The Emerging Role of Galectins and O-GlcNAc Homeostasis in Processes of Cellular Differentiation
Abstract
:1. Introduction
2. Galectin-1
2.1. Muscle Cells
2.2. Trophoblasts
2.3. Blood Cells
2.4. Glial Cells
2.5. Bone and Cartilage Cells
3. Galectin-2
4. Galectin-3
4.1. Bone and Cartilage Cells
4.2. Immune Cells
4.3. Adipocytes
4.4. Oligodendrocytes
5. Galectin-4
5.1. Enterocytes and Macrophages
5.2. Oligodendrocytes and Trophoblasts
6. Galectin-7
7. Galectin-8
7.1. T Lymphocytes and Plasma Cells
7.2. Bone Cells
7.3. Myeloid Cells
8. Galectin-9
8.1. Macrophages
8.2. T Lymphocytes
8.3. Osteoblasts and Osteoclasts
9. Galectin-10 (Charcot-Leyden Crystal Protein)
10. Galectin-12
10.1. Adipocytes, Sebocytes, and Colorectal Cells
10.2. Neutrophils
11. Galectins-13, -14 and -16
12. O-GlcNAc Cellular Homeostasis and Galectins
13. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Arthur, C.M.; Baruffi, M.D.; Cummings, R.D.; Stowell, S.R. Evolving mechanistic insights into galectin functions. Methods Mol. Biol. 2015, 1207, 1–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johannes, L.; Jacob, R.; Leffler, H. Galectins at a glance. J. Cell Sci. 2018, 131, jcs208884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, G.S.; Gupta, A.; Gupta, R.K. Animal Lectins: Form, Function and Clinical Applications; Springer: Vienna, Austria; New York, NY, USA, 2012; ISBN 978-3-7091-1064-5. [Google Scholar]
- Than, N.G.; Romero, R.; Xu, Y.; Erez, O.; Xu, Z.; Bhatti, G.; Leavitt, R.; Chung, T.H.; El-Azzamy, H.; LaJeunesse, C.; et al. Evolutionary origins of the placental expression of chromosome 19 cluster galectins and their complex dysregulation in preeclampsia. Placenta 2014, 35, 855–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thijssen, V.L.; Heusschen, R.; Caers, J.; Griffioen, A.W. Galectin expression in cancer diagnosis and prognosis: A systematic review. Biochim. Biophys. Acta 2015, 1855, 235–247. [Google Scholar] [CrossRef]
- Timoshenko, A.V. Towards molecular mechanisms regulating the expression of galectins in cancer cells under microenvironmental stress conditions. Cell. Mol. Life Sci. 2015, 72, 4327–4340. [Google Scholar] [CrossRef]
- Timoshenko, A.V.; Gorudko, I.V.; Maslakova, O.V.; André, S.; Kuwabara, I.; Liu, F.; Kaltner, H.; Gabius, H. Analysis of selected blood and immune cell responses to carbohydrate-dependent surface binding of proto- and chimera-type galectins. Mol. Cell. Biochem. 2003, 250, 139–149. [Google Scholar] [CrossRef]
- Yang, R.Y.; Liu, F.T. Galectins in cell growth and apoptosis. Cell. Mol. Life Sci. 2003, 60, 267–276. [Google Scholar] [CrossRef]
- Garner, O.B.; Baum, L.G. Galectin–glycan lattices regulate cell-surface glycoprotein organization and signalling. Biochem. Soc. Trans. 2008, 36, 1472–1477. [Google Scholar] [CrossRef]
- Compagno, D.; Jaworski, F.M.; Gentilini, L.; Contrufo, G.; Perez, I.; Elola, M.T.; Pregi, N.; Rabinovich, G.A.; Laderach, D.J. Galectins: Major signaling modulators inside and outside the cell. Curr. Mol. Med. 2014, 14, 630–651. [Google Scholar] [CrossRef]
- Nabi, I.R.; Shankar, J.; Dennis, J.W. The galectin lattice at a glance. J. Cell. Sci. 2015, 128, 2213–2219. [Google Scholar] [CrossRef] [Green Version]
- Bonzi, J.; Bornet, O.; Betzi, S.; Kasper, B.T.; Mahal, L.K.; Mancini, S.J.; Schiff, C.; Sebban-Kreuzer, C.; Guerlesquin, F.; Elantak, L. Pre-B cell receptor binding to galectin-1 modifies galectin-1/carbohydrate affinity to modulate specific galectin-1/glycan lattice interactions. Nat. Commun. 2015, 6, 6194. [Google Scholar] [CrossRef] [Green Version]
- Daley, D.; Mani, V.R.; Mohan, N.; Akkad, N.; Ochi, A.; Heindel, D.W.; Lee, K.B.; Zambirinis, C.P.; Pandian, G.S.B.; Savadkar, S.; et al. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat. Med. 2017, 23, 556–567. [Google Scholar] [CrossRef] [PubMed]
- Vladoiu, M.C.; Labrie, M.; St-Pierre, Y. Intracellular galectins in cancer cells: Potential new targets for therapy. Int. J. Oncol. 2014, 44, 1001–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paz, I.; Sachse, M.; Dupont, N.; Mounier, J.; Cederfur, C.; Enninga, J.; Leffler, H.; Poirier, F.; Prevost, M.-C.; Lafont, F.; et al. Galectin-3, a marker for vacuole lysis by invasive pathogens. Cell. Microbiol. 2010, 12, 530–544. [Google Scholar] [CrossRef] [PubMed]
- Thurston, T.L.M.; Wandel, M.P.; von Muhlinen, N.; Foeglein, Á.; Randow, F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 2012, 482, 414–418. [Google Scholar] [CrossRef]
- Weng, I.-C.; Chen, H.-L.; Lo, T.-H.; Lin, W.-H.; Chen, H.-Y.; Hsu, D.K.; Liu, F.-T. Cytosolic galectin-3 and -8 regulate antibacterial autophagy through differential recognition of host glycans on damaged phagosomes. Glycobiology 2018, 28, 392–405. [Google Scholar] [CrossRef]
- Li, F.-Y.; Weng, I.-C.; Lin, C.-H.; Kao, M.-C.; Wu, M.-S.; Chen, H.-Y.; Liu, F.-T. Helicobacter pylori induces intracellular galectin-8 aggregation around damaged lysosomes within gastric epithelial cells in a host O-glycan-dependent manner. Glycobiology 2019, 29, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Bissa, B.; Brecht, L.; Allers, L.; Choi, S.W.; Gu, Y.; Zbinden, M.; Burge, M.R.; Timmins, G.; Hallows, K.; et al. AMPK, a regulator of metabolism and autophagy, is activated by lysosomal damage via a novel galectin-directed ubiquitin signal transduction system. Mol. Cell 2020, 77, 951–969. [Google Scholar] [CrossRef]
- Lahm, H.; André, S.; Hoeflich, A.; Fischer, J.R.; Sordat, B.; Kaltner, H.; Wolf, E.; Gabius, H.-J. Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures. J. Cancer Res. Clin. Oncol. 2001, 127, 375–386. [Google Scholar] [CrossRef]
- Nio-Kobayashi, J. Tissue- and cell-specific localization of galectins, β-galactose-binding animal lectins, and their potential functions in health and disease. Anat. Sci. Int. 2017, 92, 25–36. [Google Scholar] [CrossRef]
- Xue, H.; Yang, R.-Y.; Tai, G.; Liu, F.-T. Galectin-12 inhibits granulocytic differentiation of human NB4 promyelocytic leukemia cells while promoting lipogenesis. J. Leukoc. Biol. 2016, 100, 657–664. [Google Scholar] [CrossRef] [Green Version]
- Abedin, M.J.; Kashio, Y.; Seki, M.; Nakamura, K.; Hirashima, M. Potential roles of galectins in myeloid differentiation into three different lineages. J. Leukoc. Biol. 2003, 73, 650–656. [Google Scholar] [CrossRef]
- Chan, J.; O’Donoghue, K.; Gavina, M.; Torrente, Y.; Kennea, N.; Mehmet, H.; Stewart, H.; Watt, D.J.; Morgan, J.E.; Fisk, N.M. Galectin-1 induces skeletal muscle differentiation in human fetal mesenchymal stem cells and increases muscle regeneration. Stem Cells 2006, 24, 1879–1891. [Google Scholar] [CrossRef] [PubMed]
- Timoshenko, A.V.; Lanteigne, J.; Kozak, K. Extracellular stress stimuli alter galectin expression profiles and adhesion characteristics of HL-60 cells. Mol. Cell. Biochem. 2016, 413, 137–143. [Google Scholar] [CrossRef]
- Vinnai, J.R.; Cumming, R.C.; Thompson, G.J.; Timoshenko, A.V. The association between oxidative stress-induced galectins and differentiation of human promyelocytic HL-60 cells. Exp. Cell Res. 2017, 355, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Kim, T.W.; Yoon, S.; Choi, S.-Y.; Kang, T.-W.; Kim, S.-Y.; Kwon, Y.-W.; Cho, E.-J.; Youn, H.-D. O-GlcNAc regulates pluripotency and reprogramming by directly acting on core components of the pluripotency network. Cell Stem Cell 2012, 11, 62–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, M.; Mizofuchi, H.; Kobayashi, Y.; Tsuzuki, G.; Yamamoto, M.; Wada, S.; Kamemura, K. Terminal differentiation program of skeletal myogenesis is negatively regulated by O-GlcNAc glycosylation. Biochim. Biophys. Acta 2012, 1820, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Miura, T.; Nishihara, S. O-GlcNAc is required for the survival of primed pluripotent stem cells and their reversion to the naïve state. Biochem. Biophys. Res. Comm. 2016, 480, 655–661. [Google Scholar] [CrossRef]
- Andres, L.M.; Blong, I.W.; Evans, A.C.; Rumachik, N.G.; Yamaguchi, T.; Pham, N.D.; Thompson, P.; Kohler, J.J.; Bertozzi, C.R. Chemical modulation of protein O-GlcNAcylation via OGT inhibition promotes human neural cell differentiation. ACS Chem. Biol. 2017, 12, 2030–2039. [Google Scholar] [CrossRef]
- Sherazi, A.A.; Jariwala, K.A.; Cybulski, A.N.; Lewis, J.W.; Karagiannis, J.; Cumming, R.C.; Timoshenko, A.V. Effects of global O-GlcNAcylation on galectin gene-expression profiles in human cancer cell lines. Anticancer Res. 2018, 38, 6691–6697. [Google Scholar] [CrossRef]
- Timoshenko, A.V. The role of galectins and O-GlcNAc in regulating promyelocytic cell stemness and differentiation. Mol. Biol. Cell 2019, 30, 3075. [Google Scholar]
- Barrow, H.; Guo, X.; Wandall, H.H.; Pedersen, J.W.; Fu, B.; Zhao, Q.; Chen, C.; Rhodes, J.M.; Yu, L.-G. Serum galectin-2, -4, and -8 are greatly increased in colon and breast cancer patients and promote cancer cell adhesion to blood vascular endothelium. Clin. Cancer Res. 2011, 17, 7035–7046. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.Y.; Lee, S.H.; Park, J.H.; Han, H.J. Interaction of galectin-1 with caveolae induces mouse embryonic stem cell proliferation through the Src, ERas, Akt and mTOR signaling pathways. Cell. Mol. Life Sci. 2009, 66, 1467–1478. [Google Scholar] [CrossRef] [PubMed]
- Sakaguchi, M.; Shingo, T.; Shimazaki, T.; Okano, H.J.; Shiwa, M.; Ishibashi, S.; Oguro, H.; Ninomiya, M.; Kadoya, T.; Horie, H.; et al. A carbohydrate-binding protein, Galectin-1, promotes proliferation of adult neural stem cells. Proc. Natl. Acad. Sci. USA 2006, 103, 7112–7117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camby, I.; Le Mercier, M.; Lefranc, F.; Kiss, R. Galectin-1: A small protein with major functions. Glycobiology 2006, 16, 137R–157R. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Mariman, E.; Keijer, J.; Bouwman, F.; Noben, J.-P.; Robben, J.; Renes, J. Profiling of the secreted proteins during 3T3-L1 adipocyte differentiation leads to the identification of novel adipokines. Cell. Mol. Life Sci. 2004, 61, 2405–2417. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.-H.; Kim, S.-J.; Kang, H.G.; Lee, H.-W.; Kim, J.-H.; Hwang, K.-A.; Song, J.; Chun, K.-H. Galectin-3 activates PPARγ and supports white adipose tissue formation and high-fat diet-induced obesity. Endocrinology 2015, 156, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.-Y.; Hsu, D.K.; Yu, L.; Chen, H.-Y.; Liu, F.-T. Galectin-12 is required for adipogenic signaling and adipocyte differentiation. J. Biol. Chem. 2004, 279, 29761–29766. [Google Scholar] [CrossRef] [Green Version]
- Krautbauer, S.; Eisinger, K.; Hader, Y.; Buechler, C. Free fatty acids and IL-6 induce adipocyte galectin-3 which is increased in white and brown adipose tissues of obese mice. Cytokine 2014, 69, 263–271. [Google Scholar] [CrossRef]
- Arikawa, T.; Matsukawa, A.; Watanabe, K.; Sakata, K.; Seki, M.; Nagayama, M.; Takeshita, K.; Ito, K.; Niki, T.; Oomizu, S.; et al. Galectin-9 accelerates transforming growth factor β3-induced differentiation of human mesenchymal stem cells to chondrocytes. Bone 2009, 44, 849–857. [Google Scholar] [CrossRef]
- Ahrens, I.; Domeij, H.; Topcic, D.; Haviv, I.; Merivirta, R.-M.; Agrotis, A.; Leitner, E.; Jowett, J.B.; Bode, C.; Lappas, M.; et al. Successful in vitro expansion and differentiation of cord blood derived CD34+ cells into early endothelial progenitor cells reveals highly differential gene expression. PLoS One 2011, 6, e23210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Furuhata, S.; Ando, K.; Oki, M.; Aoki, K.; Ohnishi, S.; Aoyagi, K.; Sasaki, H.; Sakamoto, H.; Yoshida, T.; Ohnami, S. Gene expression profiles of endothelial progenitor cells by oligonucleotide microarray analysis. Mol. Cell Biochem. 2007, 298, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-J.; Huang, B.H.; Zhang, J.; Carson, D.D.; Hooi, S.C. Repression of HIP/RPL29 expression induces differentiation in colon cancer cells. J. Cell. Physiol. 2006, 207, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Lutomski, D.; Fouillit, M.; Bourin, P.; Mellottée, D.; Denize, N.; Pontet, M.; Bladier, D.; Caron, M.; Joubert-Caron, R. Externalization and binding of galectin-1 on cell surface of K562 cells upon erythroid differentiation. Glycobiology 1997, 7, 1193–1198. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.-Y.; Zhao, K.-W.; Jiang, Y.; Zhao, M.; Chen, G.-Q. Synergistic induction of galectin-1 by CCAAT/enhancer binding protein α and hypoxia-inducible factor 1α and its role in differentiation of acute myeloid leukemic cells. J. Biol. Chem. 2011, 286, 36808–36819. [Google Scholar] [CrossRef] [Green Version]
- Sarafian, V.; Jans, R.; Poumay, Y. Expression of lysosome-associated membrane protein 1 (Lamp-1) and galectins in human keratinocytes is regulated by differentiation. Arch. Dermatol. Res. 2006, 298, 73–81. [Google Scholar] [CrossRef]
- Novak, R.; Dabelic, S.; Dumic, J. Galectin-1 and galectin-3 expression profiles in classically and alternatively activated human macrophages. Biochim. Biophys. Acta 2012, 1820, 1383–1390. [Google Scholar] [CrossRef]
- Sawa-Wejksza, K.; Dudek, A.; Lemieszek, M.; Kaławaj, K.; Kandefer-Szerszeń, M. Colon cancer–derived conditioned medium induces differentiation of THP-1 monocytes into a mixed population of M1/M2 cells. Tumour Biol. 2018, 40, 101042831879788. [Google Scholar] [CrossRef] [Green Version]
- Harwood, N.M.K.; Golden-Mason, L.; Cheng, L.; Rosen, H.R.; Mengshol, J.A. HCV-infected cells and differentiation increase monocyte immunoregulatory galectin-9 production. J. Leukoc. Biol. 2016, 99, 495–503. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Mayer, E.P.; Nachtigal, M. Galectin-3 expression in macrophages is signaled by Ras/MAP kinase pathway and up-regulated by modified lipoproteins. Biochim. Biophys. Acta 2003, 1641, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Dabelic, S.; Supraha, S.; Dumic, J. Galectin-3 in macrophage-like cells exposed to immunomodulatory drugs. Biochim. Biophys. Acta 2006, 1760, 701–709. [Google Scholar] [CrossRef]
- Zappelli, C.; van der Zwaan, C.; Thijssen-Timmer, D.C.; Mertens, K.; Meijer, A.B. Novel role for galectin-8 protein as mediator of coagulation factor V endocytosis by megakaryocytes. J. Biol. Chem. 2012, 287, 8327–8335. [Google Scholar] [CrossRef] [Green Version]
- Nangia-Makker, P.; Ochieng, J.; Christman, J.K.; Raz, A. Regulation of the expression of galactoside-binding lectin during human monocytic differentiation. Cancer Res. 1993, 53, 5022–5037. [Google Scholar]
- Le Marer, N. Galectin-3 expression in differentiating human myeloid cells. Cell Biol. Int. 2000, 24, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Cooper, D.N.; Barondes, S.H. Evidence for export of a muscle lectin from cytosol to extracellular matrix and for a novel secretory mechanism. J. Cell Biol. 1990, 110, 1681–1691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, F.L.; Wilson, T.J.G. The 14 kDa β-galactoside binding lectin in myoblast and myotube cultures: Localization by confocal microscopy. J. Cell Sci. 1992, 101, 635–646. [Google Scholar] [PubMed]
- Pasquini, L.A.; Millet, V.; Hoyos, H.C.; Giannoni, J.P.; Croci, D.O.; Marder, M.; Liu, F.T.; Rabinovich, G.A.; Pasquini, J.M. Galectin-3 drives oligodendrocyte differentiation to control myelin integrity and function. Cell Death Differ. 2011, 18, 1746–1756. [Google Scholar] [CrossRef] [PubMed]
- Stancic, M.; Slijepcevic, D.; Nomden, A.; Vos, M.J.; de Jonge, J.C.; Sikkema, A.H.; Gabius, H.-J.; Hoekstra, D.; Baron, W. Galectin-4, a novel neuronal regulator of myelination. Glia 2012, 60, 919–935. [Google Scholar] [CrossRef]
- Ikegame, M.; Tabuchi, Y.; Furusawa, Y.; Kawai, M.; Hattori, A.; Kondo, T.; Yamamoto, T. Tensile stress stimulates the expression of osteogenic cytokines/growth factors and matricellular proteins in the mouse cranial suture at the site of osteoblast differentiation. Biomed. Res. 2016, 37, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Simunovic, F.; Winninger, O.; Strassburg, S.; Koch, H.G.; Finkenzeller, G.; Stark, G.B.; Lampert, F.M. Increased differentiation and production of extracellular matrix components of primary human osteoblasts after cocultivation with endothelial cells: A quantitative proteomics approach. J. Cell Biochem. 2019, 120, 396–404. [Google Scholar] [CrossRef] [Green Version]
- Aubin, J.E.; Gupta, A.K.; Bhargava, U.; Turksen, K. Expression and regulation of galectin 3 in rat osteoblastic cells. J. Cell Physiol. 1996, 169, 468–480. [Google Scholar] [CrossRef]
- Simon, D.; Derer, A.; Andes, F.T.; Lezuo, P.; Bozec, A.; Schett, G.; Herrmann, M.; Harre, U. Galectin-3 as a novel regulator of osteoblast-osteoclast interaction and bone homeostasis. Bone 2017, 105, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Poirier, F.; Bourin, P.; Bladier, D.; Joubert-Caron, R.; Caron, M. Effect of 5-azacytidine and galectin-1 on growth and differentiation of the human b lymphoma cell line bl36. Cancer Cell Int. 2001, 1, 2. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.-M.; Chiu, Y.-K.; Hsu, T.-L.; Lin, I.-Y.; Hsieh, S.-L.; Lin, K.-I. Galectin-1 promotes immunoglobulin production during plasma cell differentiation. J. Immunol. 2008, 181, 4570–4579. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.-M.; Guan, C.-H.; Hsieh, H.-W.; Hsu, T.-L.; Tu, Z.; Wu, K.-J.; Lin, C.-H.; Lin, K.-I. Galectin-1 and galectin-8 have redundant roles in promoting plasma cell formation. J. Immunol. 2011, 187, 1643–1652. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Thalhamer, T.; Franca, R.F.; Xiao, S.; Wang, C.; Hotta, C.; Zhu, C.; Hirashima, M.; Anderson, A.C.; Kuchroo, V.K. Galectin-9-CD44 interaction enhances stability and function of adaptive regulatory T cells. Immunity 2014, 41, 270–282. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.; You, J.; Wang, W.; Lu, Y.; Hu, X.; Wang, C.; Liu, A.; Zhu, Y. Impact of galectin-1 on trophoblast stem cell differentiation and invasion in in vitro implantation model. Reprod. Sci. 2018, 25, 700–711. [Google Scholar] [CrossRef]
- You, J.-L.; Wang, W.; Tang, M.-Y.; Ye, Y.-H.; Liu, A.-X.; Zhu, Y.-M. A potential role of galectin-1 in promoting mouse trophoblast stem cell differentiation. Mol. Cell. Endocrinol. 2018, 470, 228–239. [Google Scholar] [CrossRef]
- Arikawa, T.; Simamura, E.; Shimada, H.; Nishi, N.; Tatsuno, T.; Ishigaki, Y.; Tomosugi, N.; Yamashiro, C.; Hata, T.; Takegami, T.; et al. Expression pattern of Galectin 4 in rat placentation. Placenta 2012, 33, 885–887. [Google Scholar] [CrossRef]
- Sasaki, T. Galectin-1 induces astrocyte differentiation, which leads to production of brain-derived neurotrophic factor. Glycobiology 2004, 14, 357–363. [Google Scholar] [CrossRef]
- Dudics, V.; Kunstár, A.; Kovács, J.; Lakatos, T.; Géher, P.; Gömör, B.; Monostori, E.; Uher, F. Chondrogenic potential of mesenchymal stem cells from patients with rheumatoid arthritis and osteoarthritis: Measurements in a microculture system. Cells Tissues Organs 2009, 189, 307–316. [Google Scholar] [CrossRef] [PubMed]
- White, M.J.V.; Roife, D.; Gomer, R.H. Galectin-3 binding protein secreted by breast cancer cells inhibits monocyte-derived fibrocyte differentiation. J. Immunol. 2015, 195, 1858–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vas, V.; Fajka-Boja, R.; Ion, G.; Dudics, V.; Monostori, É.; Uher, F. Biphasic effect of recombinant galectin-1 on the growth and death of early hematopoietic cells. Stem Cells 2005, 23, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Okamura, L.H.; Cordero, P.; Palomino, J.; Parraguez, V.H.; Torres, C.G.; Peralta, O.A. Myogenic differentiation potential of mesenchymal stem cells derived from fetal bovine bone marrow. Anim. Biotechnol. 2018, 29, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Goldring, K.; Jones, G.E.; Thiagarajah, R.; Watt, D.J. The effect of galectin-1 on the differentiation of fibroblasts and myoblasts in vitro. J. Cell Sci. 2002, 115, 355–366. [Google Scholar]
- Watt, D.J.; Jones, G.E.; Goldring, K. The involvement of galectin-1 in skeletal muscle determination, differentiation and regeneration. Glycoconj. J. 2002, 19, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, M.; Thomas, L.; Mathieu, P.; Carabias, P.; Troncoso, M.F.; Pasquini, J.M.; Rabinovich, G.A.; Pasquini, L.A. Galectin-1 circumvents lysolecithin-induced demyelination through the modulation of microglial polarization/phagocytosis and oligodendroglial differentiation. Neurobiol. Dis. 2016, 96, 127–143. [Google Scholar] [CrossRef]
- Andersen, H.; Jensen, O.N.; Moiseeva, E.P.; Eriksen, E.F. A proteome study of secreted prostatic factors affecting osteoblastic activity: Galectin-1 is involved in differentiation of human bone marrow stromal cells. J. Bone Miner. Res. 2003, 18, 195–203. [Google Scholar] [CrossRef]
- de la Fuente, H.; Cruz-Adalia, A.; Martinez del Hoyo, G.; Cibrian-Vera, D.; Bonay, P.; Perez-Hernandez, D.; Vazquez, J.; Navarro, P.; Gutierrez-Gallego, R.; Ramirez-Huesca, M.; et al. The leukocyte activation receptor CD69 controls T cell differentiation through its interaction with galectin-1. Mol. Cell. Biol. 2014, 34, 2479–2487. [Google Scholar] [CrossRef] [Green Version]
- Cheng, D.-E.; Hung, J.-Y.; Huang, M.-S.; Hsu, Y.-L.; Lu, C.-Y.; Tsai, E.-M.; Hou, M.-F.; Kuo, P.-L. Myosin IIa activation is crucial in breast cancer derived galectin-1 mediated tolerogenic dendritic cell differentiation. Biochim. Biophys. Acta 2014, 1840, 1965–1976. [Google Scholar] [CrossRef]
- Fischer, I.; Jeschke, U.; Friese, K.; Daher, S.; Betz, A.G. The role of galectin-1 in trophoblast differentiation and signal transduction. J. Reprod. Immunol. 2011, 90, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Yıldırım, C.; Vogel, D.Y.S.; Hollander, M.R.; Baggen, J.M.; Fontijn, R.D.; Nieuwenhuis, S.; Haverkamp, A.; de Vries, M.R.; Quax, P.H.A.; Garcia-Vallejo, J.J.; et al. Galectin-2 induces a proinflammatory, anti-arteriogenic phenotype in monocytes and macrophages. PLoS ONE 2015, 10, e0124347. [Google Scholar] [CrossRef] [PubMed]
- Chung, A.W.; Sieling, P.A.; Schenk, M.; Teles, R.M.B.; Krutzik, S.R.; Hsu, D.K.; Liu, F.-T.; Sarno, E.N.; Rea, T.H.; Stenger, S.; et al. Galectin-3 regulates the innate immune response of human monocytes. J. Infect. Dis. 2013, 207, 947–956. [Google Scholar] [CrossRef] [Green Version]
- Nakajima, K.; Kho, D.H.; Yanagawa, T.; Harazono, Y.; Gao, X.; Hogan, V.; Raz, A. Galectin-3 inhibits osteoblast differentiation through Notch signaling. Neoplasia 2014, 16, 939–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.-J.; Kukita, A.; Teramachi, J.; Nagata, K.; Wu, Z.; Akamine, A.; Kukita, T. A possible suppressive role of galectin-3 in upregulated osteoclastogenesis accompanying adjuvant-induced arthritis in rats. Lab Investig. 2009, 89, 26–37. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Zeng, X.; Wang, X.; Chen, S.; Gui, L.; Lin, M.-J. Galectin-3- mediated transdifferentiation of pulmonary artery endothelial cells contributes to hypoxic pulmonary vascular remodeling. Cell Physiol. Biochem. 2018, 51, 763–777. [Google Scholar] [CrossRef]
- Hong, S.-H.; Shin, J.-S.; Chung, H.; Park, C.-G. Galectin-4 interaction with CD14 triggers the differentiation of monocytes into macrophage-like cells via the MAPK signaling pathway. Immune Netw. 2019, 19, e17. [Google Scholar] [CrossRef]
- Luo, Z.; Ji, Y.; Tian, D.; Zhang, Y.; Chang, S.; Yang, C.; Zhou, H.; Chen, Z.K. Galectin-7 promotes proliferation and Th1/2 cells polarization toward Th1 in activated CD4+ T cells by inhibiting The TGFβ/Smad3 pathway. Mol. Immunol. 2018, 101, 80–85. [Google Scholar] [CrossRef]
- Vinik, Y.; Shatz-Azoulay, H.; Hiram-Bab, S.; Kandel, L.; Gabet, Y.; Rivkin, G.; Zick, Y. Ablation of the mammalian lectin galectin-8 induces bone defects in mice. FASEB J. 2018, 32, 2366–2380. [Google Scholar] [CrossRef] [Green Version]
- Vinik, Y.; Shatz-Azoulay, H.; Vivanti, A.; Hever, N.; Levy, Y.; Karmona, R.; Brumfeld, V.; Baraghithy, S.; Attar-Lamdar, M.; Boura-Halfon, S.; et al. The mammalian lectin galectin-8 induces RANKL expression, osteoclastogenesis, and bone mass reduction in mice. eLife 2015, 4, e05914. [Google Scholar] [CrossRef]
- Sampson, J.F.; Suryawanshi, A.; Chen, W.; Rabinovich, G.A.; Panjwani, N. Galectin-8 promotes regulatory T-cell differentiation by modulating IL-2 and TGFβ signaling. Immunol. Cell Biol. 2016, 94, 213–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enninga, E.A.L.; Nevala, W.K.; Holtan, S.G.; Leontovich, A.A.; Markovic, S.N. Galectin-9 modulates immunity by promoting Th2/M2 differentiation and impacts survival in patients with metastatic melanoma. Melanoma Res. 2016, 26, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Tanikawa, R.; Tanikawa, T.; Hirashima, M.; Yamauchi, A.; Tanaka, Y. Galectin-9 induces osteoblast differentiation through the CD44/Smad signaling pathway. Biochem. Biophys. Res. Commun. 2010, 394, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, K.; Kukita, A.; Li, Y.-J.; Uehara, N.; Zhang, J.-Q.; Takahashi, I.; Kukita, T. Regulation of osteoclastogenesis through Tim-3: Possible involvement of the Tim-3/galectin-9 system in the modulation of inflammatory bone destruction. Lab Investig. 2014, 94, 1200–1211. [Google Scholar] [CrossRef] [Green Version]
- Tao, Y.F.; Lin, F.; Yan, X.Y.; Gao, X.G.; Teng, F.; Fu, Z.R.; Wang, Z.X. Galectin-9 in combination with EX-527 prolongs the survival of cardiac allografts in mice after cardiac transplantation. Transplant. Proc. 2015, 47, 2003–2009. [Google Scholar] [CrossRef]
- Seki, M.; Oomizu, S.; Sakata, K.; Sakata, A.; Arikawa, T.; Watanabe, K.; Ito, K.; Takeshita, K.; Niki, T.; Saita, N.; et al. Galectin-9 suppresses the generation of Th17, promotes the induction of regulatory T cells, and regulates experimental autoimmune arthritis. Clin. Immunol. 2008, 127, 78–88. [Google Scholar] [CrossRef]
- Bradley, S.S.; Dick, M.F.; Guglielmo, C.G.; Timoshenko, A.V. Seasonal and flight-related variation of galectin expression in heart, liver and flight muscles of yellow-rumped warblers (Setophaga coronata). Glycoconj. J. 2017, 34, 603–611. [Google Scholar] [CrossRef]
- Dias-Baruffi, M.; Stowell, S.R.; Song, S.C.; Arthur, C.M.; Cho, M.; Rodrigues, L.C.; Montes, M.A.B.; Rossi, M.A.; James, J.A.; McEver, R.P.; et al. Differential expression of immunomodulatory galectin-1 in peripheral leukocytes and adult tissues and its cytosolic organization in striated muscle. Glycobiology 2010, 20, 507–520. [Google Scholar] [CrossRef] [Green Version]
- González, M.M.; Yoshizaki, L.; Wolfenstein-Todel, C.; Fink, N.E. Isolation of galectin-1 from human platelets: Its interaction with actin. Protein J. 2012, 31, 8–14. [Google Scholar] [CrossRef]
- Georgiadis, V.; Stewart, H.J.S.; Pollard, H.J.; Tavsanoglu, Y.; Prasad, R.; Horwood, J.; Deltour, L.; Goldring, K.; Poirier, F.; Lawrence-Watt, D.J. Lack of galectin-1 results in defects in myoblast fusion and muscle regeneration. Dev. Dyn. 2007, 236, 1014–1024. [Google Scholar] [CrossRef]
- Ding, Z.; Liu, X.; Ren, X.; Zhang, Q.; Zhang, T.; Qian, Q.; Liu, W.; Jiang, C. Galectin-1-induced skeletal muscle cell differentiation of mesenchymal stem cells seeded on an acellular dermal matrix improves injured anal sphincter. Discov. Med. 2016, 21, 331–340. [Google Scholar] [PubMed]
- Maquoi, E.; van den Brûle, F.A.; Castronovo, V.; Foidart, J.-M. Changes in the distribution pattern of galectin-1 and galectin-3 in human placenta correlates with the differentiation pathways of trophoblasts. Placenta 1997, 18, 433–439. [Google Scholar] [CrossRef]
- Barrientos, G.; Freitag, N.; Tirado-González, I.; Unverdorben, L.; Jeschke, U.; Thijssen, V.L.J.L.; Blois, S.M. Involvement of galectin-1 in reproduction: Past, present and future. Hum. Reprod. Update 2014, 20, 175–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Than, N.G.; Erez, O.; Wildman, D.E.; Tarca, A.L.; Edwin, S.S.; Abbas, A.; Hotra, J.; Kusanovic, J.P.; Gotsch, F.; Hassan, S.S.; et al. Severe preeclampsia is characterized by increased placental expression of galectin-1. J. Matern. Neonatal Med. 2008, 21, 429–442. [Google Scholar] [CrossRef] [Green Version]
- Baines, K.J.; Renaud, S.J. Transcription factors that regulate trophoblast development and function. Prog. Mol. Biol. Transl. Sci. 2017, 145, 39–88. [Google Scholar] [CrossRef]
- Vicovac, L.; Jankovic, M.; Cuperlovic, M. Galectin-1 and -3 in cells of the first trimester placental bed. Hum. Reprod. 1998, 13, 730–735. [Google Scholar] [CrossRef] [Green Version]
- James, J.L.; Stone, P.R.; Chamley, L.W. Cytotrophoblast differentiation in the first trimester of pregnancy: Evidence for separate progenitors of extravillous trophoblasts and syncytiotrophoblast. Reproduction 2005, 130, 95–103. [Google Scholar] [CrossRef]
- Tirado-Gonzalez, I.; Freitag, N.; Barrientos, G.; Shaikly, V.; Nagaeva, O.; Strand, M.; Kjellberg, L.; Klapp, B.F.; Mincheva-Nilsson, L.; Cohen, M.; et al. Galectin-1 influences trophoblast immune evasion and emerges as a predictive factor for the outcome of pregnancy. Mol. Hum. Reprod. 2013, 19, 43–53. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Thirkill, T.L.; Ji, J.; Monte, L.H.; Douglas, G.C. Differential effects of sodium butyrate and lithium chloride on rhesus monkey trophoblast differentiation. PLoS One 2015, 10, e0135089. [Google Scholar] [CrossRef] [Green Version]
- Renaud, S.J.; Chakraborty, D.; Mason, C.W.; Rumi, M.A.K.; Vivian, J.L.; Soares, M.J. OVO-like 1 regulates progenitor cell fate in human trophoblast development. Proc. Natl. Acad. Sci. USA 2015, 112, E6175–E6184. [Google Scholar] [CrossRef] [Green Version]
- Hutter, S.; Knabl, J.; Andergassen, U.; Hofmann, S.; Kuhn, C.; Mahner, S.; Arck, P.; Jeschke, U. Placental expression patterns of galectin-1, galectin-2, galectin-3 and galectin-13 in cases of intrauterine growth restriction (IUGR). Int. J. Mol. Sci. 2016, 17, 523. [Google Scholar] [CrossRef] [PubMed]
- Jariwala, K.A.; Sherazi, A.A.; Tazhitdinova, R.; Shum, K.; Guevorguian, P.; Karagiannis, J.; Staples, J.F.; Timoshenko, A.V. The association between increasing levels of O-GlcNAc and galectins in the liver tissue of hibernating thirteen-lined ground squirrels (Ictidomys tridecemlineatus). Cell Tissue Res. 2020, 381, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Ramasamy, S.; Duraisamy, S.; Barbashov, S.; Kawano, T.; Kharbanda, S.; Kufe, D. The MUC1 and galectin-3 oncoproteins function in a microRNA-dependent regulatory loop. Mol. Cell 2007, 27, 992–1004. [Google Scholar] [CrossRef] [Green Version]
- Timoshenko, A.V.; Gabius, H.-J. Efficient induction of superoxide release from human neutrophils by the galactoside-specific lectin from Viscum album. Biol. Chem. Hoppe-Seyler 1993, 374, 237–244. [Google Scholar] [CrossRef]
- Timoshenko, A.V.; André, S.; Kaltner, H.; Dong, X.; Gabius, H.-J. Generation of H2O2 by human neutrophils and changes of cytosolic Ca2+ and pH of rat thymocytes in response to galactoside-binding proteins (lectins or immunoglobulins). Biosci. Rep. 1997, 17, 219–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timoshenko, A.V.; Kayser, K.; Drings, P.; André, S.; Dong, X.; Kaltner, H.; Schneller, M.; Gabius, H.-J. Carbohydrate-binding proteins (plant/human lectins and autoantibodies from human serum) as mediators of release of lysozyme, elastase, and myeloperoxidase from human neutrophils. Res. Exp. Med. 1995, 195, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.C.; Kabeya, L.M.; Azzolini, A.E.C.S.; Cerri, D.G.; Stowell, S.R.; Cummings, R.D.; Lucisano-Valim, Y.M.; Dias-Baruffi, M. Galectin-1 modulation of neutrophil reactive oxygen species production depends on the cell activation state. Mol. Immunol. 2019, 116, 80–89. [Google Scholar] [CrossRef]
- Garín, M.I.; Chu, C.-C.; Golshayan, D.; Cernuda-Morollón, E.; Wait, R.; Lechler, R.I. Galectin-1: A key effector of regulation mediated by CD4+CD25+ T cells. Blood 2007, 109, 2058–2065. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.D.; Whiting, C.C.; Tomassian, T.; Pang, M.; Bissel, S.J.; Baum, L.G.; Mossine, V.V.; Poirier, F.; Huflejt, M.E.; Miceli, M.C. Endogenous galectin-1 enforces class I–restricted TCR functional fate decisions in thymocytes. Blood 2008, 112, 120–130. [Google Scholar] [CrossRef] [Green Version]
- Benvenuto, G.; Carpentieri, M.L.; Salvatore, P.; Cindolo, L.; Bruni, C.B.; Chiariotti, L. Cell-specific transcriptional regulation and reactivation of galectin-1 gene expression are controlled by DNA methylation of the promoter region. Mol. Cell. Biol. 1996, 16, 2736–2743. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.-M.; Lin, K.-I. Examination of the role of galectins in plasma cell differentiation. Methods Mol. Biol. 2015, 1207, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Rodríguez, E.V.; Montes, C.L.; Motrán, C.C.; Zuniga, E.I.; Liu, F.-T.; Rabinovich, G.A.; Gruppi, A. Galectin-3 mediates IL-4-induced survival and differentiation of B cells: Functional cross-talk and implications during Trypanosoma cruzi infection. J. Immunol. 2004, 172, 493–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, C.; Chase, L.G.; Hajivandi, M.; Agnew, B. Metabolic labeling and click chemistry detection of glycoprotein markers of mesenchymal stem cell differentiation. Methods Mol. Biol. 2011, 698, 459–484. [Google Scholar] [CrossRef] [PubMed]
- Nutma, E.; van Gent, D.; Amor, S.; Peferoen, L.A.N. Astrocyte and oligodendrocyte cross-talk in the central nervous system. Cells 2020, 9, 600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motohashi, T.; Nishioka, M.; Kitagawa, D.; Kawamura, N.; Watanabe, N.; Wakaoka, T.; Kadoya, T.; Kunisada, T. Galectin-1 enhances the generation of neural crest cells. Int. J. Dev. Biol. 2017, 61, 407–413. [Google Scholar] [CrossRef]
- Giuliani, N.; Lisignoli, G.; Magnani, M.; Racano, C.; Bolzoni, M.; Dalla Palma, B.; Spolzino, A.; Manferdini, C.; Abati, C.; Toscani, D.; et al. New insights into osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells and their potential clinical applications for bone regeneration in pediatric orthopaedics. Stem Cells Intl. 2013, 2013, 1–11. [Google Scholar] [CrossRef]
- Scott, K.; Weinberg, C. Galectin-1: A bifunctional regulator of cellular proliferation. Glycoconj. J. 2002, 19, 467–477. [Google Scholar] [CrossRef]
- Mantuano, N.R.; Oliveira-Nunes, M.C.; Alisson-Silva, F.; Dias, W.B.; Todeschini, A.R. Emerging role of glycosylation in the polarization of tumor-associated macrophages. Pharmacol. Res. 2019, 146, 104285. [Google Scholar] [CrossRef]
- Hutter, S.; Martin, N.; von Schönfeldt, V.; Messner, J.; Kuhn, C.; Hofmann, S.; Andergassen, U.; Knabl, J.; Jeschke, U. Galectin 2 (gal-2) expression is downregulated on protein and mRNA level in placentas of preeclamptic (PE) patients. Placenta 2015, 36, 438–445. [Google Scholar] [CrossRef]
- Unverdorben, L.; Haufe, T.; Santoso, L.; Hofmann, S.; Jeschke, U.; Hutter, S. Prototype and chimera-type galectins in placentas with spontaneous and recurrent miscarriages. Int. J. Mol. Sci. 2016, 17, 644. [Google Scholar] [CrossRef] [Green Version]
- van der Velde, A.R.; Meijers, W.C.; Ho, J.E.; Brouwers, F.P.; Rienstra, M.; Bakker, S.J.L.; Muller Kobold, A.C.; van Veldhuisen, D.J.; van Gilst, W.H.; van der Harst, P.; et al. Serial galectin-3 and future cardiovascular disease in the general population. Heart 2016, 102, 1134–1141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peacock, W.F.; DiSomma, S. Emergency department use of galectin-3. Crit. Pathw. Cardiol. 2014, 13, 73–77. [Google Scholar] [CrossRef]
- Iacobini, C.; Fantauzzi, C.B.; Pugliese, G.; Menini, S. Role of galectin-3 in bone cell differentiation, bone pathophysiology and vascular osteogenesis. Int. J. Mol. Sci. 2017, 18, 2481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ilmer, M.; Mazurek, N.; Byrd, J.C.; Ramirez, K.; Hafley, M.; Alt, E.; Vykoukal, J.; Bresalier, R.S. Cell surface galectin-3 defines a subset of chemoresistant gastrointestinal tumor-initiating cancer cells with heightened stem cell characteristics. Cell Death Dis. 2016, 7, e2337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, H.G.; Kim, D.-H.; Kim, S.-J.; Cho, Y.; Jung, J.; Jang, W.; Chun, K.-H. Galectin-3 supports stemness in ovarian cancer stem cells by activation of the Notch1 intracellular domain. Oncotarget 2016, 7, 68229–68241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nangia-Makker, P.; Hogan, V.; Raz, A. Galectin-3 and cancer stemness. Glycobiology 2018, 28, 172–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niida, S.; Amizuka, N.; Hara, F.; Ozawa, H.; Kodama, H. Expression of Mac-2 antigen in the preosteoclast and osteoclast identified in the op/op mouse injected with macrophage colony-stimulating factor. J. Bone Miner. Res. 2009, 9, 873–881. [Google Scholar] [CrossRef]
- Aubin, J.E.; Liu, F.; Malaval, L.; Gupta, A.K. Osteoblast and chondroblast differentiation. Bone 1995, 17, S77–S83. [Google Scholar] [CrossRef]
- Chen, W.-T.; Zhang, F.; Zhao, X.-Q.; Yu, B.; Wang, B.-W. Galectin-3 and TRIM16 coregulate osteogenic differentiation of human bone marrow-derived mesenchymal stem cells at least partly via enhancing autophagy. Bone 2020, 131, 115059. [Google Scholar] [CrossRef]
- Gao, P.; Simpson, J.L.; Zhang, J.; Gibson, P.G. Galectin-3: Its role in asthma and potential as an anti-inflammatory target. Respir. Res. 2013, 14, 136. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Alvarez, L.; Ortega, E. The many roles of galectin-3, a multifaceted molecule, in innate immune responses against pathogens. Mediators Inflamm. 2017, 2017, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagel, A.K.; Schilling, M.; Comte-Walters, S.; Berkaw, M.N.; Ball, L.E. Identification of O -linked N -Acetylglucosamine (O-GlcNAc)-modified osteoblast proteins by electron transfer dissociation tandem mass spectrometry reveals proteins critical for bone formation. Mol. Cell Proteomics. 2013, 12, 945–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koyama, T.; Kamemura, K. Global increase in O-linked N-acetylglucosamine modification promotes osteoblast differentiation. Exp. Cell Res. 2015, 338, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Brand, C.; Oliveira, F.L.; Ricon, L.; Fermino, M.L.; Boldrini, L.C.; Hsu, D.K.; Liu, F.T.; Chammas, R.; Borojevic, R.; Farina, M.; et al. The bone marrow compartment is modified in the absence of galectin-3. Cell Tissue Res. 2011, 346, 427–437. [Google Scholar] [CrossRef] [Green Version]
- Souza, B.S.D.F.; Silva, K.N.D.; Silva, D.N.; Rocha, V.P.C.; Paredes, B.D.; Azevedo, C.M.; Nonaka, C.K.; Carvalho, G.B.; Vasconcelos, J.F.; Santos, R.R.D.; et al. Galectin-3 knockdown impairs survival, migration, and immunomodulatory actions of mesenchymal stromal cells in a mouse model of Chagas disease cardiomyopathy. Stem Cells Int. 2017, 2017, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, W.-C.; Mackinnon, A.C.; Lu, W.-Y.; Jung, J.; Boulter, L.; Henderson, N.C.; Simpson, K.J.; Schotanus, B.; Wojtacha, D.; Bird, T.G.; et al. Galectin-3 regulates hepatic progenitor cell expansion during liver injury. Gut 2015, 64, 312–321. [Google Scholar] [CrossRef] [Green Version]
- Asthana, A.; Ramakrishnan, P.; Vicioso, Y.; Zhang, K.; Parameswaran, R. Hexosamine biosynthetic pathway inhibition leads to AML cell differentiation and cell death. Mol. Cancer Ther. 2018, 17, 2226–2237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.T.; Hsu, D.K.; Zuberi, R.I.; Kuwabara, I.; Chi, E.Y.; Henderson, W.R., Jr. Expression and function of galectin-3, a β-galactoside-binding lectin, in human monocytes and macrophages. Am. J. Pathol. 1995, 147, 1016–1028. [Google Scholar]
- Rios, F.J.; Touyz, R.M.; Montezano, A.C. Isolation and differentiation of human macrophages. Methods Mol. Biol. 2017, 1527, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Coillard, A.; Segura, E. In vivo differentiation of human monocytes. Front. Immunol. 2019, 10, 1907. [Google Scholar] [CrossRef]
- Hoyer, K.K.; Pang, M.; Gui, D.; Shintaku, I.P.; Kuwabara, I.; Liu, F.-T.; Said, J.W.; Baum, L.G.; Teitell, M.A. An anti-apoptotic role for galectin-3 in diffuse large B-cell lymphomas. Am. J. Pathol. 2004, 164, 893–902. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, F.L.; Chammas, R.; Ricon, L.; Fermino, M.L.; Bernardes, E.S.; Hsu, D.K.; Liu, F.-T.; Borojevic, R.; El-Cheikh, M.C. Galectin-3 regulates peritoneal B1-cell differentiation into plasma cells. Glycobiology 2009, 19, 1248–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, F.L.; Bernardes, E.S.; Brand, C.; dos Santos, S.N.; Cabanel, M.P.; Arcanjo, K.D.; Brito, J.M.; Borojevic, R.; Chammas, R.; El-Cheikh, M.C. Lack of galectin-3 up-regulates IgA expression by peritoneal B1 lymphocytes during B cell differentiation. Cell Tissue Res. 2016, 363, 411–426. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, F.L.; dos Santos, S.N.; Ricon, L.; da Costa, T.P.; Pereira, J.X.; Brand, C.; Fermino, M.L.; Chammas, R.; Bernardes, E.S.; El-Cheikh, M.C. Lack of galectin-3 modifies differentially Notch ligands in bone marrow and spleen stromal cells interfering with B cell differentiation. Sci. Rep. 2018, 8, 3495. [Google Scholar] [CrossRef]
- Kiwaki, K.; Novak, C.M.; Hsu, D.K.; Liu, F.-T.; Levine, J.A. Galectin-3 stimulates preadipocyte proliferation and is up-regulated in growing adipose tissue. Obesity 2007, 15, 32–39. [Google Scholar] [CrossRef]
- Menini, S.; Iacobini, C.; Blasetti Fantauzzi, C.; Pesce, C.M.; Pugliese, G. Role of galectin-3 in obesity and impaired glucose homeostasis. Oxid. Med. Cell. Longev. 2016, 2016, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, Y.; Ma, S.-R.; Zuo, Z.-Y.; Wu, Y.-B.; Kong, W.-J.; Wang, A.-P.; Jiang, J.-D. Berberine inhibits adipocyte differentiation, proliferation and adiposity through down-regulating galectin-3. Sci. Rep. 2019, 9, 13415. [Google Scholar] [CrossRef] [Green Version]
- Thomas, L.; Pasquini, L.A. Galectin-3-mediated glial crosstalk drives oligodendrocyte differentiation and (re)myelination. Front. Cell. Neurosci. 2018, 12, 297. [Google Scholar] [CrossRef]
- Thomas, L.; Pasquini, L.A. Extracellular galectin-3 induces accelerated oligodendroglial differentiation through changes in signaling pathways and cytoskeleton dynamics. Mol. Neurobiol. 2019, 56, 336–349. [Google Scholar] [CrossRef]
- Cai, Z.; Zeng, Y.; Xu, B.; Gao, Y.; Wang, S.; Zeng, J.; Chen, L.; Huang, A.; Liu, X.; Liu, J. Galectin-4 serves as a prognostic biomarker for the early recurrence / metastasis of hepatocellular carcinoma. Cancer Sci. 2014, 105, 1510–1517. [Google Scholar] [CrossRef]
- Yilmaz, H.; Inan, O.; Darcin, T.; Bilgic, M.A.; Akcay, A. Serum galectin-3 levels were associated with proteinuria in patients with Familial Mediterranean Fever. Clin. Exp. Nephrol. 2015, 19, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Rechreche, H.; Mallo, G.V.; Montalto, G.; Dagorn, J.-C.; Iovanna, J.L. Cloning and expression of the mRNA of human galectin-4, an S-type lectin down-regulated in colorectal cancer. Eur. J. Biochem. 1997, 248, 225–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duerr, E.-M.; Mizukami, Y.; Ng, A.; Xavier, R.J.; Kikuchi, H.; Deshpande, V.; Warshaw, A.L.; Glickman, J.; Kulke, M.H.; Chung, D.C. Defining molecular classifications and targets in gastroenteropancreatic neuroendocrine tumors through DNA microarray analysis. Endocr. Relat. Cancer 2008, 15, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Michalak, M.; Warnken, U.; André, S.; Schnölzer, M.; Gabius, H.-J.; Kopitz, J. Detection of proteome changes in human colon cancer induced by cell surface binding of growth-inhibitory human galectin-4 using quantitative SILAC-based proteomics. J. Proteome Res. 2016, 15, 4412–4422. [Google Scholar] [CrossRef] [PubMed]
- Satelli, A.; Rao, P.S.; Thirumala, S.; Rao, U.S. Galectin-4 functions as a tumor suppressor of human colorectal cancer. Int. J. Cancer 2011, 129, 799–809. [Google Scholar] [CrossRef] [Green Version]
- Harosh-Davidovich, S.B.; Khalaila, I. O -GlcNAcylation affects β-catenin and E-cadherin expression, cell motility and tumorigenicity of colorectal cancer. Exp. Cell Res. 2018, 364, 42–49. [Google Scholar] [CrossRef]
- de Jong, C.G.H.M.; Stancic, M.; Pinxterhuis, T.H.; van Horssen, J.; van Dam, A.-M.; Gabius, H.-J.; Baron, W. Galectin-4, a negative regulator of oligodendrocyte differentiation, is persistently present in axons and microglia/macrophages in multiple sclerosis lesions. J. Neuropathol. Exp. Neurol. 2018, 77, 1024–1038. [Google Scholar] [CrossRef] [Green Version]
- Arikawa, T.; Liao, S.; Shimada, H.; Inoue, T.; Sakata-Haga, H.; Nakamura, T.; Hatta, T.; Shoji, H. Galectin-4 expression is down-regulated in response to autophagy during differentiation of rat trophoblast cells. Sci. Rep. 2016, 6, 32248. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.; Kim, J.; Zheng, Z.; Choi, M.; Choi, I.; Oh, H.; Ahn, K. Decreased tissue and serum expression of galectin-7 in patients with hypertrophic scars. Acta Derm. Venerol. 2013, 93, 669–673. [Google Scholar] [CrossRef]
- Magnaldo, T.; Fowlis, D.; Darmon, M. Galectin-7, a marker of all types of stratified epithelia. Differentiation 1998, 63, 159–168. [Google Scholar] [CrossRef]
- Advedissian, T.; Deshayes, F.; Viguier, M. Galectin-7 in epithelial homeostasis and carcinomas. Int. J. Mol. Sci. 2017, 18, 2760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnaldo, T.; Bernerd, F.; Darmon, M. Galectin-7, a human 14-kDa S-lectin, specifically expressed in keratinocytes and sensitive to retinoic acid. Dev. Biol. 1995, 168, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-L.; Chiang, P.-C.; Lo, C.-H.; Lo, Y.-H.; Hsu, D.K.; Chen, H.-Y.; Liu, F.-T. Galectin-7 regulates keratinocyte proliferation and differentiation through JNK-miR-203-p63 signaling. J. Investig. Dermatol. 2016, 136, 182–191. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Ding, M.; Yu, M.-L.; Feng, M.-X.; Tan, L.-J.; Zhao, F.-K. Identification of galectin-7 as a potential biomarker for esophageal squamous cell carcinoma by proteomic analysis. BMC Cancer 2010, 10, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, K.-T.; Liu, Y.-H.; Chen, Y.-H.; Lin, C.-Y.; Huang, C.-H.; Yen, M.-C.; Kuo, P.-L. Serum galectin-9 and galectin-3-binding protein in acute dengue virus infection. Int. J. Mol. Sci. 2016, 17, 832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komohara, Y.; Fujiwara, Y.; Ohnishi, K.; Takeya, M. Tumor-associated macrophages: Potential therapeutic targets for anti-cancer therapy. Adv. Drug Deliv. Rev. 2016, 99, 180–185. [Google Scholar] [CrossRef]
- Zhu, C.; Anderson, A.C.; Schubart, A.; Xiong, H.; Imitola, J.; Khoury, S.J.; Zheng, X.X.; Strom, T.B.; Kuchroo, V.K. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nat. Immunol. 2005, 6, 1245–1252. [Google Scholar] [CrossRef]
- Fan, J.; Tang, X.; Wang, Q.; Zhang, Z.; Wu, S.; Li, W.; Liu, S.; Yao, G.; Chen, H.; Sun, L. Mesenchymal stem cells alleviate experimental autoimmune cholangitis through immunosuppression and cytoprotective function mediated by galectin-9. Stem Cell Res. Ther. 2018, 9, 237. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.-Z.; Huang, L.-Y.; Wu, C.-R.; You, H.; Ma, H.; Jia, J.-D. Activated rat hepatic stellate cells influence Th1/Th2 profile in vitro. World J. Gastroenterol. 2015, 21, 7165–7171. [Google Scholar] [CrossRef] [Green Version]
- Chua, J.C.; Douglass, J.A.; Gillman, A.; O’Hehir, R.E.; Meeusen, E.N. Galectin-10, a potential biomarker of eosinophilic airway inflammation. PLoS ONE 2012, 7, e42549. [Google Scholar] [CrossRef] [Green Version]
- Paul, C.C.; Ackerman, S.J.; Mahrer, S.; Tolbert, M.; Dvorak, A.M.; Baumann, M.A. Cytokine induction of granule protein synthesis in an eosinophil-inducible human myeloid cell line, AML14. J. Leukoc. Biol. 1994, 56, 74–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blom, T.; Nilsson, G.; Sundström, C.; Nilsson, K.; Hellman, L. Characterization of a human basophil-like cell line (LAMA-84). Scand. J. Immunol. 1996, 44, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, G.; Blom, T.; Kusche-Gullberg, M.; Kjellen, L.; Butterfield, J.H.; Sundstrom, C.; Nilsson, K.; Hellman, L. Phenotypic characterization of the human mast-cell line HMC-1. Scand. J. Immunol. 1994, 39, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Kubach, J.; Lutter, P.; Bopp, T.; Stoll, S.; Becker, C.; Huter, E.; Richter, C.; Weingarten, P.; Warger, T.; Knop, J.; et al. Human CD4+CD25+ regulatory T cells: Proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function. Blood 2007, 110, 1550–1558. [Google Scholar] [CrossRef] [Green Version]
- Wan, L.; Yang, R.-Y.; Liu, F.-T. Galectin-12 in cellular differentiation, apoptosis and polarization. Int. J. Mol. Sci. 2018, 19, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrison, W.J.; Bull, J.J.; Seltmann, H.; Zouboulis, C.C.; Philpott, M.P. Expression of lipogenic factors galectin-12, resistin, SREBP-1, and SCD in human sebaceous glands and cultured sebocytes. J. Investig. Dermatol. 2007, 127, 1309–1317. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Yin, Y.; Xu, K.; Peng, Y.; Zhang, J. Knockdown of LGALS12 inhibits porcine adipocyte adipogenesis via PKA–Erk1/2 signaling pathway. Acta Biochim. Biophys. Sin. 2018, 50, 960–967. [Google Scholar] [CrossRef] [Green Version]
- Katzenmaier, E.-M.; Kloor, M.; Gabius, H.-J.; Gebert, J.; Kopitz, J. Analyzing epigenetic control of galectin expression indicates silencing of galectin-12 by promoter methylation in colorectal cancer. IUBMB Life 2017, 69, 962–970. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.-Y.; Hsu, D.K.; Yu, L.; Ni, J.; Liu, F.-T. Cell cycle regulation by galectin-12, a new member of the galectin superfamily. J. Biol. Chem. 2001, 276, 20252–20260. [Google Scholar] [CrossRef] [Green Version]
- Wan, L.; Lin, H.-J.; Huang, C.-C.; Chen, Y.-C.; Hsu, Y.-A.; Lin, C.-H.; Lin, H.-C.; Chang, C.-Y.; Huang, S.-H.; Lin, J.-M.; et al. Galectin-12 enhances inflammation by promoting M1 polarization of macrophages and reduces insulin sensitivity in adipocytes. Glycobiology 2016, 26, 732–744. [Google Scholar] [CrossRef] [Green Version]
- Wice, B.; Menton, D.; Geuze, H.; Schwartz, A.L. Modulators of cyclic AMP metabolism induce syncytiotrophoblast formation in vitro. Exp. Cell Res. 1990, 186, 306–316. [Google Scholar] [CrossRef]
- Orendi, K.; Gauster, M.; Moser, G.; Meiri, H.; Huppertz, B. The choriocarcinoma cell line BeWo: Syncytial fusion and expression of syncytium-specific proteins. Reproduction 2010, 140, 759–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seabrook, J.L.; Cantlon, J.D.; Cooney, A.J.; McWhorter, E.E.; Fromme, B.A.; Bouma, G.J.; Anthony, R.V.; Winger, Q.A. Role of LIN28A in mouse and human trophoblast cell differentiation. Biol. Reprod. 2013, 89. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Yao, Y.; Wang, X.; Li, Y.; Si, Y.; Li, X.; Ayala, G.J.; Wang, Y.; Mayo, K.H.; Tai, G.; et al. Galectin-13/placental protein 13: Redox-active disulfides as switches for regulating structure, function and cellular distribution. Glycobiology 2020, 30, 120–129. [Google Scholar] [CrossRef]
- Than, N.G.; Romero, R.; Goodman, M.; Weckle, A.; Xing, J.; Dong, Z.; Xu, Y.; Tarquini, F.; Szilagyi, A.; Gal, P.; et al. A primate subfamily of galectins expressed at the maternal-fetal interface that promote immune cell death. Proc. Natl. Acad. Sci. USA 2009, 106, 9731–9736. [Google Scholar] [CrossRef] [Green Version]
- Balogh, A.; Toth, E.; Romero, R.; Parej, K.; Csala, D.; Szenasi, N.L.; Hajdu, I.; Juhasz, K.; Kovacs, A.F.; Meiri, H.; et al. Placental galectins are key players in regulating the maternal adaptive immune response. Front. Immunol. 2019, 10, 1240. [Google Scholar] [CrossRef]
- Bond, M.R.; Hanover, J.A. A little sugar goes a long way: The cell biology of O-GlcNAc. J. Cell Biol. 2015, 208, 869–880. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Qian, K. Protein O-GlcNAcylation: Emerging mechanisms and functions. Nat. Rev. Mol. Cell. Biol. 2017, 18, 452–465. [Google Scholar] [CrossRef]
- Martinez, M.R.; Dias, T.B.; Natov, P.S.; Zachara, N.E. Stress-induced O-GlcNAcylation: An adaptive process of injured cells. Biochem. Soc. Trans. 2017, 45, 237–249. [Google Scholar] [CrossRef]
- Speakman, C.M.; Domke, T.C.E.; Wongpaiboonwattana, W.; Sanders, K.; Mudaliar, M.; van Aalten, D.M.F.; Barton, G.J.; Stavridis, M.P. Elevated O-GlcNAc levels activate epigenetically repressed genes and delay mouse ESC differentiation without affecting naïve to primed cell transition: O-GlcNAc levels control ESC differentiation. Stem Cells 2014, 32, 2605–2615. [Google Scholar] [CrossRef] [Green Version]
- Myers, S.A.; Peddada, S.; Chatterjee, N.; Friedrich, T.; Tomoda, K.; Krings, G.; Thomas, S.; Maynard, J.; Broeker, M.; Thomson, M.; et al. SOX2 O-GlcNAcylation alters its protein-protein interactions and genomic occupancy to modulate gene expression in pluripotent cells. eLife 2016, 5, e10647. [Google Scholar] [CrossRef] [PubMed]
- Constable, S.; Lim, J.-M.; Vaidyanathan, K.; Wells, L. O-GlcNAc transferase regulates transcriptional activity of human Oct4. Glycobiology 2017, 27, 927–937. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.S.; Saluja, A.K.; Banerjee, S. “Nutrient-sensing” and self-renewal: O-GlcNAc in a new role. J. Bioenerg. Biomembr. 2018, 50, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Parker, M.P.; Graw, S.; Novikova, L.V.; Fedosyuk, H.; Fontes, J.D.; Koestler, D.C.; Peterson, K.R.; Slawson, C. O-GlcNAc homeostasis contributes to cell fate decisions during hematopoiesis. J. Biol. Chem. 2019, 294, 1363–1379. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.H.; Kwon, N.E.; Lee, W.-J.; Lee, M.-S.; Kim, D.-J.; Kim, J.H.; Park, S.-K. Increased O-GlcNAcylation of c-Myc promotes pre-B cell proliferation. Cells 2020, 9, 158. [Google Scholar] [CrossRef] [Green Version]
- Akella, N.M.; Le Minh, G.; Ciraku, L.; Mukherjee, A.; Bacigalupa, Z.A.; Mukhopadhyay, D.; Sodi, V.L.; Reginato, M.J. O-GlcNAc transferase regulates cancer stem–like potential of breast cancer cells. Mol. Cancer Res. 2020, 18, 585–598. [Google Scholar] [CrossRef]
- Miura, T.; Kume, M.; Kawamura, T.; Yamamoto, K.; Hamakubo, T.; Nishihara, S. O-GlcNAc on PKCζ inhibits the FGF4-PKCζ-MEK-ERK1/2 pathway via inhibition of PKCζ phosphorylation in mouse embryonic stem cells. Stem Cell Rep. 2018, 10, 272–286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.-S.; Park, S.Y.; Choi, Y.R.; Kang, J.G.; Joo, H.J.; Moon, W.K.; Cho, J.W. Excessive O-GlcNAcylation of proteins suppresses spontaneous cardiogenesis in ES cells. FEBS Lett. 2009, 583, 2474–2478. [Google Scholar] [CrossRef] [Green Version]
- Sohn, K.-C.; Lee, E.J.; Shin, J.-M.; Lim, E.-H.; No, Y.; Lee, J.Y.; Yoon, T.Y.; Lee, Y.H.; Im, M.; Lee, Y.; et al. Regulation of keratinocyte differentiation by O-GlcNAcylation. J. Dermatol. Sci. 2014, 75, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Song, M.; Boonanantanasarn, K.; Baek, K.; Woo, K.; Ryoo, H.-M.; Baek, J.-H. Conditions inducing excessive O-GlcNAcylation inhibit BMP2-induced osteogenic differentiation of C2C12 cells. Int. J. Mol. Sci. 2018, 19, 202. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-H.; Kim, Y.-H.; Song, M.; An, S.H.; Byun, H.-Y.; Heo, K.; Lim, S.; Oh, Y.-S.; Ryu, S.H.; Suh, P.-G. O-GlcNAc modification modulates the expression of osteocalcin via OSE2 and Runx2. Biochem. Biophys. Res. Commun. 2007, 362, 325–329. [Google Scholar] [CrossRef]
- Ishihara, K.; Takahashi, I.; Tsuchiya, Y.; Hasegawa, M.; Kamemura, K. Characteristic increase in nucleocytoplasmic protein glycosylation by O-GlcNAc in 3T3-L1 adipocyte differentiation. Biochem. Biophys. Res. Commun. 2010, 398, 489–494. [Google Scholar] [CrossRef]
- Hsieh, T.-J.; Lin, T.; Hsieh, P.-C.; Liao, M.-C.; Shin, S.-J. Suppression of glutamine:fructose-6-phosphate amidotransferase-1 inhibits adipogenesis in 3T3-L1 adipocytes. J. Cell. Physiol. 2012, 227, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Andrés-Bergós, J.; Tardio, L.; Larranaga-Vera, A.; Gómez, R.; Herrero-Beaumont, G.; Largo, R. The increase in O-linked N-acetylglucosamine protein modification stimulates chondrogenic differentiation both in vitro and in vivo. J. Biol. Chem. 2012, 287, 33615–33628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McColgan, N.M.; Feeley, M.N.; Woodward, A.M.; Guindolet, D.; Argüeso, P. The O-GlcNAc modification promotes terminal differentiation of human corneal epithelial cells. Glycobiology 2020, cwaa033. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-Q.; Su, M.; Walia, R.R.; Hao, Q.; Covington, J.W.; Vaughan, D.E. Sp1 sites mediate activation of the plasminogen activator inhibitor-1 promoter by glucose in vascular smooth muscle cells. J. Biol. Chem. 1998, 273, 8225–8231. [Google Scholar] [CrossRef] [Green Version]
- Du, X.-L.; Edelstein, D.; Rossetti, L.; Fantus, I.G.; Goldberg, H.; Ziyadeh, F.; Wu, J.; Brownlee, M. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc. Natl Acad. Sci. USA 2000, 97, 12222–12226. [Google Scholar] [CrossRef] [Green Version]
- Dauphinee, S.M.; Ma, M.; Too, C.K.L. Role of O-linked β-N-acetylglucosamine modification in the subcellular distribution of alpha4 phosphoprotein and Sp1 in rat lymphoma cells. J. Cell. Biochem. 2005, 96, 579–588. [Google Scholar] [CrossRef]
- Makwana, V.; Ryan, P.; Patel, B.; Dukie, S.-A.; Rudrawar, S. Essential role of O-GlcNAcylation in stabilization of oncogenic factors. Biochim. Biophys. Acta 2019, 1863, 1302–1317. [Google Scholar] [CrossRef]
- Kaneto, H.; Xu, G.; Song, K.-H.; Suzuma, K.; Bonner-Weir, S.; Sharma, A.; Weir, G.C. Activation of the hexosamine pathway leads to deterioration of pancreatic β-cell function through the induction of oxidative stress. J. Biol. Chem. 2001, 276, 31099–31104. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Paterson, A.J.; Konrad, R.J.; Parlow, A.F.; Jimi, S.; Roh, M.; Chin, E.; Kudlow, J.E. Streptozotocin, an O-GlcNAcase inhibitor, blunts insulin and growth hormone secretion. Mol. Cell. Endocrinol. 2002, 194, 135–146. [Google Scholar] [CrossRef]
- Akimoto, Y.; Hart, G.W.; Wells, L.; Vosseller, K.; Yamamoto, K.; Munetomo, E.; Ohara-Imaizumi, M.; Nishiwaki, C.; Nagamatsu, S.; Hirano, H.; et al. Elevation of the post-translational modification of proteins by O-linked N-acetylglucosamine leads to deterioration of the glucose-stimulated insulin secretion in the pancreas of diabetic Goto–Kakizaki rats. Glycobiology 2007, 17, 127–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Min, A.; Lee, Y.A.; Kim, K.A.; Shin, M.H. BLT1-mediated O-GlcNAcylation is required for NOX2-dependent migration, exocytotic degranulation and IL-8 release of human mast cell induced by Trichomonas vaginalis-secreted LTB4. Microbes Infect. 2018, 20, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Deen, A.J.; Arasu, U.T.; Pasonen-Seppänen, S.; Hassinen, A.; Takabe, P.; Wojciechowski, S.; Kärnä, R.; Rilla, K.; Kellokumpu, S.; Tammi, R.; et al. UDP-sugar substrates of HAS3 regulate its O-GlcNAcylation, intracellular traffic, extracellular shedding and correlate with melanoma progression. Cell. Mol. Life Sci. 2016, 73, 3183–3204. [Google Scholar] [CrossRef]
- Hughes, R. Secretion of the galectin family of mammalian carbohydrate-binding proteins. Biochim. Biophys. Acta 1999, 1473, 172–185. [Google Scholar] [CrossRef]
- Popa, S.J.; Stewart, S.E.; Moreau, K. Unconventional secretion of annexins and galectins. Semin. Cell Dev. Biol. 2018, 83, 42–50. [Google Scholar] [CrossRef]
- Furtak, V.; Hatcher, F.; Ochieng, J. Galectin-3 mediates the endocytosis of β-1 integrins by breast carcinoma cells. Biochem. Biophys. Res. Commun. 2001, 289, 845–850. [Google Scholar] [CrossRef]
- Lakshminarayan, R.; Wunder, C.; Becken, U.; Howes, M.T.; Benzing, C.; Arumugam, S.; Sales, S.; Ariotti, N.; Chambon, V.; Lamaze, C.; et al. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nat. Cell Biol. 2014, 16, 592–603. [Google Scholar] [CrossRef]
- Lim, J.-M.; Wollaston-Hayden, E.E.; Teo, C.; Hausman, D.; Wells, L. Quantitative secretome and glycome of primary human adipocytes during insulin resistance. Clin. Proteom. 2014, 11, 20. [Google Scholar] [CrossRef] [Green Version]
- Wollaston-Hayden, E.E.; Harris, R.B.S.; Liu, B.; Bridger, R.; Xu, Y.; Wells, L. Global O-GlcNAc levels modulate transcription of the adipocyte secretome during chronic insulin resistance. Front. Endocrinol. 2015, 5. [Google Scholar] [CrossRef] [Green Version]
- Marotta, N.P.; Lin, Y.H.; Lewis, Y.E.; Ambroso, M.R.; Zaro, B.W.; Roth, M.T.; Arnold, D.B.; Langen, R.; Pratt, M.R. O-GlcNAc modification blocks the aggregation and toxicity of the protein α-synuclein associated with Parkinson’s disease. Nat. Chem. 2015, 7, 913–920. [Google Scholar] [CrossRef] [PubMed]
- Delacour, D.; Koch, A.; Jacob, R. The role of galectins in protein trafficking. Traffic 2009, 10, 1405–1413. [Google Scholar] [CrossRef] [PubMed]
- Kao, H.-J.; Huang, C.-H.; Bretaña, N.; Lu, C.-T.; Huang, K.-Y.; Weng, S.-L.; Lee, T.-Y. A two-layered machine learning method to identify protein O-GlcNAcylation sites with O-GlcNAc transferase substrate motifs. BMC Bioinform. 2015, 16, S10. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.; Brunak, S. Prediction of glycosylation across the human proteome and the correlation to protein function. Pac. Symp. Biocomput. 2002, 7, 310–322. [Google Scholar]
- Madrigal-Matute, J.; Lindholt, J.S.; Fernandez-Garcia, C.E.; Benito-Martin, A.; Burillo, E.; Zalba, G.; Beloqui, O.; Llamas-Granda, P.; Ortiz, A.; Egido, J.; et al. Galectin-3, a biomarker linking oxidative stress and inflammation with the clinical outcomes of patients with atherothrombosis. J. Am. Heart Assoc. 2014, 3. [Google Scholar] [CrossRef] [Green Version]
- Sato, S.; Burdett, I.; Hughes, R.C. Secretion of the baby hamster kidney 30-kDa galactose-binding lectin from polarized and nonpolarized cells: A pathway independent of the endoplasmic reticulum-Golgi complex. Exp. Cell Res. 1993, 207, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Netsirisawan, P.; Chokchaichamnankit, D.; Srisomsap, C.; Svasti, J.; Champattanachai, V. Proteomic analysis reveals aberrant O-GlcNAcylation of extracellular proteins from breast cancer cell secretion. Cancer Genom. Proteom. 2015, 12, 201–209. [Google Scholar]
- Rizqiawan, A.; Tobiume, K.; Okui, G.; Yamamoto, K.; Shigeishi, H.; Ono, S.; Shimasue, H.; Takechi, M.; Higashikawa, K.; Kamata, N. Autocrine galectin-1 promotes collective cell migration of squamous cell carcinoma cells through up-regulation of distinct integrins. Biochem. Biophys. Res. Commun. 2013, 441, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Kikushige, Y.; Miyamoto, T.; Yuda, J.; Jabbarzadeh-Tabrizi, S.; Shima, T.; Takayanagi, S.; Niiro, H.; Yurino, A.; Miyawaki, K.; Takenaka, K.; et al. A TIM-3/Gal-9 autocrine stimulatory loop drives self-renewal of human myeloid leukemia stem cells and leukemic progression. Cell Stem Cell 2015, 17, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Dash, P.; Minz, A.P.; Senapati, S. Possible autocrine function of galectin-3 in pancreatic stellate cells. Gastroenterology 2018, 155, 933–934. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Zhang, Y.; He, Y.; Wang, X.; Fang, Q. Lipopolysaccharide mediates time-dependent macrophage M1/M2 polarization through the Tim-3/Galectin-9 signalling pathway. Exp. Cell Res. 2019, 376, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Amano, M.; Galvan, M.; He, J.; Baum, L.G. The ST6Gal I sialyltransferase selectively modifies N-glycans on CD45 to negatively regulate galectin-1-induced CD45 clustering, phosphatase modulation, and T cell death. J. Biol. Chem. 2003, 278, 7469–7475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuo, Y.; Bellis, S.L. Emerging role of α2,6-sialic acid as a negative regulator of galectin binding and function. J. Biol. Chem. 2011, 286, 5935–5941. [Google Scholar] [CrossRef] [Green Version]
- Bhat, R.; Belardi, B.; Mori, H.; Kuo, P.; Tam, A.; Hines, W.C.; Le, Q.T.; Bertozzi, C.R.; Bissell, M.J. Nuclear repartitioning of galectin-1 by an extracellular glycan switch regulates mammary morphogenesis. Proc. Natl. Acad. Sci. USA 2016, 113, E4820–E4827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swindall, A.F.; Londoño-Joshi, A.I.; Schultz, M.J.; Fineberg, N.; Buchsbaum, D.J.; Bellis, S.L. ST6Gal-I protein expression is upregulated in human epithelial tumors and correlates with stem cell markers in normal tissues and colon cancer cell lines. Cancer Res. 2013, 73, 2368–2378. [Google Scholar] [CrossRef] [Green Version]
- Magescas, J.; Sengmanivong, L.; Viau, A.; Mayeux, A.; Dang, T.; Burtin, M.; Nilsson, U.J.; Leffler, H.; Poirier, F.; Terzi, F.; et al. Spindle pole cohesion requires glycosylation-mediated localization of NuMA. Sci. Rep. 2017, 7, 1474. [Google Scholar] [CrossRef] [Green Version]
Cell Lineage | Galectin | mRNA | Intracellular Galectin Levels | Extracellular Galectin Levels | References |
---|---|---|---|---|---|
Adipocytic differentiation of mouse 3T3-L1 preadipocyte cells induced by adipogenic medium | galectin-1 galectin-3 galectin-12 | ND ↑ ↑ | ND ↑ ↑ | ↑ ND ND | [37] [38] [39] |
Adipocytic differentiation of mouse 3T3-L1 preadipocyte cells induced by linoleate | galectin-3 | ND | ↑ | ↑ | [40] |
Chondrocytic differentiation of human MSC induced by TGFβ3 | galectin-9 | ND | ↑ | ND | [41] |
Endothelial progenitor cell differentiation of CD34+ mononuclear cells from the bone marrow and cord blood | galectin-3 | ↑ | ND | ND | [42,43] |
Enterocytic differentiation of HT-29 cells induced by cell crowding stress | galectin-1 galectin-2 galectin-3 galectin-4 galectin-7 galectin-8 galectin-9 | ↔ ↔ ↑ ↑ ↔ ↑ ↔ | ND ND ND ND ND ND ND | ND ND ND ND ND ND ND | [31] |
Enterocytic differentiation of human LS174T cells induced by inhibiting ribosome protein L29 | galectin-4 | ND | ↑ | ND | [44] |
Eosinophilic differentiation of human HL-60 cells induced by sodium butyrate | galectin-1 galectin-3 galectin-8 galectin-9 galectin-10 | ↔ ↔ ↔ ↓ ↑ | ND ND ND ↓ ↑ | ND ND ND ↓ ↑ | [23] |
Erythroid differentiation of human K562 cells induced by erythropoietin or aphidicolin | galectin-1 | ND | ↓ | ↑ | [45] |
Granulocytic differentiation of human U937, U937T, NB4 cells induced by hypoxia | galectin-1 | ND | ↑ | ND | [46] |
Keratinocytic differentiation of primary epithelial cells at cell culture confluence | galectin-1 galectin-3 galectin-7 | ↓ ↑ ↑ | ND ↔ ND | ND ND ND | [47] |
Macrophagic (M1) differentiation of human monocytes induced by GM-CSF, IFN-γ and LPS | galectin-1 galectin-3 | ↔ ↔ | ↔ ↑ | ↔ ↑ | [48] |
Macrophagic (M1/M2) differentiation of human THP-1 cells induced by cancer cell condition media | galectin-3 galectin-9 | ↑ ↔ | ND ND | ND ND | [49] |
Macrophagic (M1/M2) differentiation of human THP-1 cells induced by PMA and primary CD4+ monocytes induced by GM-CSF and M-CSF | galectin-9 | ↑ | ND | ND | [50] |
Macrophagic (M2a/M2c) differentiation of human monocytes induced by M-CSF, IL-4 and IL-10 | galectin-1 galectin-3 | ↔ ↑ | ↔ ↑ | ↑ ↑ | [48] |
Macrophagic differentiation of human THP-1 cells induced by PMA | galectin-3 | ↑ | ↑ | ND | [51,52] |
Megakaryocytic differentiation of human DAMI cells induced by thrombopoietin | galectin-8 | ND | ↔ | ↓ | [53] |
Monocytic differentiation of human HL-60 cells induced by PMA | galectin-1 galectin-3 galectin-8 galectin-9 | ↔ ↑ ↔ ↓ | ND ↑ ND ↓ | ND ↑ ND ↓ | [23] [23,54] [23] [23] |
Myeloid differentiation of human CD34+ mononuclear cells from the bone marrow | galectin-3 | ND | ↑ | ↑ | [55] |
Myogenic differentiation of mouse myoblast C2C12 cells induced by horse serum | galectin-1 | ND | ↓ | ↑ | [56,57] |
Neutrophilic differentiation of human HL-60 cells induced by DMSO | galectin-1 galectin-3 galectin-8 galectin-9 galectin-10 galectin-12 | ↔ ↑ ↔ ↔ ↑ ↓ | ↑ ↑ ND ND ↑ ↓ | ND ND ND ND ND ND | [26] |
Oligodendrocytic differentiation of mouse N20.1 cells induced be the elevated temperature of 39 °C | galectin-1 galectin-3 | ND ND | ↔ ↔ | ND ND | [58] |
Oligodendrocytic differentiation of rat oligodendroglial progenitor cells induced by growth factor withdrawal | galectin-1 galectin-3 galectin-4 | ND ND ↓ | ↔ ↑ ↓ | ND ND ↑ | [58] [58] [59] |
Osteoblastic differentiation of mouse MSC cells induced by tensile stress | galectin-9 | ↑ | ND | ND | [60] |
Osteoblastic differentiation of primary human osteoblasts cocultured with HUVECs cells | galectin-3 | ↓ | ↓ | ND | [61] |
Osteoblastic differentiation of rat calvaria cells induced by ascorbic acid and β-glycerophosphate | galectin-3 | ↑ | ND | ND | [62] |
Osteoclastic differentiation of mouse bone marrow cells induced by M-CSF and RANKL and human blood monocytes induced by M-CSF and RANKL | galectin-3 | ↑ | ND | ND | [63] |
Plasma cell differentiation of human BL36 cells induced by 5-azacytidine | galectin-1 | ND | ↑ | ↑ | [64] |
Plasma cell differentiation of mouse splenic B cells induced by LPS | galectin-1 galectin-3 galectin-8 | ↑ ↓ ↓ | ↑ ↓ ↑ | ↑ ND ↑ | [65,66] [66] [66] |
T lymphocyte (iTreg) differentiation of CD4+ T cells induced by TGFβ1 | galectin-9 | ↑ | ↑ | ND | [67] |
Trophoblastic differentiation of human BeWo cells induced by forskolin | galectin-13 galectin-14 galectin-16 | ↑ ↑ ↑ | ND ND ND | ND ND ND | [4] |
Trophoblastic differentiation of mouse trophoblast stem cells induced by depleted medium | galectin-1 | ↑ | ↑ | ND | [68,69] |
Trophoblastic differentiation of rat Rcho-1 cells induced by horse serum | galectin-1 galectin-3 galectin-4 galectin-8 galectin-9 | ↔ ↔ ↓ ↔ ↔ | ND ND ND ND ND | ND ND ND ND ND | [70] |
Galectin and Cell Lineages | Effect of Galectin (Concentration, Time) | Differentiation Markers | References |
---|---|---|---|
Galectin-1 | |||
Astrocytic differentiation of immature astrocyte culture | Stimulation (10 µM, 24 h) | ↑ GFAP, BDNF | [71] |
Chondrogenic differentiation of human MSCs | Stimulation (0.4–2.0 µg/mL, 14 days) | ↑ leucine incorporation (protein synthesis) | [72] |
Chondrogenic differentiation of human MSCs | Inhibition (2.0–10.0 µg/mL, 14 days) | ↓ sulfate incorporation (proteoglycan synthesis) | [72] |
Fibrocytic differentiation of human monocytes | Stimulation (0.1–10 µg/mL, 5 days) | Cell morphology | [73] |
Granulocytic differentiation of human and mouse bone marrow cells | Inhibition (10 μg/mL, 7–14 days) | ↓ CFU-GM, BFU-E | [74] |
Granulocytic differentiation of human and mouse bone marrow cells | Stimulation (1, 10, and 100 ng/mL, 7–14 days) | ↑ CFU-GM, BFU-E | [74] |
Granulocytic differentiation of U937T cells | Stimulation (10 µg/mL, 4 days) | ↑ GM-CSFR, G-CSFR, M-CSFR ↑ CD11+ cells | [46] |
Myogenic differentiation of bovine fetal MSCs | Stimulation (100 nM, 4–12 days) | ↓ MYF5 ↑ MYOD, MYOG | [75] |
Myogenic differentiation of human fetal MSCs | Stimulation (200 ng/mL, 3–12 days) | ↑ desmin, Myf5, Pax7, MyoD, myogenin | [24] |
Myogenic differentiation of mouse primary myoblasts and C2C12 cells | Stimulation (9–10 µg/mL, 3–7 days) | ↑ Multinucleated myotubes | [76,77] |
Oligodendrocytic differentiation of oligodendroglial progenitor cells | Inhibition (5 µg/mL and 10 µg/mL, 48–72 h) | ↓ MBP | [58] |
Oligodendrocytic differentiation of oligodendroglial progenitor cells | Stimulation (125 µg/mL, 48 h) | ↑ NG2, MBP, Iba-1 ↔ GFAP | [78] |
Osteoblastic differentiation of bone marrow stromal cells | Stimulation (10 and 1000 ng/mL, 96 h) | ↑ ALP ↓ osteocalcin | [79] |
T lymphocyte (TH17) differentiation of CD4+ T cells | Inhibition (10 μg/mL, 10 days) | ↓ IFN-γ and IL-17 producing cells, RORC2 | [80] |
Tolerogenic dendritic cell differentiation of human peripheral CD14+ monocytes | Stimulation (1 μg/mL, 5 days) | ↑ IL-10, IL-6, G-CSF ↓ IL-8 | [81] |
Trophoblastic differentiation of BeWo cells | Stimulation (10, 30, and 60 μg/mL, 24 h) | ↓ β-catenin, Ki67 | [82] |
Trophoblastic lineages differentiation of mouse TSC cells | Stimulation (150 ng/mL, 1–7 days) | ↓ Esrrb, Eomes ↑ Plf, Ctsq, Tpbpa | [68] |
Galectin-2 | |||
Macrophage polarization to M1 phenotype from human monocytes | Stimulation (10 µg/mL, 24 h) | ↑ TNF-α, IL-6, IL-12p40, INF-β, CD40 | [83] |
Macrophage polarization to M2 phenotype from human monocytes | Inhibition (10 µg/mL, 24 h) | ↓ PDGF-C, CCL26, CD206 | [83] |
Galectin-3 | |||
Dendritic cell differentiation of human monocytes | Inhibition (60 μg/mL, 2 days) | ↓ CD1b+ cells ↔ HLA-DR+ cells | [84] |
Fibrocytic differentiation of human monocytes | Stimulation (0.1–10 µg/mL, 5 days) | Cell morphology | [73] |
Oligodendrocytic differentiation of oligodendroglial progenitor cells | Stimulation (5 and 10 μg/mL, 48–72 h) | ↑ MBP | [58] |
Osteoblastic differentiation of human fetal osteoblast cells | Inhibition (1.6 µM, 1 week) | ↓ ALP, APLP, RUNX2, SP7, COL1A1, IBSP, GBLAP | [85] |
Osteoclastic differentiation of mouse bone marrow cells | Inhibition (1, 2, and 5 μg/mL, 8–10 days) | Cell morphology | [63] |
Osteoclastic differentiation of mouse RAW-D cells and rat bone marrow cells | Inhibition (1, 5 and 10 μg/mL, 3–4 days) | ↓ NFATc1 ↓ TRAP+ multi-nucleated cells | [86] |
Vascular smooth muscle cell transdifferentiation of pulmonary artery endothelium cell | Stimulation (5 µM, 7 days) | ↑ α-SMA, calponin | [87] |
Galectin-4 | |||
Macrophagic differentiation of human monocytes | Stimulation (10 µg/mL, 24–48 h) | ↑ CD14, CD64, CD11b, active MMP-2, TNF-α, IL-6, IL-10 | [88] |
Oligodendrocytic differentiation of immature oligodendrocytes | Inhibition (0.25 μM, 4 days) | Multiple markers of oligodendrocytes | [59] |
Galectin-7 | |||
T lymphocyte (TH1) differentiation of CD4+ T cells | Stimulation (1, 5, and 10 μg/mL, 5 days) | ↓ Smad3 (nuclear), IL-10 ↑ Smad3 (cytoplasmic), IFN-γ, TNF-α | [89] |
Galectin-8 | |||
Osteoblastic differentiation of naïve mouse osteoblasts | Inhibition (50 nM, 24 h–14 days) | ↓ OSX, OCN, DMP-1 ↓ ALP, RUNX2 | [90] |
Osteoclastic differentiation of mouse bone marrow cells | Stimulation (50 nM, 4/24 h–2/4/6 days) | ↑ RANKL ↓ OPG | [91] |
Plasma cell differentiation of splenic B cells | Stimulation (0.5 and 1 µM, 3 days) | ↑ CD138 ↓ B220 | [66] |
T lymphocyte (TH2) differentiation of CD4+ T cells | Stimulation (0.1–1.5 µM, 4 days) | ↑ IL-4 | [92] |
T lymphocyte (TH17) differentiation of CD4+ T cells | Inhibition (0.1–1.5 µM, 4 days) | ↓ IL-17A | [92] |
T lymphocyte (Treg) differentiation of CD4+ T cells | Stimulation (0.1–1.5 µM, 4 days) | ↑ Foxp3 | [92] |
Galectin-9 | |||
Chondrocytic differentiation of human MSCs | Stimulation (1, 10 and 100 nM, 14 days) | ↑ ACAN, COL2A1, COL10A1, SOX9 | [41] |
Macrophagic (M2) differentiation of CD14+ monocytes and THP-1 cells | Stimulation (2 µg/m, 48–72 h) | ↑ CD206, MCP-1,IL-10 | [93] |
Osteoblastic differentiation of human osteoblasts | Stimulation (1, 10 and 100 nM, 7 days) | ↑ ALP | [94] |
Osteoclastic differentiation of RAW-D cells, and bone marrow cells of rat and mouse | Inhibition (10 and 100 nM, 3–4 days) | ↓ TRAP+ multi-nucleated cells | [95] |
T lymphocyte (iTreg) differentiation of naïve CD4+ T cells | Stimulation (5, 20, 80 nM, 2–24 h) | ↑ Foxp3+ cells | [67] |
T lymphocyte (TH17) differentiation of CD4+IL-17+ T Cells | Inhibition (5 mg/kg/d, 7 days) | ↓ IL-17, CCR6, IL-23R ↓ IL-23 | [96] |
T lymphocyte (TH17) differentiation of naïve CD4+CD62L+ T cells | Inhibition (30 nM, 4 days) | ↓ IL-17 | [97] |
T lymphocyte (Treg) differentiation of naïve CD4+CD62L+ T cells | Stimulation (30 nM, 4 days) | ↑ Foxp3 | [97] |
Cell Lineage | O-GlcNAc Changes | References |
---|---|---|
Adipocytic differentiation of mouse 3T3-L1 preadipocytes | upregulation | [213,214] |
Cardiomyocytic differentiation of mouse ESCs | downregulation | [209] |
Chondrocytic differentiation of mouse pre-chondrogenic ATDC5 cells | upregulation | [215] |
Enterocytic differentiation of human HT-29 cells | downregulation | [31] |
Erythroid differentiation of G1E-ER4 cells | downregulation | [205] |
Human corneal epithelial cell differentiation into mature, terminally differentiated stratified cells | upregulation | [216] |
Keratinocytic differentiation of human epidermal cells | downregulation | [210] |
Neural differentiation of mouse ESC | downregulation | [201] |
Neural differentiation of human ESC | downregulation | [30] |
Neutrophilic differentiation of human NB4, OCI-AML3, and HL-60 cells | downregulation | [31,148,205] |
Osteoblastic differentiation of mouse preosteoblastic MC3T3-E1 cells | upregulation | [143,144,212] |
Osteogenic differentiation of mouse C2C12 cells | downregulation | [211] |
Primitive endoderm cell differentiation of mouse ESCs | downregulation | [208] |
Skeletal myogenic differentiation of mouse C2C12 myoblasts | downregulation | [28] |
Galectin | NCBI Reference Sequence | OGTSite | YinOYang |
---|---|---|---|
Galectin-1 | NP_002296.1 | S84 | S84 |
Galectin-2 | NP_006489.1 | S23, S51, S80, T85, S122 | no predictions |
Galectin-3 | NP_002297.2 | S84, T133 | S84, S91, S92, T98, T104, T243 |
Galectin-4 | NP_006140.1 | S40 | S58, T217, T317 |
Galectin-7 | NP_002298.1 | S9 | S2, S8, S9, S45, T57, T58 |
Galectin-8 | NP_006490.3 | T22, S152, T160, T201, T211 | T160, S178, S358 |
Galectin-9 | NP_033665.1 | S18, T32, T152, S165, T193, S202 | S4, S6, S12, S18, S139, T152, S160, T161, S165, T193, T195, T351, T355 |
Galectin-10 | NP_001819.2 | T9 | T9, T16 |
Galectin-12 | NP_001136007.2 | T81, T82, S143, S192, S221, T232, S305 | T82, S192, T232, S315 |
Galectin-13 | NP_037400.1 | S13, S119, S127, T133 | S2, S3, S13, S119, S127, T133 |
Galectin-14 | NP_064514.1 | T9, S13 | S2, S3, T9, S13, S138 |
Galectin-16 | NP_001177370.2 | S13, S119 | S13, S119 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tazhitdinova, R.; Timoshenko, A.V. The Emerging Role of Galectins and O-GlcNAc Homeostasis in Processes of Cellular Differentiation. Cells 2020, 9, 1792. https://doi.org/10.3390/cells9081792
Tazhitdinova R, Timoshenko AV. The Emerging Role of Galectins and O-GlcNAc Homeostasis in Processes of Cellular Differentiation. Cells. 2020; 9(8):1792. https://doi.org/10.3390/cells9081792
Chicago/Turabian StyleTazhitdinova, Rada, and Alexander V. Timoshenko. 2020. "The Emerging Role of Galectins and O-GlcNAc Homeostasis in Processes of Cellular Differentiation" Cells 9, no. 8: 1792. https://doi.org/10.3390/cells9081792
APA StyleTazhitdinova, R., & Timoshenko, A. V. (2020). The Emerging Role of Galectins and O-GlcNAc Homeostasis in Processes of Cellular Differentiation. Cells, 9(8), 1792. https://doi.org/10.3390/cells9081792