, F. Structured Illumination Microscopy and Correlative Microscopy to Study Autophagy. Methods 2015, 75, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Biazik, J.; Vihinen, H.; Jokitalo, E.; Eskelinen, E.-L. Ultrastructural Characterization of Phagophores Using Electron Tomography on Cryoimmobilized and Freeze Substituted Samples. Methods Enzymol. 2017, 587, 331–349. [Google Scholar] [PubMed]
- Pugsley, H.R. Quantifying Autophagy: Measuring LC3 Puncta and Autolysosome Formation in Cells Using Multispectral Imaging Flow Cytometry. Methods 2017, 112, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Warnes, G. Flow Cytometric Assays for the Study of Autophagy. Methods 2015, 82, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Klionsky, D.; Agholme, L.; Agnello, M.; Agostinis, P.; Aguirre-ghiso, J.A.; Ahn, H.J.; Ait-mohamed, O.; Brown, E.J.; Brumell, J.H.; Brunetti-pierri, N.; et al. Guidelines for the Use and Interpretation of Assays for Monitoring Autophagy. Autophagy 2016, 8, 445–544. [Google Scholar] [CrossRef]
- Pattingre, S.; Petiot, A.; Codogno, P. Analyses of Galpha-Interacting Protein and Activator of G-Protein-Signaling-3 Functions in Macroautophagy. Methods Enzymol. 2004, 390, 17–31. [Google Scholar] [PubMed]
- Bauvy, C.; Meijer, A.J.; Codogno, P. Assaying of Autophagic Protein Degradation. Methods Enzymol. 2009, 452, 47–61. [Google Scholar] [PubMed]
- Fuertes, G.; DE Llano, J.J.M.; Villarroya, A.; Rivett, A.J.; Knecht, E. Changes in the Proteolytic Activities of Proteasomes and Lysosomes in Human Fibroblasts Produced by Serum Withdrawal, Amino-Acid Deprivation and Confluent Conditions. Biochem. J. 2003, 375, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, J.; Ng, S.; Lin, Q.; Shen, H.-M. Development of a Novel Method for Quantification of Autophagic Protein Degradation by AHA Labeling. Autophagy 2014, 10, 901–912. [Google Scholar] [CrossRef] [PubMed]
- Kopitz, J.; Kisen, G.O.; Gordon, P.B.; Bohley, P.; Seglen, P.O. Nonselective Autophagy of Cytosolic Enzymes by Isolated Rat Hepatocytes. J. Cell Biol. 1990, 111, 941–953. [Google Scholar] [CrossRef] [PubMed]
- Boland, B.; Smith, D.A.; Mooney, D.; Jung, S.S.; Walsh, D.M.; Platt, F.M. Macroautophagy Is Not Directly Involved in the Metabolism of Amyloid Precursor Protein. J. Biol. Chem. 2010, 285, 37415–37426. [Google Scholar] [CrossRef] [PubMed]
- Kabeya, Y. LC3, a Mammalian Homologue of Yeast Apg8p, Is Localized in Autophagosome Membranes after Processing. EMBO J. 2000, 19, 5720–5728. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.; Padman, B.S.; Usher, J.; Oorschot, V.; Ramm, G.; Lazarou, M. Atg8 Family LC3/GAB ARAP Proteins Are Crucial for Autophagosome-Lysosome Fusion but Not Autophagosome Formation during PINK1/Parkin Mitophagy and Starvation. J. Cell Biol. 2016, 215, 857–874. [Google Scholar] [PubMed]
- Weidberg, H.; Shvets, E.; Shpilka, T.; Shimron, F.; Shinder, V.; Elazar, Z. LC3 and GATE-16/GABARAP Subfamilies Are Both Essential yet Act Differently in Autophagosome Biogenesis. EMBO J. 2010, 29, 1792–1802. [Google Scholar] [CrossRef] [PubMed]
- Sou, Y.S.; Tanida, I.; Komatsu, M.; Ueno, T.; Kominami, E. Phosphatidylserine in Addition to Phosphatidylethanolamine Is an in Vitro Target of the Mammalian Atg8 Modifiers, LC3, GABARAP, and GATE-16. J. Biol. Chem. 2006, 281, 3017–3024. [Google Scholar] [CrossRef] [PubMed]
- Seglein, P.O.; Grinde, B.; Solheim, A.E. Inhibition of the Lysosomal Pathway of Protein Degradation in Isolated Rat Hepatocytes by Ammonia, Methylamine, Chlorquine and Leupeptin. Eur. J. Biochem. 1979, 95, 215–255. [Google Scholar] [CrossRef]
- Yoshimori, T.; Yamamoto, A.; Moriyama, Y.; Futai, M.; Tashiro, Y. Bafilomycin-a1, a Specific Inhibitor of Vacuolar-Type H+-Atpase, Inhibits Acidification and Protein-Degradation in Lysosomes of Cultured-Cells. J. Biol. Chem. 1991, 266, 17707–17712. [Google Scholar] [PubMed]
- Szalai, P.; Hagen, L.K.; Satre, F.; Luhr, M.; Sponheim, M.; Øverbye, A.; Mills, I.G.; Seglen, P.O.; Engedal, N. Autophagic Bulk Sequestration of Cytosolic Cargo Is Independent of LC3, but Requires GABARAPs. Exp. Cell Res. 2015, 333, 21–38. [Google Scholar] [CrossRef] [PubMed]
- Bjørkøy, G.; Lamark, T.; Brech, A.; Outzen, H.; Perander, M.; Overvatn, A.; Stenmark, H.; Johansen, T. p62/SQSTM1 Forms Protein Aggregates Degraded by Autophagy and Has a Protective Effect on Huntingtin-Induced Cell Death. J. Cell Biol. 2005, 171, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Weidberg, H.; Shvets, E.; Elazar, Z. Biogenesis and Cargo Selectivity of Autophagosomes. Annu. Rev. Biochem. 2011, 80, 125–156. [Google Scholar] [CrossRef] [PubMed]
- Botti-Millet, J.; Nascimbeni, A.C.; Dupont, N.; Morel, E.; Codogno, P. Fine-Tuning Autophagy: From Transcriptional to Posttranslational Regulation. Am. J. Physiol. 2016, 311, C351–C362. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Kang, R.; Sun, X.; Zhong, M.; Huang, J.; Klionsky, D.J.; Tang, D. Posttranslational Modification of Autophagy-Related Proteins in Macroautophagy. Autophagy 2015, 11, 28–45. [Google Scholar] [CrossRef] [PubMed]
- Bach, M.; Larance, M.; James, D.E.; Ramm, G. The Serine/threonine Kinase ULK1 Is a Target of Multiple Phosphorylation Events. Biochem. J. 2011, 440, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Egan, D.F.; Chun, M.G.H.; Vamos, M.; Zou, H.; Rong, J.; Miller, C.J.; Lou, H.J.; Raveendra-Panickar, D.; Yang, C.-C.; Sheffler, D.J.; et al. Small Molecule Inhibition of the Autophagy Kinase ULK1 and Identification of ULK1 Substrates. Mol. Cell 2015, 59, 285–297. [Google Scholar] [CrossRef] [PubMed]
- Joo, J.H.; Dorsey, F.C.; Joshi, A.; Hennessy-Walters, K.M.; Rose, K.L.; McCastlain, K.; Zhang, J.; Iyengar, R.; Jung, C.H.; Suen, D.-F.; et al. Hsp90-Cdc37 Chaperone Complex Regulates Ulk1- and Atg13-Mediated Mitophagy. Mol. Cell 2011, 43, 572–585. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, Y.C.; Fang, C.; Russell, R.C.; Kim, J.H.; Fan, W.; Liu, R.; Zhong, Q.; Guan, K.-L. Differential Regulation of Distinct Vps34 Complexes by AMPK in Nutrient Stress and Autophagy. Cell 2013, 152, 290–303. [Google Scholar] [CrossRef] [PubMed]
- Yip, C.K.; Murata, K.; Walz, T.; Sabatini, D.M.; Kang, S.A. Structure of the Human mTOR Complex I and Its Implications for Rapamycin Inhibition. Mol. Cell 2010, 38, 768–774. [Google Scholar] [CrossRef] [PubMed]
- Carling, D.; Mayer, F.V.; Sanders, M.J.; Gamblin, S.J. AMP-Activated Protein Kinase: Nature’s Energy Sensor. Nat. Chem. Biol. 2011, 7, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Mariño, G.; Pietrocola, F.; Madeo, F.; Kroemer, G. Caloric Restriction Mimetics: Natural/physiological Pharmacological Autophagy Inducers. Autophagy 2014, 10, 1879–1882. [Google Scholar] [CrossRef] [PubMed]
- Pietrocola, F.; Mariño, G.; Lissa, D.; Vacchelli, E.; Malik, S.A.; Niso-Santano, M.; Zamzami, N.; Galluzzi, L.; Maiuri, M.C.; Kroemer, G. Pro-Autophagic Polyphenols Reduce the Acetylation of Cytoplasmic Proteins. Cell Cycle 2012, 11, 3851–3860. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Xu, Y.; Wan, W.; Shou, X.; Qian, J.; You, Z.; Liu, B.; Chang, C.; Zhou, T.; Lippincott-Schwartz, J.; et al. Deacetylation of Nuclear LC3 Drives Autophagy Initiation under Starvation. Mol. Cell 2015, 57, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Chan, L.L.-Y.; Shen, D.; Wilkinson, A.R.; Patton, W.; Lai, N.; Chan, E.; Kuksin, D.; Lin, B.; Qiu, J. A Novel Image-Based Cytometry Method for Autophagy Detection in Living Cells. Autophagy 2012, 8, 1371–1382. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Liang, Y.; Murphy, S.F.; Huang, A.; Shen, H.; Kelly, D.F.; Sobrado, P.; Sheng, Z. A Rapid and High Content Assay That Measures Cyto-ID-Stained Autophagic Compartments and Estimates Autophagy Flux with Potential Clinical Applications. Autophagy 2015, 11, 560–572. [Google Scholar] [CrossRef] [PubMed]
- Mizushima, N.; Yamamoto, A.; Matsui, M.; Yoshimori, T.; Ohsumi, Y. In Vivo Analysis of Autophagy in Response to Nutrient Starvation Using Transgenic Mice Expressing a Fluorescent Autophagosome Marker. Mol. Biol. Cell 2003, 15, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Badr, C.E.; Wurdinger, T.; Nilsson, J.; Niers, J.M.; Whalen, M.; Degterev, A.; Tannous, B.A. Lanatoside C Sensitizes Glioblastoma Cells to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand and Induces an Alternative Cell Death Pathway. Neuro. Oncol. 2011, 13, 1213–1224. [Google Scholar] [CrossRef] [PubMed]
- Kuma, A.; Matsui, M.; Mizushima, N. LC3, an Autophagosome Marker, Can Be Incorporated into Protein Aggregates Independent of Autophagy: Caution in the Interpretation of LC3 Localization. Autophagy 2007, 3, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Pankiv, S.; Clausen, T.H.; Lamark, T.; Brech, A.; Bruun, J.-A.; Outzen, H.; Øvervatn, A.; Bjørkøy, G.; Johansen, T. p62/SQSTM1 Binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy. J. Biol. Chem. 2007, 282, 24131–24145. [Google Scholar] [CrossRef] [PubMed]
- Mauthe, M.; Langereis, M.; Jung, J.; Zhou, X.; Jones, A.; Omta, W.; Tooze, S.A.; Stork, B.; Paludan, S.R.; Ahola, T.; et al. An siRNA Screen for ATG Protein Depletion Reveals the Extent of the Unconventional Functions of the Autophagy Proteome in Virus Replication. J. Cell Biol. 2016, 214, 619–635. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, B.J.; Isakson, P.; Lewerenz, J.; Sanchez, H.; Kotzebue, R.W.; Cumming, R.C.; Harris, G.L.; Nezis, I.P.; Schubert, D.R.; Simonsen, A.; et al. p62, Ref(2)P and Ubiquitinated Proteins Are Conserved Markers of Neuronal Aging, Aggregate Formation and Progressive Autophagic Defects. Autophagy 2011, 7, 572–583. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, L.; Qin, L.; Luo, Q.; Zhang, Z. Visualization of Reticulophagy in Living Cells Using an Endoplasmic Reticulum-Targeted p62 Mutant. Sci. China Life Sci. 2017, 60, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Eng, C.H.; Wang, Z.; Tkach, D.; Toral-Barza, L.; Ugwonali, S.; Liu, S.; Fitzgerald, S.L.; George, E.; Frias, E.; Cochran, N.; et al. Macroautophagy Is Dispensable for Growth of KRAS Mutant Tumors and Chloroquine Efficacy. Proc. Natl. Acad. Sci. USA 2016, 113, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhu, X.; Zhang, Y.; Cai, Y.; Chen, J.; Sivaprakasam, S.; Gurav, A.; Pi, W.; Makala, L.; Wu, J.; et al. RCAD/Ufl1, a Ufm1 E3 Ligase, Is Essential for Hematopoietic Stem Cell Function and Murine Hematopoiesis. Cell Death Differ. 2015, 22, 1922–1934. [Google Scholar] [CrossRef] [PubMed]
- Axe, E.L.; Walker, S.A.; Manifava, M.; Chandra, P.; Roderick, H.L.; Habermann, A.; Griffiths, G.; Ktistakis, N.T. Autophagosome Formation from Membrane Compartments Enriched in Phosphatidylinositol 3-Phosphate and Dynamically Connected to the Endoplasmic Reticulum. J. Cell Biol. 2008, 182, 685–701. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.J.; Proikas-Cezanne, T. Function of Human WIPI Proteins in Autophagosomal Rejuvenation of Endomembranes? FEBS Lett. 2015, 589, 1546–1551. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Ma, K.; Gao, R.; Mu, C.; Chen, L.; Liu, Q.; Luo, Q.; Feng, D.; Zhu, Y.; Chen, Q. Regulation of mATG9 Trafficking by Src- and ULK1-Mediated Phosphorylation in Basal and Starvation-Induced Autophagy. Cell Res. 2017, 27, 184–201. [Google Scholar] [CrossRef] [PubMed]
- Farkas, T.; Jäättelä, M. Chapter One—Renilla Luciferase-LC3 Based Reporter Assay for Measuring Autophagic Flux. Methods Enzymol. 2017, 588, 1–13. [Google Scholar] [PubMed]
- Deter, R.L.; De Duve, C. Influence of Glucagon, an Inducer of Cellular Autophagy, on Some Physical Properties of Rat Liver Lysosomes. J. Cell Biol. 1967, 33, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Lucocq, J.M.; Hacker, C. Cutting a Fine Figure: On the Use of Thin Sections in Electron Microscopy to Quantify Autophagy. Autophagy 2013, 9, 1443–1448. [Google Scholar] [CrossRef] [PubMed]
- Shibutani, S.T.; Yoshimori, T. A Current Perspective of Autophagosome Biogenesis. Cell Res. 2014, 24, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Eskelinen, E.-L. To Be or Not to Be? Examples of Incorrect Identification of Autophagic Compartments in Conventional Transmission Electron Microscopy of Mammalian Cells. Autophagy 2008, 4, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Eskelinen, E.-L.; Kovács, A.L. Double Membranes vs. Lipid Bilayers, and Their Significance for Correct Identification of Macroautophagic Structures. Autophagy 2011, 7, 931–932. [Google Scholar] [CrossRef] [PubMed]
- Kovács, A.L.; Pálfia, Z.; Réz, G.; Vellai, T.; Kovács, J. Sequestration Revisited: Integrating Traditional Electron Microscopy, de Novo Assembly and New Results. Autophagy 2007, 3, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Duke, E.M.H.; Razi, M.; Weston, A.; Guttmann, P.; Werner, S.; Henzler, K.; Schneider, G.; Tooze, S.A.; Collinson, L.M. Imaging Endosomes and Autophagosomes in Whole Mammalian Cells Using Correlative Cryo-Fluorescence and Cryo-Soft X-Ray Microscopy (Cryo-CLXM). Ultramicroscopy 2014, 143, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Ylä-Anttila, P.; Vihinen, H.; Jokitalo, E.; Eskelinen, E.-L. 3D Tomography Reveals Connections between the Phagophore and Endoplasmic Reticulum. Autophagy 2009, 5, 1180–1185. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.; Lund, J.M.; Ramanathan, B.; Mizushima, N.; Iwasaki, A. Autophagy-Dependent Viral Recognition by Plasmacytoid Dendritic Cells. Science 2007, 315, 1398–1401. [Google Scholar] [CrossRef] [PubMed]
- Eng, K.E.; Panas, M.D.; Hedestam, G.B.K.; McInerney, G.M. A Novel Quantitative Flow Cytometry-Based Assay for Autophagy. Autophagy 2010, 6, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Shvets, E.; Fass, E.; Elazar, Z. Utilizing Flow Cytometry to Monitor Autophagy in Living Mammalian Cells. Autophagy 2008, 4, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Hundeshagen, P.; Hamacher-Brady, A.; Eils, R.; Brady, N.R. Concurrent Detection of Autolysosome Formation and Lysosomal Degradation by Flow Cytometry in a High-Content Screen for Inducers of Autophagy. BMC Biol. 2011, 9, 38. [Google Scholar] [CrossRef] [PubMed]
- Degtyarev, M.; Reichelt, M.; Lin, K. Novel Quantitative Autophagy Analysis by Organelle Flow Cytometry after Cell Sonication. PLoS ONE 2014, 9, e87707. [Google Scholar] [CrossRef] [PubMed]
- Zappavigna, S.; Lombardi, A.; Misso, G.; Grimaldi, A.; Caraglia, M. Measurement of Autophagy by Flow Cytometry. Methods Mol. Biol. 2017, 1553, 209–216. [Google Scholar] [PubMed]
- Kirkin, V.; Lamark, T.; Sou, Y.-S.; Bjørkøy, G.; Nunn, J.L.; Bruun, J.-A.; Shvets, E.; McEwan, D.G.; Clausen, T.H.; Wild, P.; et al. A Role for NBR1 in Autophagosomal Degradation of Ubiquitinated Substrates. Mol. Cell 2009, 33, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Larsen, K.B.; Lamark, T.; Øvervatn, A.; Harneshaug, I.; Johansen, T.; Bjørkøy, G. A Reporter Cell System to Monitor Autophagy Based on p62/SQSTM1. Autophagy 2010, 6, 784–793. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Dang, W.; Zhou, X.; Xu, L.; Wang, W.; Cao, W.; Chen, S.; Su, J.; Cai, X.; Xiao, S.; et al. PI3K-Akt-mTOR Axis Sustains Rotavirus Infection via the 4E-BP1 Mediated Autophagy Pathway and Represents an Antiviral Target. Virulence 2017, 5, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Mauthe, M.; Reggiori, F. ATG Proteins: Are We Always Looking at Autophagy? Autophagy 2016, 12, 2502–2503. [Google Scholar] [CrossRef] [PubMed]
- Bestebroer, J.; V’kovski, P.; Mauthe, M.; Reggiori, F. Hidden behind Autophagy: The Unconventional Roles of ATG Proteins. Traffic 2013, 14, 1029–1041. [Google Scholar] [CrossRef] [PubMed]
- Subramani, S.; Malhotra, V. Non-Autophagic Roles of Autophagy-Related Proteins. EMBO Rep. 2013, 14, 143–151. [Google Scholar] [CrossRef] [PubMed]
I. Direct Measurement of Autophagic Activity | Turnover of long-lived proteins | [12,13,14] |
LDH sequestration | [15,16] | |
II. Indirect Measurement of Autophagic Activity | Western blot-based assays (LC3 lipidation, SQSTM1/p62 turnover and post-translational modifications) | [17,18,19,20,21] |
Fluorescence microscopy-based methods (distribution of autophagosomal protein markers and molecular tandem probes) | [22,23] | |
Electron microscopy | [24,25,26] | |
Flow cytometry and imaging flow cytometry | [27,28] |
Compound | Class | Effect |
---|---|---|
Bafilomycin A1 | Lysosomal inhibitor | It increases the lysosomal pH |
Chloroquine | Lysosomal inhibitor | It increases the lysosomal pH |
Protease inhibitors (e.g., E-64d, pepstatin A and leupeptin) | Lysosomal inhibitor | They inhibit lysosomal proteases |
NH4Cl | Lysosomal inhibitor | It increases the lysosomal pH |
Wortmannin | Autophagy inhibitor | It inhibits autophagosome biogenesis |
3-methyladenine | Autophagy inhibitor | It inhibits autophagosome biogenesis |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orhon, I.; Reggiori, F. Assays to Monitor Autophagy Progression in Cell Cultures. Cells 2017, 6, 20. https://doi.org/10.3390/cells6030020
Orhon I, Reggiori F. Assays to Monitor Autophagy Progression in Cell Cultures. Cells. 2017; 6(3):20. https://doi.org/10.3390/cells6030020
Chicago/Turabian StyleOrhon, Idil, and Fulvio Reggiori. 2017. "Assays to Monitor Autophagy Progression in Cell Cultures" Cells 6, no. 3: 20. https://doi.org/10.3390/cells6030020
APA StyleOrhon, I., & Reggiori, F. (2017). Assays to Monitor Autophagy Progression in Cell Cultures. Cells, 6(3), 20. https://doi.org/10.3390/cells6030020