Short Chain Fatty Acids Effect on Chloride Channel ClC-2 as a Possible Mechanism for Lubiprostone Intestinal Action
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Balfour-Lynn, I.M.; King, J.A. CFTR modulator therapies-Effect on life expectancy in people with cystic fibrosis. Paediatr. Respir. Rev. 2020. [Google Scholar] [CrossRef]
- Clancy, J.P. Rapid therapeutic advances in CFTR modulator science. Pediatr. Pulmonol. 2018, 53, S4–S11. [Google Scholar] [CrossRef] [PubMed]
- Lacy, B.E.; Chey, W.D. Lubiprostone: Chronic constipation and irritable bowel syndrome with constipation. Expert Opin. Pharmacother. 2009, 10, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Cuppoletti, J.; Malinowska, D.H.; Tewari, K.P.; Li, Q.J.; Sherry, A.M.; Patchen, M.L.; Ueno, R. SPI-0211 activates T84 cell chloride transport and recombinant human ClC-2 chloride currents. Am. J. Physiol. Cell Physiol. 2004, 287, C1173–C1183. [Google Scholar] [CrossRef] [PubMed]
- Jentsch, T.J.; Pusch, M. CLC Chloride Channels and Transporters: Structure, Function, Physiology, and Disease. Physiol. Rev. 2018, 98, 1493–1590. [Google Scholar] [CrossRef] [PubMed]
- Thiemann, A.; Gründer, S.; Pusch, M.; Jentsch, T.J. A chloride channel widely expressed in epithelial and non- epithelial cells. Nature 1992, 356, 57–60. [Google Scholar] [CrossRef]
- Gyömörey, K.; Yeger, H.; Ackerley, C.; Garami, E.; Bear, C.E. Expression of the chloride channel ClC-2 in the murine small intestine epithelium. Am. J. Physiol. 2000, 279, C1787–C1794. [Google Scholar] [CrossRef] [Green Version]
- Catalán, M.; Cornejo, I.; Figueroa, C.; Niemeyer, M.I.; Sepúlveda, F.V.; Cid, L.P. Expression of ClC-2 chloride channels in surface epithelium of guinea pig colon: mRNA, protein and functional evidence. Am. J. Physiol. 2002, 283, G1004–G1013. [Google Scholar]
- Lipecka, J.; Bali, M.; Thomas, A.; Fanen, P.; Edelman, A.; Fritsch, J. Distribution of ClC-2 chloride channel in rat and human epithelial tissues. Am. J. Physiol. 2002, 282, C805–C816. [Google Scholar] [CrossRef] [Green Version]
- Peña-Münzenmayer, G.; Catalán, M.; Cornejo, I.; Figueroa, C.D.; Melvin, J.E.; Niemeyer, M.I.; Cid, L.P.; Sepúlveda, F.V. Basolateral localization of native ClC-2 chloride channels in absorptive intestinal epithelial cells and basolateral sorting encoded by a CBS-2 domain di-leucine motif. J. Cell Sci. 2005, 118, 4243–4252. [Google Scholar] [CrossRef] [Green Version]
- Catalán, M.A.; Flores, C.A.; Gonzalez-Begne, M.; Zhang, Y.; Sepúlveda, F.V.; Melvin, J.E. Severe defects in absorptive ion transport in distal colons of mice that lack ClC-2 channels. Gastroenterology 2012, 142, 346–354. [Google Scholar] [CrossRef] [Green Version]
- De la Fuente-Ortega, E.; Gravotta, D.; Perez Bay, A.; Benedicto, I.; Carvajal-Gonzalez, J.M.; Lehmann, G.L.; Lagos, C.F.; Rodríguez-Boulan, E. Basolateral sorting of chloride channel 2 is mediated by interactions between a dileucine motif and the clathrin adaptor AP-1. Mol. Biol. Cell 2015, 26, 1728–1742. [Google Scholar] [CrossRef] [PubMed]
- Catalán, M.; Niemeyer, M.I.; Cid, L.P.; Sepúlveda, F.V. Basolateral ClC-2 chloride channels in surface colon epithelium: Regulation by a direct effect of intracellular chloride. Gastroenterology 2004, 126, 1104–1114. [Google Scholar] [CrossRef] [PubMed]
- Zdebik, A.A.; Cuffe, J.E.; Bertog, M.; Korbmacher, C.; Jentsch, T.J. Additional disruption of the ClC-2 Cl− channel does not exacerbate the cystic fibrosis phenotype of cystic fibrosis transmembrane conductance regulator mouse models. J. Biol. Chem. 2004, 279, 22276–22283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ao, M.; Venkatasubramanian, J.; Boonkaewwan, C.; Ganesan, N.; Syed, A.; Benya, R.V.; Rao, M.C. Lubiprostone activates Cl- secretion via cAMP signaling and increases membrane CFTR in the human colon carcinoma cell line, T84. Dig. Dis. Sci. 2011, 56, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Cuthbert, A.W. Lubiprostone targets prostanoid EP(4) receptors in ovine airways. Br. J. Pharm. 2011, 162, 508–520. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, S.; Kurata, N.; Yamaguchi, A.; Amagase, K.; Takeuchi, K. Lubiprostone prevents nonsteroidal anti-inflammatory drug-induced small intestinal damage by suppressing the expression of inflammatory mediators via EP4 receptors. J. Pharm. Exp. 2014, 349, 470–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Norimatsu, Y.; Moran, A.R.; MacDonald, K.D. Lubiprostone activates CFTR, but not ClC-2, via the prostaglandin receptor (EP(4)). Biochem. Biophys. Res. Commun. 2012, 426, 374–379. [Google Scholar] [CrossRef] [Green Version]
- Bijvelds, M.J.C.; Bot, A.G.M.; Escher, J.C.; De Jonge, H.R. Activation of intestinal Cl- secretion by lubiprostone requires the cystic fibrosis transmembrane conductance regulator. Gastroenterology 2009, 137, 976–985. [Google Scholar] [CrossRef]
- Cuppoletti, J.; Tewari, K.P.; Chakrabarti, J.; Malinowska, D.H. Identification of the fatty acid activation site on human ClC-2. Am. J. Physiol. Cell Physiol. 2017, 312, C707–C723. [Google Scholar] [CrossRef] [Green Version]
- Cid, L.P.; Niemeyer, M.I.; Ramírez, A.; Sepúlveda, F.V. Splice variants of a ClC-2 chloride channel with differing functional characteristics. Am. J. Physiol. 2000, 279, C1198–C1210. [Google Scholar] [CrossRef] [PubMed]
- Barry, P.H. JPCalc, a software package for calculating liquid junction potential corrections in patch-clamp, intracellular, epithelial and bilayer measurements and for correcting junction potential measurements. J. Neurosci. Meth. 1994, 51, 107–116. [Google Scholar] [CrossRef]
- Díaz, M.; Sepúlveda, F.V. Characterisation of Ca2+-dependent inwardly rectifying K+ currents in HeLa cells. Pflügers Arch. 1995, 430, 168–180. [Google Scholar] [CrossRef]
- Varela, D.; Niemeyer, M.I.; Cid, L.P.; Sepúlveda, F.V. Effect of an N-terminus deletion on voltage-dependent gating of ClC-2 chloride channel. J. Physiol. 2002, 544, 363–372. [Google Scholar] [CrossRef] [PubMed]
- Nehrke, K.; Arreola, J.; Nguyen, H.V.; Pilato, J.; Richardson, L.; Okunade, G.; Baggs, R.; Shull, G.E.; Melvin, J.E. Loss of hyperpolarization-activated Cl− current in salivary acinar cells from Clcn2 knockout mice. J. Biol. Chem. 2002, 277, 23604–23611. [Google Scholar] [CrossRef] [Green Version]
- Van Doorninck, J.H.; French, P.J.; Verbeek, E.; Peters, R.H.; Morreau, H.; Bijman, J.; Scholte, B.J. A mouse model for the cystic fibrosis delta F508 mutation. Embo. J. 1995, 14, 4403–4411. [Google Scholar] [CrossRef] [Green Version]
- Andres, H.; Rock, R.; Bridges, R.J.; Rummel, W.; Schreiner, J. Submucosal plexus and electrolyte transport across rat colonic mucosa. J. Physiol. 1985, 364, 301–312. [Google Scholar] [CrossRef] [Green Version]
- Flores, C.A.; Melvin, J.E.; Figueroa, C.D.; Sepúlveda, F.V. Abolition of Ca2+-mediated intestinal anion secretion and increased stool dehydration in mice after inactivation of the intermediate conductance Ca2+-dependent K+ channel Kcnn4. J. Physiol. 2007, 583, 705–717. [Google Scholar] [CrossRef]
- Cummings, J.H.; Pomare, E.W.; Branch, W.J.; Naylor, C.P.; Macfarlane, G.T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 1987, 28, 1221–1227. [Google Scholar] [CrossRef] [Green Version]
- Bergman, E.N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 1990, 70, 567–590. [Google Scholar] [CrossRef] [Green Version]
- Chu, S.; Montrose, M.H. Non-ionic diffusion and carrier-mediated transport drive extracellullar pH regulation of mouse colonic crypts. J. Physiol. 1996, 494, 783–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, N.; Martin, P.M.; Prasad, P.D.; Ganapathy, V. SLC5A8 (SMCT1)-mediated transport of butyrate forms the basis for the tumor suppressive function of the transporter. Life Sci. 2006, 78, 2419–2425. [Google Scholar] [CrossRef] [PubMed]
- Hadjiagapiou, C.; Schmidt, L.; Dudeja, P.K.; Layden, T.J.; Ramaswamy, K. Mechanism(s) of butyrate transport in Caco-2 cells: Role of monocarboxylate transporter 1. Am. J. Physiol. Gastrointest Liver Physiol. 2000, 279, G775–G780. [Google Scholar] [CrossRef] [PubMed]
- Thangaraju, M.; Cresci, G.; Itagaki, S.; Mellinger, J.; Browning, D.D.; Berger, F.G.; Prasad, P.D.; Ganapathy, V. Sodium-coupled transport of the short chain fatty acid butyrate by SLC5A8 and its relevance to colon cancer. J. Gastrointest Surg. 2008, 12, 1773–1781. [Google Scholar] [CrossRef] [PubMed]
- Binder, H.J.; Mehta, P. Characterization of butyrate-dependent electroneutral Na-Cl absorption in the rat distal colon. Pflug. Arch. 1990, 417, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Vidyasagar, S.; Ramakrishna, B.S. Effects of butyrate on active sodium and chloride transport in rat and rabbit distal colon. J. Physiol. 2002, 539, 163–173. [Google Scholar] [CrossRef]
- Donohoe, D.R.; Garge, N.; Zhang, X.; Sun, W.; O’Connell, T.M.; Bunger, M.K.; Bultman, S.J. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 2011, 13, 517–526. [Google Scholar] [CrossRef] [Green Version]
- Boffa, L.C.; Vidali, G.; Mann, R.S.; Allfrey, V.G. Suppression of histone deacetylation in vivo and in vitro by sodium butyrate. J. Biol. Chem. 1978, 253, 3364–3366. [Google Scholar]
- Couto, M.R.; Goncalves, P.; Magro, F.; Martel, F. Microbiota-derived butyrate regulates intestinal inflammation: Focus on inflammatory bowel disease. Pharm. Res. 2020, 159, 104947. [Google Scholar] [CrossRef]
- Thangaraju, M.; Cresci, G.A.; Liu, K.; Ananth, S.; Gnanaprakasam, J.P.; Browning, D.D.; Mellinger, J.D.; Smith, S.B.; Digby, G.J.; Lambert, N.A.; et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 2009, 69, 2826–2832. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.J.; Goldsworthy, S.M.; Barnes, A.A.; Eilert, M.M.; Tcheang, L.; Daniels, D.; Muir, A.I.; Wigglesworth, M.J.; Kinghorn, I.; Fraser, N.J.; et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 2003, 278, 11312–11319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Poul, E.; Loison, C.; Struyf, S.; Springael, J.Y.; Lannoy, V.; Decobecq, M.E.; Brezillon, S.; Dupriez, V.; Vassart, G.; Van Damme, J.; et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 2003, 278, 25481–25489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, K.; Begenisich, T.; Melvin, J.E. Protein kinase A activation phosphorylates the rat ClC-2 Cl- channel but does not change activity. J. Membr. Biol. 2001, 182, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Warsi, J.; Elvira, B.; Hosseinzadeh, Z.; Shumilina, E.; Lang, F. Downregulation of chloride channel ClC-2 by Janus kinase 3. J. Membr. Biol. 2014, 247, 387–393. [Google Scholar] [CrossRef] [PubMed]
- Warsi, J.; Hosseinzadeh, Z.; Elvira, B.; Bissinger, R.; Shumilina, E.; Lang, F. Regulation of ClC-2 activity by SPAK and OSR1. Kidney Blood Press Res. 2014, 39, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, T.; Ogura, T.; Zheng, Y.J.; Tsuchiya, H.; Nakaya, H.; Katayama, Y.; Inagaki, N. Phosphorylation and functional regulation of ClC-2 chloride channels expressed in Xenopus oocytes by M cyclin-dependent protein kinase. J. Physiol. 2002, 540, 883–893. [Google Scholar] [CrossRef]
- Akiba, Y.; Kaunitz, J.D. May the truth be with you: Lubiprostone as EP receptor agonist/ClC-2 internalizing “inhibitor”. Dig. Dis. Sci. 2012, 57, 2740–2742. [Google Scholar] [CrossRef]
- Jakab, R.L.; Collaco, A.M.; Ameen, N.A. Lubiprostone targets prostanoid signaling and promotes ion transporter trafficking, mucus exocytosis, and contractility. Dig. Dis. Sci. 2012, 57, 2826–2845. [Google Scholar] [CrossRef]
- Cornejo, I.; Niemeyer, M.I.; Zúñiga, L.; Yusef, Y.R.; Sepúlveda, F.V.; Cid, L.P. Rapid recycling of ClC-2 chloride channels between plasma membrane and endosomes: Role of a tyrosine endocytosis motif in surface retrieval. J. Cell Physiol. 2009, 221, 650–657. [Google Scholar] [CrossRef]
- Dhani, S.U.; Kim, C.P.; Huan, L.J.; Bear, C.E. ATP depletion inhibits the endocytosis of ClC-2. J. Cell Physiol. 2008, 214, 273–280. [Google Scholar] [CrossRef]
- Dutzler, R.; Campbell, E.B.; MacKinnon, R. Gating the selectivity filter in ClC chloride channels. Science 2003, 300, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer, M.I.; Cid, L.P.; Zúñiga, L.; Catalán, M.; Sepúlveda, F.V. A conserved pore-lining glutamate as a voltage- and chloride-dependent gate in the ClC-2 chloride channel. J. Physiol. 2003, 553, 873–879. [Google Scholar] [CrossRef] [PubMed]
- Niemeyer, M.I.; Cid, L.P.; Yusef, Y.R.; Briones, R.; Sepúlveda, F.V. Voltage-dependent and -independent titration of specific residues accounts for complex gating of a ClC chloride channel by extracellular protons. J. Physiol. 2009, 587, 1387–1400. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Rodríguez, J.E.; De Santiago-Castillo, J.A.; Contreras-Vite, J.A.; Nieto-Delgado, P.G.; Castro-Chong, A.; Arreola, J. Sequential interaction of chloride and proton ions with the fast gate steer the voltage-dependent gating in ClC-2 chloride channels. J. Physiol. 2012, 590, 4239–4253. [Google Scholar] [CrossRef]
- De Jesús-Pérez, J.J.; Castro-Chong, A.; Shieh, R.C.; Hernández-Carballo, C.Y.; De Santiago-Castillo, J.A.; Arreola, J. Gating the glutamate gate of CLC-2 chloride channel by pore occupancy. J. Gen. Physiol. 2016, 147, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Flores, C.A. ClC-2 and intestinal chloride secretion. Am. J. Physiol. Gastrointest Liver Physiol. 2016, 311, G775. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Catalán, M.A.; Julio-Kalajzić, F.; Niemeyer, M.I.; Cid, L.P.; Sepúlveda, F.V. Short Chain Fatty Acids Effect on Chloride Channel ClC-2 as a Possible Mechanism for Lubiprostone Intestinal Action. Cells 2020, 9, 1781. https://doi.org/10.3390/cells9081781
Catalán MA, Julio-Kalajzić F, Niemeyer MI, Cid LP, Sepúlveda FV. Short Chain Fatty Acids Effect on Chloride Channel ClC-2 as a Possible Mechanism for Lubiprostone Intestinal Action. Cells. 2020; 9(8):1781. https://doi.org/10.3390/cells9081781
Chicago/Turabian StyleCatalán, Marcelo A., Francisca Julio-Kalajzić, María Isabel Niemeyer, Luis Pablo Cid, and Francisco V. Sepúlveda. 2020. "Short Chain Fatty Acids Effect on Chloride Channel ClC-2 as a Possible Mechanism for Lubiprostone Intestinal Action" Cells 9, no. 8: 1781. https://doi.org/10.3390/cells9081781
APA StyleCatalán, M. A., Julio-Kalajzić, F., Niemeyer, M. I., Cid, L. P., & Sepúlveda, F. V. (2020). Short Chain Fatty Acids Effect on Chloride Channel ClC-2 as a Possible Mechanism for Lubiprostone Intestinal Action. Cells, 9(8), 1781. https://doi.org/10.3390/cells9081781