Metabolomic Analysis of the Liver of a Dextran Sodium Sulfate-Induced Acute Colitis Mouse Model: Implications of the Gut–Liver Connection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Induction of Ulcerative Colitis
2.3. Assessment of the Disease Activity Index
2.4. Examination of Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST) Activities
2.5. Histopathological Analysis
2.6. Sample Collection and Preparation
2.7. NMR Analysis
2.8. LC-MS/MS Analysis
2.9. Metabolite Identification and Statistical Analysis
3. Results
3.1. Induction of Colitis in DSS-Treated Mice
3.2. Effect of DSS-Induced Colitis on Liver Injury Parameters
3.3. Metabolomic Analysis of the Liver of DSS-Induced Colitis Mice
3.3.1. NMR Data
3.3.2. MS Data
3.4. Multivariate Statistical Analysis
3.4.1. NMR Data
3.4.2. UPLC-QTOF-MS/MS Data
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stephens, N.S.; Siffledeen, J.; Su, X.; Murdoch, T.B.; Fedorak, R.N.; Slupsky, C.M. Urinary NMR metabolomic profiles discriminate inflammatory bowel disease from healthy. J. Crohns Colitis 2013, 7, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Tanideh, N.; Bahrani, M.; Khoshnood-Mansoorkhani, M.J.; Mehrabani, D.; Firoozi, D.; Koohi-Hosseinabadi, O.; Iraji, A. Evaluating the Effect of Melillotus officinalis L. Aqueous Extracts on Healing of Acetic Acid-Induced Ulcerative Colitis in Male Rats. Ann. Colorectal Res. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, G.G. The global burden of IBD: From 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 720–727. [Google Scholar] [CrossRef]
- Santoru, M.L.; Piras, C.; Murgia, A.; Palmas, V.; Camboni, T.; Liggi, S.; Ibba, I.; Lai, M.A.; Orru, S.; Blois, S.; et al. Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. Sci. Rep. 2017, 7, 9523. [Google Scholar] [CrossRef]
- Lloyd-Price, J.; Arze, C.; Ananthakrishnan, A.N.; Schirmer, M.; Avila-Pacheco, J.; Poon, T.W.; Andrews, E.; Ajami, N.J.; Bonham, K.S.; Brislawn, C.J.; et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 2019, 569, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Thin, L.W.; Lawrance, I.C.; Spilsbury, K.; Kava, J.; Olynyk, J.K. Detection of liver injury in IBD using transient elastography. J. Crohns Colitis 2014, 8, 671–677. [Google Scholar] [CrossRef] [Green Version]
- Sartini, A.; Gitto, S.; Bianchini, M.; Verga, M.C.; Di Girolamo, M.; Bertani, A.; Del Buono, M.; Schepis, F.; Lei, B.; De Maria, N.; et al. Non-alcoholic fatty liver disease phenotypes in patients with inflammatory bowel disease. Cell Death Dis. 2018, 9, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosch, D.E.; Yeh, M.M. Primary sclerosing cholangitis is protective against nonalcoholic fatty liver disease in inflammatory bowel disease. Hum. Pathol. 2017, 69, 55–62. [Google Scholar] [CrossRef]
- Adawi, D.; Molin, G.; Jeppsson, B. Gut–liver axis. Hpb 1999, 1, 173–186. [Google Scholar] [CrossRef]
- Laffineur, G.; Lescut, D.; Vincent, P.; Quandalle, P.; Wurtz, A.; Colombel, J.F. Bacterial translocation in Crohn disease. Gastroenterol. Clin. Biol. 1992, 16, 777–781. [Google Scholar]
- Hamesch, K.; Borkham-Kamphorst, E.; Strnad, P.; Weiskirchen, R. Lipopolysaccharide-induced inflammatory liver injury in mice. Lab. Anim. 2015, 49, 37–46. [Google Scholar] [CrossRef]
- Bode, C.; Kugler, V.; Bode, J.C. Endotoxemia in patients with alcoholic and non-alcoholic cirrhosis and in subjects with no evidence of chronic liver disease following acute alcohol excess. J. Hepatol. 1987, 4, 8–14. [Google Scholar] [CrossRef]
- Fujimoto, M.; Uemura, M.; Nakatani, Y.; Tsujita, S.; Hoppo, K.; Tamagawa, T.; Kitano, H.; Kikukawa, M.; Ann, T.; Ishii, Y.; et al. Plasma endotoxin and serum cytokine levels in patients with alcoholic hepatitis: Relation to severity of liver disturbance. Alcohol Clin. Exp. Res. 2000, 24, 48–54. [Google Scholar] [CrossRef]
- Parlesak, A.; Schafer, C.; Schutz, T.; Bode, J.C.; Bode, C. Increased intestinal permeability to macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of alcohol-induced liver disease. J. Hepatol. 2000, 32, 742–747. [Google Scholar] [CrossRef]
- Kudo, H.; Takahara, T.; Yata, Y.; Kawai, K.; Zhang, W.; Sugiyama, T. Lipopolysaccharide triggered TNF-alpha-induced hepatocyte apoptosis in a murine non-alcoholic steatohepatitis model. J. Hepatol. 2009, 51, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Jenne, C.N.; Kubes, P. Immune surveillance by the liver. Nat. Immunol. 2013, 14, 996–1006. [Google Scholar] [CrossRef]
- Wu, X.; Sun, R.; Chen, Y.; Zheng, X.; Bai, L.; Lian, Z.; Wei, H.; Tian, Z. Oral ampicillin inhibits liver regeneration by breaking hepatic innate immune tolerance normally maintained by gut commensal bacteria. Hepatology 2015, 62, 253–264. [Google Scholar] [CrossRef]
- Chen, P.; Miyamoto, Y.; Mazagova, M.; Lee, K.C.; Eckmann, L.; Schnabl, B. Microbiota Protects Mice Against Acute Alcohol-Induced Liver Injury. Alcohol Clin. Exp. Res. 2015, 39, 2313–2323. [Google Scholar] [CrossRef] [Green Version]
- Mazagova, M.; Wang, L.; Anfora, A.T.; Wissmueller, M.; Lesley, S.A.; Miyamoto, Y.; Eckmann, L.; Dhungana, S.; Pathmasiri, W.; Sumner, S.; et al. Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice. FASEB J. 2015, 29, 1043–1055. [Google Scholar] [CrossRef] [Green Version]
- Storr, M.; Vogel, H.J.; Schicho, R. Metabolomics: Is it useful for inflammatory bowel diseases? Curr. Opin. Gastroenterol. 2013, 29, 378–383. [Google Scholar] [CrossRef] [Green Version]
- Kolho, K.L.; Pessia, A.; Jaakkola, T.; de Vos, W.M.; Velagapudi, V. Faecal and Serum Metabolomics in Paediatric Inflammatory Bowel Disease. J. Crohns Colitis 2017, 11, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Scoville, E.A.; Allaman, M.M.; Brown, C.T.; Motley, A.K.; Horst, S.N.; Williams, C.S.; Koyama, T.; Zhao, Z.; Adams, D.W.; Beaulieu, D.B.; et al. Alterations in Lipid, Amino Acid, and Energy Metabolism Distinguish Crohn’s Disease from Ulcerative Colitis and Control Subjects by Serum Metabolomic Profiling. Metabolomics 2018, 14, 17. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Xue, J.; Liu, C.W.; Gao, B.; Chi, L.; Tu, P.; Lu, K.; Ru, H. Serum Metabolomics Identifies Altered Bioenergetics, Signaling Cascades in Parallel with Exposome Markers in Crohn’s Disease. Molecules 2019, 24, 449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mallick, H.; Franzosa, E.A.; McLver, L.J.; Banerjee, S.; Sirota-Madi, A.; Kostic, A.D.; Clish, C.B.; Vlamakis, H.; Xavier, R.J.; Huttenhower, C. Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences. Nat. Commun. 2019, 10, 3136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, D.L.; Wang, W.; Zhang, X.; Ning, Z.; Mayne, J.; Figeys, D. Metaproteomic and Metabolomic Approaches for Characterizing the Gut Microbiome. Proteomics 2019. [Google Scholar] [CrossRef] [PubMed]
- Zacharias, H.U.; Altenbuchinger, M.; Gronwald, W. Statistical Analysis of NMR Metabolic Fingerprints: Established Methods and Recent Advances. Metabolites 2018, 8, 47. [Google Scholar] [CrossRef] [Green Version]
- Ribbenstedt, A.; Ziarrusta, H.; Benskin, J.P. Development, characterization and comparisons of targeted and non-targeted metabolomics methods. PLoS ONE 2018, 13, e0207082. [Google Scholar] [CrossRef] [Green Version]
- Cooper, H.S.; Murthy, S.N.; Shah, R.S.; Sedergran, D.J. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab. Invest. 1993, 69, 238–249. [Google Scholar]
- Reitman, S.; Frankel, S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol. 1957, 28, 56–63. [Google Scholar] [CrossRef]
- Wu, H.; Southam, A.D.; Hines, A.; Viant, M.R. High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Anal. Biochem. 2008, 372, 204–212. [Google Scholar] [CrossRef]
- Duparc, T.; Plovier, H.; Marrachelli, V.G.; Van Hul, M.; Essaghir, A.; Stahlman, M.; Matamoros, S.; Geurts, L.; Pardo-Tendero, M.M.; Druart, C.; et al. Hepatocyte MyD88 affects bile acids, gut microbiota and metabolome contributing to regulate glucose and lipid metabolism. Gut 2017, 66, 620–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; Dugar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.M.; et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472, 57–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014, 514, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Bergheim, I.; Weber, S.; Vos, M.; Kramer, S.; Volynets, V.; Kaserouni, S.; McClain, C.J.; Bischoff, S.C. Antibiotics protect against fructose-induced hepatic lipid accumulation in mice: Role of endotoxin. J. Hepatol. 2008, 48, 983–992. [Google Scholar] [CrossRef] [PubMed]
- Beserra, B.T.; Fernandes, R.; do Rosario, V.A.; Mocellin, M.C.; Kuntz, M.G.; Trindade, E.B. A systematic review and meta-analysis of the prebiotics and synbiotics effects on glycaemia, insulin concentrations and lipid parameters in adult patients with overweight or obesity. Clin. Nutr. 2015, 34, 845–858. [Google Scholar] [CrossRef] [PubMed]
- Schnabl, B. Linking intestinal homeostasis and liver disease. Curr. Opin. Gastroenterol. 2013, 29, 264–270. [Google Scholar] [CrossRef]
- Okayasu, I.; Hatakeyama, S.; Yamada, M.; Ohkusa, T.; Inagaki, Y.; Nakaya, R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 1990, 98, 694–702. [Google Scholar] [CrossRef]
- Arafa, H.M.; Hemeida, R.A.; El-Bahrawy, A.I.; Hamada, F.M. Prophylactic role of curcumin in dextran sulfate sodium (DSS)-induced ulcerative colitis murine model. Food Chem. Toxicol. 2009, 47, 1311–1317. [Google Scholar] [CrossRef]
- Chassaing, B.; Aitken, J.D.; Malleshappa, M.; Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr. Protoc. Immunol. 2014, 104, 15–25. [Google Scholar] [CrossRef]
- Gabele, E.; Dostert, K.; Hofmann, C.; Wiest, R.; Scholmerich, J.; Hellerbrand, C.; Obermeier, F. DSS induced colitis increases portal LPS levels and enhances hepatic inflammation and fibrogenesis in experimental NASH. J. Hepatol. 2011, 55, 1391–1399. [Google Scholar] [CrossRef]
- Davis, V.W.; Bathe, O.F.; Schiller, D.E.; Slupsky, C.M.; Sawyer, M.B. Metabolomics and surgical oncology: Potential role for small molecule biomarkers. J. Surg. Oncol. 2011, 103, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.M.; Helsby, N.A.; Rowan, D.D.; Ferguson, L.R. Using metabolomic analysis to understand inflammatory bowel diseases. Inflamm. Bowel Di.s 2011, 17, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- Manna, S.K.; Tanaka, N.; Krausz, K.W.; Haznadar, M.; Xue, X.; Matsubara, T.; Bowman, E.D.; Fearon, E.R.; Harris, C.C.; Shah, Y.M.; et al. Biomarkers of coordinate metabolic reprogramming in colorectal tumors in mice and humans. Gastroenterology 2014, 146, 1313–1324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Q.; Tan, Y.; Yin, P.; Ye, G.; Gao, P.; Lu, X.; Wang, H.; Xu, G. Metabolic characterization of hepatocellular carcinoma using nontargeted tissue metabolomics. Cancer Res. 2013, 73, 4992–5002. [Google Scholar] [CrossRef] [Green Version]
- Ni, Y.; Xie, G.; Jia, W. Metabonomics of human colorectal cancer: New approaches for early diagnosis and biomarker discovery. J. Proteome Res. 2014, 13, 3857–3870. [Google Scholar] [CrossRef]
- Nishiumi, S.; Izumi, Y.; Yoshida, M. Alterations in Docosahexaenoic Acid-Related Lipid Cascades in Inflammatory Bowel Disease Model Mice. Dig. Dis. Sci. 2018, 63, 1485–1496. [Google Scholar] [CrossRef]
- Pettegrew, J.W.; Levine, J.; McClure, R.J. Acetyl-L-carnitine physical-chemical, metabolic, and therapeutic properties: Relevance for its mode of action in Alzheimer’s disease and geriatric depression. Mol. Psychiatry 2000, 5, 616–632. [Google Scholar] [CrossRef] [Green Version]
- Meadows, J.A.; Wargo, M.J. Carnitine in bacterial physiology and metabolism. Microbiology 2015, 161, 1161–1174. [Google Scholar] [CrossRef]
- Bodaghi-Namileh, V.; Sepand, M.R.; Omidi, A.; Aghsami, M.; Seyednejad, S.A.; Kasirzadeh, S.; Sabzevari, O. Acetyl-l-carnitine attenuates arsenic-induced liver injury by abrogation of mitochondrial dysfunction, inflammation, and apoptosis in rats. Environ. Toxicol. Pharm. 2018, 58, 11–20. [Google Scholar] [CrossRef]
- Moeinian, M.; Farnaz Ghasemi-Niri, S.; Mozaffari, S.; Abdollahi, M. Synergistic effect of probiotics, butyrate and l-Carnitine in treatment of IBD. J. Med. Hypotheses Ideas 2013, 7, 50–53. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Li, N.; Gao, L.; Xu, Y.J.; Huang, C.; Yu, K.; Ling, Q.; Cheng, Q.; Chen, S.; Zhu, M.; et al. Acetylcarnitine Is a Candidate Diagnostic and Prognostic Biomarker of Hepatocellular Carcinoma. Cancer Res. 2016, 76, 2912–2920. [Google Scholar] [CrossRef] [Green Version]
- Kathirvel, E.; Morgan, K.; French, S.W.; Morgan, T.R. Acetyl-L-carnitine and lipoic acid improve mitochondrial abnormalities and serum levels of liver enzymes in a mouse model of nonalcoholic fatty liver disease. Nutr. Res. 2013, 33, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Hoppel, C. The role of carnitine in normal and altered fatty acid metabolism. Am. J. Kidney Dis. 2003, 41, 4–12. [Google Scholar] [CrossRef]
- Li, S.; Gao, D.; Jiang, Y. Function, Detection and Alteration of Acylcarnitine Metabolism in Hepatocellular Carcinoma. Metabolites 2019, 9, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suh, E.; Choi, S.-W.; Friso, S. One-Carbon Metabolism. In Molecular Basis of Nutrition and Aging; Academic Press: Cambridge, MA, USA, 2016; pp. 513–522. [Google Scholar]
- Ducker, G.S.; Rabinowitz, J.D. One-Carbon Metabolism in Health and Disease. Cell Metab. 2017, 25, 27–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueland, P.M. Choline and betaine in health and disease. J. Inherit. Metab. Dis. 2011, 34, 3–15. [Google Scholar] [CrossRef]
- Corbin, K.D.; Zeisel, S.H. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Curr. Opin. Gastroenterol. 2012, 28, 159–165. [Google Scholar] [CrossRef] [Green Version]
- Randhawa, P.K.; Singh, K.; Singh, N.; Jaggi, A.S. A review on chemical-induced inflammatory bowel disease models in rodents. Korean J. Physiol. Pharm. 2014, 18, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Brocker, C.; Thompson, D.C.; Vasiliou, V. The role of hyperosmotic stress in inflammation and disease. Biomol. Concepts 2012, 3, 345–364. [Google Scholar] [CrossRef]
- Amin, U.S.; Lash, T.D.; Wilkinson, B.J. Proline Betaine Is a Highly Effective Osmoprotectant for Staphylococcus-Aureus. Arch. Microbiol. 1995, 163, 138–142. [Google Scholar] [CrossRef]
- Bonomini, M.; Pandolfi, A.; Di Liberato, L.; Di Silvestre, S.; Cnops, Y.; Di Tomo, P.; D’Arezzo, M.; Monaco, M.P.; Giardinelli, A.; Di Pietro, N.; et al. L-carnitine is an osmotic agent suitable for peritoneal dialysis. Kidney Int. 2011, 80, 645–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, G.; He, F.; Wu, C.; Li, P.; Li, N.; Deng, J.; Zhu, G.; Ren, W.; Peng, Y. Betaine in Inflammation: Mechanistic Aspects and Applications. Front. Immunol. 2018, 9, 1070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Day, C.R.; Kempson, S.A. Betaine chemistry, roles, and potential use in liver disease. Biochim. Biophys Acta 2016, 1860, 1098–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deminice, R.; da Silva, R.P.; Lamarre, S.G.; Kelly, K.B.; Jacobs, R.L.; Brosnan, M.E.; Brosnan, J.T. Betaine supplementation prevents fatty liver induced by a high-fat diet: Effects on one-carbon metabolism. Amino Acids 2015, 47, 839–846. [Google Scholar] [CrossRef] [PubMed]
Weight Loss | Stool Consistency | Bleeding |
---|---|---|
0 = no weight loss | 0 = formed | 0 = normal color stool |
1 = 5–10% weight loss | 1 = mild-soft | 1 = brown color stool |
2 = 11–15% weight loss | 2 = very soft | 2 = reddish color stool |
3 = 16–20% weight loss | 3 = watery stool | 3 = bloody stool |
4 = 20% weight loss |
DSS 0% | DSS 2% | DSS 3.5% | DSS 5% | ||||
---|---|---|---|---|---|---|---|
Mean ± SE | Mean ± SE | (p-value) | Mean ± SE | (p-value) | Mean ± SE | (p-value) | |
2-Octenoate | 1.961 ± 0.236 | 2.686 ± 0.641 | (0.1598) | 2.690 ± 0.359 | (0.0701) | 2.956 ± 0.405 | (0.0378) * |
Acetate | 2.465 ± 0.224 | 2.779 ± 0.272 | (0.1993) | 3.835 ± 0.489 | (0.0208) * | 2.485 ± 0.368 | (0.4825) |
Acetoin | 1.256 ± 0.494 | 1.311 ± 0.332 | (0.4648) | 1.556 ± 0.198 | (0.2807) | 2.277 ± 0.548 | (0.1039) |
Alanine | 1.141 ± 0.178 | 1.469 ± 0.121 | (0.0828) | 2.192 ± 0.455 | (0.0390) * | 2.439 ± 0.511 | (0.0272) * |
Arginine | 0.632 ± 0.107 | 1.388 ± 0.295 | (0.0214) * | 1.862 ± 0.452 | (0.0194) * | 2.220 ± 0.420 | (0.0043) ** |
Betaine | 0.597 ± 0.136 | 0.996 ± 0.177 | (0.0559) | 1.369 ± 0.323 | (0.0357) * | 2.147 ± 0.566 | (0.0190) * |
Carnitine | 0.631 ± 0.042 | 0.958 ± 0.180 | (0.0575) | 1.391 ± 0.285 | (0.0201) * | 2.034 ± 0.627 | (0.0369) * |
Choline | 1.269 ± 0.362 | 2.208 ± 0.466 | (0.0749) | 2.154 ± 0.401 | (0.0712) | 2.684 ± 0.350 | (0.0104) * |
Formate | 1.400 ± 0.307 | 2.010 ± 0.452 | (0.1485) | 2.671 ± 0.329 | (0.0107) * | 2.578 ± 0.455 | (0.0353) * |
Fumarate | 1.632 ± 0.237 | 2.100 ± 0.341 | (0.1461) | 2.307 ± 0.339 | (0.0762) | 3.066 ± 0.522 | (0.0223) * |
Glucose | 4.696 ± 0.216 | 5.754 ± 0.618 | (0.0723) | 6.002 ± 0.372 | (0.0092) ** | 6.004 ± 0.269 | (0.0025) ** |
Glutamate | 1.365 ± 0.199 | 2.961 ± 0.575 | (0.0153) * | 2.623 ± 0.287 | (0.0036) ** | 2.693 ± 0.337 | (0.0053) ** |
Glutamine | 0.967 ± 0.167 | 1.374 ± 0.286 | (0.1274) | 1.793 ± 0.491 | (0.0884) | 2.656 ± 0.309 | (0.0007) *** |
Glutathione | 1.522 ± 0.086 | 1.744 ± 0.235 | (0.2004) | 2.388 ± 0.647 | (0.1299) | 2.774 ± 0.238 | (0.0007) *** |
Glycerol | 2.936 ± 0.200 | 4.093 ± 0.689 | (0.0728) | 3.536 ± 0.217 | (0.0380) * | 4.235 ± 0.352 | (0.0071) ** |
Glycine | 0.957 ± 0.073 | 1.550 ± 0.178 | (0.0075) ** | 1.961 ± 0.316 | (0.0099) ** | 2.612 ± 0.557 | (0.0128) * |
Isoleucine | 1.323 ± 0.051 | 2.287 ± 0.495 | (0.0443) * | 2.212 ± 0.327 | (0.0187) * | 2.658 ± 0.508 | (0.0211) * |
Lactate | 3.359 ± 0.289 | 4.661 ± 0.524 | (0.0306) * | 3.600 ± 0.293 | (0.2884) | 3.797 ± 0.461 | (0.2317) |
Leucine | 1.612 ± 0.074 | 2.648 ± 0.437 | (0.0238)* | 2.659 ± 0.366 | (0.0156)* | 3.130 ± 0.466 | (0.0085) ** |
Lysine | 0.924 ± 0.089 | 1.647 ± 0.307 | (0.0269) * | 1.448 ± 0.304 | (0.0821) | 2.310 ± 0.598 | (0.0335) * |
Maltose | 2.686 ± 0.266 | 1.898 ± 0.426 | (0.0775) | 1.704 ± 0.482 | (0.0636) | 1.096 ± 0.257 | (0.0010) ** |
Mannose | 4.006 ± 0.089 | 5.056 ± 0.812 | (0.1174) | 4.499 ± 0.280 | (0.0793) | 4.866 ± 0.259 | (0.0090) ** |
N-Acetylglucosamine | 0.515 ± 0.030 | 0.591 ± 0.160 | (0.3264) | 1.431 ± 0.354 | (0.0221) * | 1.889 ± 0.559 | (0.0267)* |
O-Phosphocholine | 0.319 ± 0.041 | 0.820 ± 0.263 | (0.0484) * | 1.251 ± 0.311 | (0.0122) * | 1.746 ± 0.595 | (0.0292) * |
Phenylalanine | 1.249 ± 0.115 | 1.893 ± 0.359 | (0.0631) | 1.866 ± 0.227 | (0.0245) * | 2.580 ± 0.625 | (0.0447) * |
Proline | 1.295 ± 0.143 | 2.452 ± 0.469 | (0.0230) * | 2.550 ± 0.408 | (0.0127) * | 2.801 ± 0.373 | (0.0034) ** |
Pyroglutamate | 1.194 ± 0.120 | 2.062 ± 0.517 | (0.0704) | 1.907 ± 0.253 | (0.0209) * | 2.353 ± 0.565 | (0.0505) |
Taurine | 0.775 ± 0.066 | 1.031 ± 0.148 | (0.0763) | 1.191 ± 0.229 | (0.0720) | 2.084 ± 0.668 | (0.0556) |
Threonine | 0.895 ± 0.113 | 1.799 ± 0.504 | (0.0592) | 1.847 ± 0.325 | (0.0157) * | 2.247 ± 0.493 | (0.0187) * |
Trimethylamine N-oxide | 2.271 ± 0.130 | 2.998 ± 0.537 | (0.1124) | 3.234 ± 0.217 | (0.0028) ** | 3.675 ± 0.513 | (0.0192) * |
Tyrosine | 1.355 ± 0.160 | 2.687 ± 0.609 | (0.0337) * | 2.394 ± 0.265 | (0.0055) ** | 2.810 ± 0.373 | (0.0044) ** |
Uridine | 1.593 ± 0.155 | 2.697 ± 0.498 | (0.0336) * | 2.627 ± 0.418 | (0.0303) * | 2.934 ± 0.399 | (0.0088) ** |
Valine | 1.186 ± 0.073 | 2.066 ± 0.390 | (0.0287)* | 2.075 ± 0.322 | (0.0182) * | 2.586 ± 0.557 | (0.0250) * |
sn-Glycero-3-phosphocholine | 2.233 ± 0.224 | 3.111 ± 0.674 | (0.1258) | 2.788 ± 0.302 | (0.0946) | 3.474 ± 0.351 | (0.0097) ** |
DSS 0% | DSS 2% | DSS 3.5% | DSS 5% | ||||
---|---|---|---|---|---|---|---|
Mean ± SE | Mean ± SE | (p-value) | Mean ± SE | (p –value) | Mean ± SE | (p –value) | |
5’-Methylthioadenosine | 5.973 ± 0.460 | 5.968 ± 0.519 | (0.4974) | 6.255 ± 0.472 | (0.3410) | 6.854 ± 0.242 | (0.0538) |
Adenosine monophosphate | 5.340 ± 0.374 | 5.571 ± 0.318 | (0.3249) | 5.801 ± 0.482 | (0.2418) | 5.265 ± 0.522 | (0.4571) |
N,N-Dimethylglycine | 2.866 ± 0.399 | 4.049 ± 0.412 | (0.0365) * | 3.332 ± 0.393 | (0.2149) | 3.870 ± 0.421 | (0.0610) |
Glycerol 3-phosphate | 3.768 ± 0.278 | 3.248 ± 0.299 | (0.1195) | 2.486 ± 0.331 | (0.0090) ** | 1.726 ± 0.204 | (0.0001) *** |
Guanosine | 3.553 ± 0.513 | 3.673 ± 0.237 | (0.4183) | 2.853 ± 0.414 | (0.1551) | 4.398 ± 0.276 | (0.0809) |
Guanosine monophosphate | 2.957 ± 0.231 | 3.740 ± 0.397 | (0.0634) | 3.714 ± 0.393 | (0.0754) | 4.258 ± 0.500 | (0.0276)* |
Hydrocinnamic acid | 5.097 ± 0.582 | 5.289 ± 0.451 | (0.3999) | 4.601 ± 0.390 | (0.2422) | 5.007 ± 0.374 | (0.4480) |
Acetylcarnitine | 1.652 ± 0.155 | 1.723 ± 0.192 | (0.3905) | 2.845 ± 0.307 | (0.0050) ** | 3.129 ± 0.500 | (0.0146) * |
Malic acid | 5.843± 0.250 | 6.029 ± 0.216 | (0.2942) | 5.513 ± 0.615 | (0.3279) | 5.356 ± 0.445 | (0.1961) |
Methionine | 4.001 ± 0.281 | 4.535 ± 0.320 | (0.1227) | 4.120 ± 0.500 | (0.4243) | 5.282 ± 0.370 | (0.0130)* |
Maltotriose | 4.091 ± 0.379 | 2.936 ± 0.093 | (0.0091) ** | 3.828 ± 0.525 | (0.3526) | 3.666 ± 0.446 | (0.2479) |
Niacinamide | 6.631 ± 0.628 | 7.072 ± 0.350 | (0.2788) | 6.837 ± 0.307 | (0.3811) | 7.468 ± 0.434 | (0.1445) |
Tyramine | 2.660 ± 0.578 | 2.699 ± 0.623 | (0.4825) | 2.173 ± 0.313 | (0.2283) | 1.886 ± 0.186 | (0.1004) |
Uracil | 3.633 ± 0.368 | 4.199 ± 0.201 | (0.1070) | 4.656 ± 0.360 | (0.0400) * | 5.697 ± 0.171 | (0.0002) *** |
Uridine 5’-diphosphate | 3.030 ± 0.114 | 3.616 ± 0.176 | (0.0118) * | 3.751 ± 0.589 | (0.1513) | 4.340 ± 0.407 | (0.0097)** |
Uridine 5’-monophosphate | 3.482 ± 0.173 | 4.130 ± 0.244 | (0.0312) * | 4.457 ± 0.445 | (0.0458) * | 4.750 ± 0.532 | (0.0335) * |
Xanthosine | 3.480 ± 0.307 | 3.123 ± 0.198 | (0.1784) | 2.118 ± 0.460 | (0.0216) * | 2.010 ± 0.329 | (0.0053) ** |
Hypoxanthine | 4.463 ± 0.173 | 3.299 ± 0.179 | (0.0008) *** | 2.621 ± 0.237 | (0.0001) *** | 2.164 ± 0.257 | (0.0000) *** |
Xanthine | 4.616 ± 0.226 | 3.635 ± 0.177 | (0.0045) ** | 2.883 ± 0.242 | (0.0003) *** | 2.335 ± 0.241 | (0.0000) *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.H.; Lee, W.; Kwon, D.; Lee, S.; Son, S.W.; Seo, M.-S.; Kim, K.S.; Lee, Y.-H.; Kim, S.; Jung, Y.-S. Metabolomic Analysis of the Liver of a Dextran Sodium Sulfate-Induced Acute Colitis Mouse Model: Implications of the Gut–Liver Connection. Cells 2020, 9, 341. https://doi.org/10.3390/cells9020341
Kim SH, Lee W, Kwon D, Lee S, Son SW, Seo M-S, Kim KS, Lee Y-H, Kim S, Jung Y-S. Metabolomic Analysis of the Liver of a Dextran Sodium Sulfate-Induced Acute Colitis Mouse Model: Implications of the Gut–Liver Connection. Cells. 2020; 9(2):341. https://doi.org/10.3390/cells9020341
Chicago/Turabian StyleKim, Sou Hyun, Wonho Lee, Doyoung Kwon, Seunghyun Lee, Seung Won Son, Min-Soo Seo, Kil Soo Kim, Yun-Hee Lee, Suhkmann Kim, and Young-Suk Jung. 2020. "Metabolomic Analysis of the Liver of a Dextran Sodium Sulfate-Induced Acute Colitis Mouse Model: Implications of the Gut–Liver Connection" Cells 9, no. 2: 341. https://doi.org/10.3390/cells9020341
APA StyleKim, S. H., Lee, W., Kwon, D., Lee, S., Son, S. W., Seo, M. -S., Kim, K. S., Lee, Y. -H., Kim, S., & Jung, Y. -S. (2020). Metabolomic Analysis of the Liver of a Dextran Sodium Sulfate-Induced Acute Colitis Mouse Model: Implications of the Gut–Liver Connection. Cells, 9(2), 341. https://doi.org/10.3390/cells9020341