Molecular Changes in the Non-Inflamed Terminal Ileum of Patients with Ulcerative Colitis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects and Samples
2.2. RNA Isolation and Sequencing
2.3. Differential Gene Expression Analysis
2.4. Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR)
2.5. Weighted Gene Co-Expression Network Analysis
2.6. Pathway Analysis
2.7. Statistical Analysis
3. Results
3.1. Baseline Characteristics
3.2. Gene Dysregulation in the Normal Terminal Ileum of UC Patients is Dependent on Colonic Inflammation
3.3. Co-Expression Modules Are Associated with Colonic Inflammation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ishii, H.; Isomoto, H.; Shikuwa, S.; Hayashi, T.; Inoue, N.; Yamaguchi, N.; Ohnita, K.; Nanashima, A.; Ito, M.; Nakao, K.; et al. Peyer’s Patches in the Terminal Ileum in Ulcerative Colitis: Magnifying Endoscopic Findings. J. Clin. Biochem. Nutr. 2010, 46, 111–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xavier, R.J.; Podolsky, D.K. Unravelling the pathogenesis of inflammatory bowel disease. Nature 2007, 448, 427–434. [Google Scholar] [CrossRef]
- Mourad, F.H.; Barada, K.A.; Saade, N.E. Impairment of Small Intestinal Function in Ulcerative Colitis: Role of Enteric Innervation. J. Crohns Colitis 2017, 11, 369–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salem, S.N.; Truelove, S.C. Small-intestinal and gastric abnormalities in ulcerative colitis. Br. Med. J. 1965, 1, 827–831. [Google Scholar] [CrossRef] [Green Version]
- Jankey, N.; Price, L.A. Small intestinal histochemical and histological changes in ulcerative colitis. Gut 1969, 10, 267–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, R.; Allan, R.N.; Cooke, W.T. A study of the cellular infiltrate of the proximal jejunal mucosa in ulcerative colitis and Crohn’s disease. Gut 1975, 16, 205–208. [Google Scholar] [PubMed] [Green Version]
- Sedghi, S.; Barreau, F.; Morilla, I.; Montcuquet, N.; Cazals-Hatem, D.; Pedruzzi, E.; Rannou, E.; Treton, X.; Hugot, J.P.; Ogier-Denis, E.; et al. Increased Proliferation of the Ileal Epithelium as a Remote Effect of Ulcerative Colitis. Inflamm. Bowel Dis. 2016, 22, 2369–2381. [Google Scholar] [CrossRef]
- Buning, C.; Geissler, N.; Prager, M.; Sturm, A.; Baumgart, D.C.; Buttner, J.; Buhner, S.; Haas, V.; Lochs, H. Increased small intestinal permeability in ulcerative colitis: Rather genetic than environmental and a risk factor for extensive disease? Inflamm. Bowel Dis. 2012, 18, 1932–1939. [Google Scholar] [CrossRef]
- Chang, J.; Leong, R.W.; Wasinger, V.C.; Ip, M.; Yang, M.; Phan, T.G. Impaired Intestinal Permeability Contributes to Ongoing Bowel Symptoms in Patients With Inflammatory Bowel Disease and Mucosal Healing. Gastroenterology 2017, 153, 723–731. [Google Scholar] [CrossRef]
- Amit-Romach, E.; Reifen, R.; Uni, Z. Mucosal function in rat jejunum and ileum is altered by induction of colitis. Int. J. Mol. Med. 2006, 18, 721–727. [Google Scholar] [CrossRef] [Green Version]
- Mazzon, E.; Cuzzocrea, S. Absence of functional peroxisome proliferator-activated receptor-alpha enhanced ileum permeability during experimental colitis. Shock 2007, 28, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Arrieta, M.C.; Madsen, K.; Doyle, J.; Meddings, J. Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse. Gut 2009, 58, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peters, L.A.; Perrigoue, J.; Mortha, A.; Iuga, A.; Song, W.M.; Neiman, E.M.; Llewellyn, S.R.; Di Narzo, A.; Kidd, B.A.; Telesco, S.E.; et al. A functional genomics predictive network model identifies regulators of inflammatory bowel disease. Nat. Genet. 2017, 49, 1437–1449. [Google Scholar] [CrossRef] [PubMed]
- Kugathasan, S.; Denson, L.A.; Walters, T.D.; Kim, M.O.; Marigorta, U.M.; Schirmer, M.; Mondal, K.; Liu, C.; Griffiths, A.; Noe, J.D.; et al. Prediction of complicated disease course for children newly diagnosed with Crohn’s disease: A multicentre inception cohort study. Lancet 2017, 389, 1710–1718. [Google Scholar] [CrossRef] [Green Version]
- Haberman, Y.; Tickle, T.L.; Dexheimer, P.J.; Kim, M.O.; Tang, D.; Karns, R.; Baldassano, R.N.; Noe, J.D.; Rosh, J.; Markowitz, J.; et al. Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature. J. Clin. Investig. 2014, 124, 3617–3633. [Google Scholar] [CrossRef] [Green Version]
- Lloyd-Price, J.; Arze, C.; Ananthakrishnan, A.N.; Schirmer, M.; Avila-Pacheco, J.; Poon, T.W.; Andrews, E.; Ajami, N.J.; Bonham, K.S.; Brislawn, C.J.; et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 2019, 569, 655–662. [Google Scholar] [CrossRef]
- Geiszt, M.; Witta, J.; Baffi, J.; Lekstrom, K.; Leto, T.L. Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J. 2003, 17, 1502–1504. [Google Scholar] [CrossRef]
- Ha, E.M.; Oh, C.T.; Bae, Y.S.; Lee, W.J. A direct role for dual oxidase in Drosophila gut immunity. Science 2005, 310, 847–850. [Google Scholar] [CrossRef]
- Rigoni, A.; Poulsom, R.; Jeffery, R.; Mehta, S.; Lewis, A.; Yau, C.; Giannoulatou, E.; Feakins, R.; Lindsay, J.O.; Colombo, M.P.; et al. Separation of Dual Oxidase 2 and Lactoperoxidase Expression in Intestinal Crypts and Species Differences May Limit Hydrogen Peroxide Scavenging During Mucosal Healing in Mice and Humans. Inflamm. Bowel Dis. 2017, 24, 136–148. [Google Scholar] [CrossRef] [Green Version]
- Magro, F.; Gionchetti, P.; Eliakim, R.; Ardizzone, S.; Armuzzi, A.; Barreiro-de Acosta, M.; Burisch, J.; Gecse, K.B.; Hart, A.L.; Hindryckx, P.; et al. Third European Evidence-based Consensus on Diagnosis and Management of Ulcerative Colitis. Part 1: Definitions, Diagnosis, Extra-intestinal Manifestations, Pregnancy, Cancer Surveillance, Surgery, and Ileo-anal Pouch Disorders. J. Crohns Colitis 2017, 11, 649–670. [Google Scholar] [CrossRef]
- Schroeder, K.W.; Tremaine, W.J.; Ilstrup, D.M. Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. A randomized study. N. Engl. J. Med. 1987, 317, 1625–1629. [Google Scholar] [CrossRef] [PubMed]
- Silverberg, M.S.; Satsangi, J.; Ahmad, T.; Arnott, I.D.; Bernstein, C.N.; Brant, S.R.; Caprilli, R.; Colombel, J.F.; Gasche, C.; Geboes, K.; et al. Toward an integrated clinical, molecular and serological classification of inflammatory bowel disease: Report of a Working Party of the 2005 Montreal World Congress of Gastroenterology. Can. J. Gastroenterol. 2005, 19, 5A–36A. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015, 31, 166–169. [Google Scholar] [CrossRef] [PubMed]
- Lê, S.; Josse, J.; Husson, F. FactoMineR: An R Package for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Love, M.; Anders, S.; Huber, W. Differential analysis of count data–the deseq2 package. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [Green Version]
- Mi, H.; Muruganujan, A.; Ebert, D.; Huang, X.; Thomas, P.D. PANTHER version 14: More genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019, 47, D419–D426. [Google Scholar] [CrossRef]
- Balamurugan, K.; Sterneck, E. The many faces of C/EBPdelta and their relevance for inflammation and cancer. Int. J. Biol. Sci. 2013, 9, 917–933. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.W.; Tseng, H.P.; Chen, L.C.; Chen, B.K.; Chang, W.C. Functional cooperation of simian virus 40 promoter factor 1 and CCAAT/enhancer-binding protein beta and delta in lipopolysaccharide-induced gene activation of IL-10 in mouse macrophages. J. Immunol. 2003, 171, 821–828. [Google Scholar] [CrossRef] [Green Version]
- Moore, F.; Santin, I.; Nogueira, T.C.; Gurzov, E.N.; Marselli, L.; Marchetti, P.; Eizirik, D.L. The transcription factor C/EBP delta has anti-apoptotic and anti-inflammatory roles in pancreatic beta cells. PLoS ONE 2012, 7, e31062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rustenhoven, J.; Scotter, E.L.; Jansson, D.; Kho, D.T.; Oldfield, R.L.; Bergin, P.S.; Mee, E.W.; Faull, R.L.; Curtis, M.A.; Graham, S.E.; et al. An anti-inflammatory role for C/EBPdelta in human brain pericytes. Sci. Rep. 2015, 5, 12132. [Google Scholar] [CrossRef] [Green Version]
- Pawar, S.A.; Shao, L.; Chang, J.; Wang, W.; Pathak, R.; Zhu, X.; Wang, J.; Hendrickson, H.; Boerma, M.; Sterneck, E.; et al. C/EBPδ Deficiency Sensitizes Mice to Ionizing Radiation-Induced Hematopoietic and Intestinal Injury. PLoS ONE 2014, 9, e94967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banerjee, S.; Aykin-Burns, N.; Krager, K.J.; Shah, S.K.; Melnyk, S.B.; Hauer-Jensen, M.; Pawar, S.A. Loss of C/EBPdelta enhances IR-induced cell death by promoting oxidative stress and mitochondrial dysfunction. Free Radic. Biol. Med. 2016, 99, 296–307. [Google Scholar] [CrossRef] [Green Version]
- Grasberger, H.; Gao, J.; Nagao-Kitamoto, H.; Kitamoto, S.; Zhang, M.; Kamada, N.; Eaton, K.A.; El-Zaatari, M.; Shreiner, A.B.; Merchant, J.L.; et al. Increased Expression of DUOX2 Is an Epithelial Response to Mucosal Dysbiosis Required for Immune Homeostasis in Mouse Intestine. Gastroenterology 2015, 149, 1849–1859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levine, A.P.; Pontikos, N.; Schiff, E.R.; Jostins, L.; Speed, D.; Lovat, L.B.; Barrett, J.C.; Grasberger, H.; Plagnol, V.; Segal, A.W. Genetic Complexity of Crohn’s Disease in Two Large Ashkenazi Jewish Families. Gastroenterology 2016, 151, 698–709. [Google Scholar] [CrossRef] [Green Version]
- Miyaoka, Y.; Kadowaki, Y.; Ishihara, S.; Ose, T.; Fukuhara, H.; Kazumori, H.; Takasawa, S.; Okamoto, H.; Chiba, T.; Kinoshita, Y. Transgenic overexpression of Reg protein caused gastric cell proliferation and differentiation along parietal cell and chief cell lineages. Oncogene 2004, 23, 3572–3579. [Google Scholar] [CrossRef] [Green Version]
- Ose, T.; Kadowaki, Y.; Fukuhara, H.; Kazumori, H.; Ishihara, S.; Udagawa, J.; Otani, H.; Takasawa, S.; Okamoto, H.; Kinoshita, Y. Reg I-knockout mice reveal its role in regulation of cell growth that is required in generation and maintenance of the villous structure of small intestine. Oncogene 2007, 26, 349–359. [Google Scholar] [CrossRef] [Green Version]
- Peterson, K.M.; Guo, X.; Elkahloun, A.G.; Mondal, D.; Bardhan, P.K.; Sugawara, A.; Duggal, P.; Haque, R.; Petri, W.A., Jr. The expression of REG 1A and REG 1B is increased during acute amebic colitis. Parasitol. Int. 2011, 60, 296–300. [Google Scholar] [CrossRef] [Green Version]
- Van Beelen Granlund, A.; Ostvik, A.E.; Brenna, O.; Torp, S.H.; Gustafsson, B.I.; Sandvik, A.K. REG gene expression in inflamed and healthy colon mucosa explored by in situ hybridisation. Cell Tissue Res. 2013, 352, 639–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granlund, A.; Beisvag, V.; Torp, S.H.; Flatberg, A.; Kleveland, P.M.; Ostvik, A.E.; Waldum, H.L.; Sandvik, A.K. Activation of REG family proteins in colitis. Scand. J. Gastroenterol. 2011, 46, 1316–1323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uniken Venema, W.T.; Voskuil, M.D.; Vila, A.V.; van der Vries, G.; Jansen, B.H.; Jabri, B.; Faber, K.N.; Dijkstra, G.; Xavier, R.J.; Wijmenga, C.; et al. Single-Cell RNA Sequencing of Blood and Ileal T Cells From Patients With Crohn’s Disease Reveals Tissue-Specific Characteristics and Drug Targets. Gastroenterology 2019, 156, 812–815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, R.L.; Hollingsworth, M.A. Functional Consequences of Differential O-glycosylation of MUC1, MUC4, and MUC16 (Downstream Effects on Signaling). Biomolecules 2016, 6, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peterson, L.W.; Artis, D. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 2014, 14, 141–153. [Google Scholar] [CrossRef]
- Andrianifahanana, M.; Moniaux, N.; Batra, S.K. Regulation of mucin expression: Mechanistic aspects and implications for cancer and inflammatory diseases. Biochim. Biophys. Acta 2006, 1765, 189–222. [Google Scholar] [CrossRef]
- Vancamelbeke, M.; Vanuytsel, T.; Farré, R.; Verstockt, S.; Ferrante, M.; Van Assche, G.; Rutgeerts, P.; Schuit, F.; Vermeire, S.; Arijs, I.; et al. Genetic and Transcriptomic Bases of Intestinal Epithelial Barrier Dysfunction in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2017, 23, 1718–1729. [Google Scholar] [CrossRef]
- De Lange, K.M.; Moutsianas, L.; Lee, J.C.; Lamb, C.A.; Luo, Y.; Kennedy, N.A.; Jostins, L.; Rice, D.L.; Gutierrez-Achury, J.; Ji, S.G.; et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 2017, 49, 256–261. [Google Scholar] [CrossRef] [Green Version]
- Breugelmans, T.; Van Spaendonk, H.; De Man, J.G.; De Schepper, H.U.; Jauregui-Amezaga, A.; Macken, E.; Lindén, S.K.; Pintelon, I.; Timmermans, J.P.; De Winter, B.Y.; et al. In depth study of transmembrane mucins in association with intestinal barrier dysfunction during the course of T cell transfer and DSS-induced colitis. J. Crohns Colitis 2020. [Google Scholar] [CrossRef]
- Taman, H.; Fenton, C.G.; Hensel, I.V.; Anderssen, E.; Florholmen, J.; Paulssen, R.H. Transcriptomic Landscape of Treatment-Naive Ulcerative Colitis. J. Crohns Colitis 2018, 12, 327–336. [Google Scholar] [CrossRef]
- Haberman, Y.; Karns, R.; Dexheimer, P.J.; Schirmer, M.; Somekh, J.; Jurickova, I.; Braun, T.; Novak, E.; Bauman, L.; Collins, M.H.; et al. Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response. Nat. Commun. 2019, 10, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arijs, I.; De Hertogh, G.; Lemaire, K.; Quintens, R.; Van Lommel, L.; Van Steen, K.; Leemans, P.; Cleynen, I.; Van Assche, G.; Vermeire, S.; et al. Mucosal gene expression of antimicrobial peptides in inflammatory bowel disease before and after first infliximab treatment. PLoS ONE 2009, 4, e7984. [Google Scholar] [CrossRef] [PubMed]
- Vanhove, W.; Peeters, P.M.; Staelens, D.; Schraenen, A.; Van der Goten, J.; Cleynen, I.; De Schepper, S.; Van Lommel, L.; Reynaert, N.L.; Schuit, F.; et al. Strong Upregulation of AIM2 and IFI16 Inflammasomes in the Mucosa of Patients with Active Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2015, 21, 2673–2682. [Google Scholar] [CrossRef]
- Verstockt, S.; De Hertogh, G.; Van der Goten, J.; Verstockt, B.; Vancamelbeke, M.; Machiels, K.; Van Lommel, L.; Schuit, F.; Van Assche, G.; Rutgeerts, P.; et al. Gene and Mirna Regulatory Networks During Different Stages of Crohn’s Disease. J. Crohns Colitis 2019, 13, 916–930. [Google Scholar] [CrossRef] [PubMed]
- Hamm, C.M.; Reimers, M.A.; McCullough, C.K.; Gorbe, E.B.; Lu, J.; Gu, C.C.; Li, E.; Dieckgraefe, B.K.; Gong, Q.; Stappenbeck, T.S.; et al. NOD2 status and human ileal gene expression. Inflamm. Bowel Dis. 2010, 16, 1649–1657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Song, B.; Zhu, W.; Xu, X.; Gong, Q.Q.; Morando, C.; Dassopoulos, T.; Newberry, R.D.; Hunt, S.R.; Li, E. An ileal Crohn’s disease gene signature based on whole human genome expression profiles of disease unaffected ileal mucosal biopsies. PLoS ONE 2012, 7, e37139. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 2005, 4, Article17. [Google Scholar] [CrossRef]
- Santhanam, S.; Rajamanickam, S.; Motamarry, A.; Ramakrishna, B.S.; Amirtharaj, J.G.; Ramachandran, A.; Pulimood, A.; Venkatraman, A. Mitochondrial electron transport chain complex dysfunction in the colonic mucosa in ulcerative colitis. Inflamm. Bowel Dis. 2012, 18, 2158–2168. [Google Scholar] [CrossRef] [PubMed]
- Mottawea, W.; Chiang, C.K.; Muhlbauer, M.; Starr, A.E.; Butcher, J.; Abujamel, T.; Deeke, S.A.; Brandel, A.; Zhou, H.; Shokralla, S.; et al. Altered intestinal microbiota-host mitochondria crosstalk in new onset Crohn’s disease. Nat. Commun. 2016, 7, 13419. [Google Scholar] [CrossRef]
- Rath, E.; Moschetta, A.; Haller, D. Mitochondrial function—Gatekeeper of intestinal epithelial cell homeostasis. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 497–516. [Google Scholar] [CrossRef]
Active UC (n = 7) | Inactive UC (n = 29) | Control (n = 15) | |
---|---|---|---|
Male (%) | 5 (71.4) | 17 (58.6) | 6 (40.0) |
Median age at endoscopy (years, IQR) | 52 (36–68) | 52 (33–60) | 55 (46–60) |
Median disease duration (years, IQR) | 12 (6–13) | 10 (8–14) | |
Maximal disease extent (%) | |||
Proctitis | 0 | 4 (13.8) | |
Left-sided colitis | 2 (28.6) | 11 (37.9) | |
Extensive colitis | 5 (71.4) | 14 (48.3) | |
Disease extent at endoscopy (%) | |||
Left-sided colitis | 4 (57.1) | N/A | |
Extensive colitis | 3 (42.9) | N/A | |
Concomitant medication (%) | |||
Corticosteroids | 1 (14.3) | 0 | |
Immunomodulators | 0 | 5 (17.2) | |
Biologics | 1 (14.3) | 13 (44.8) |
UC (n = 36) vs Control (n = 15) | Active UC (n = 7) vs Control (n = 15) | Inactive UC (n = 29) vs Control (n = 15) | ||||
---|---|---|---|---|---|---|
Gene | log2FC | pcorrected | log2FC | pcorrected | log2FC | pcorrected |
DUOXA2 | 2.92 | 0.06 | 4.86 | 5.58 × 10−3 | 2.38 | 0.23 |
REG1B | 3.13 | 4.85 × 10−3 | 4.15 | 0.02 | 2.75 | 0.03 |
PDZK1IP1 | 1.12 | 0.08 | 1.87 | 0.02 | 0.94 | 0.23 |
DUOX2 | 2.39 | 0.09 | 4.02 | 0.02 | 1.39 | 0.63 |
CASR | −0.99 | 0.15 | −1.87 | 0.02 | −0.85 | 0.30 |
CBR3 | 0.70 | 0.13 | 1.15 | 0.03 | 0.58 | 0.31 |
DMBT1 | 1.48 | 0.11 | 2.40 | 0.03 | 1.14 | 0.34 |
MUC1 | 1.10 | 0.12 | 1.84 | 0.03 | 0.89 | 0.32 |
MTRNR2L1 | 0.38 | 1.00 | −5.94 | 0.03 | 0.84 | 0.95 |
GPR110 | 1.96 | 0.18 | 3.37 | 0.04 | 1.59 | 0.41 |
REG1A | 1.45 | 0.15 | 2.14 | 0.04 | 1.22 | 0.23 |
NOS2 | 1.37 | 0.23 | 2.54 | 0.04 | 0.99 | 0.61 |
CFB | 0.81 | 0.27 | 1.52 | 0.04 | 0.59 | 0.61 |
GPR37L1 | 0.95 | 0.30 | 1.77 | 0.04 | 0.70 | 0.63 |
SPINK1 | 0.61 | 0.40 | 1.30 | 0.04 | 0.39 | 0.79 |
TSPO2 | 1.13 | 0.18 | 1.82 | 0.04 | 0.88 | 0.44 |
CLDN5 | 0.92 | 0.07 | 1.31 | 0.05 | 0.83 | 0.21 |
SSTR2 | −0.83 | 0.12 | −1.36 | 0.05 | −0.74 | 0.23 |
CEBPD | 1.07 | 0.02 | 0.73 | 0.62 | 1.14 | 0.02 |
Active Extensive UC (n = 5) vs Control (n = 15) | Inactive Extensive UC (n = 14) vs Control (n = 15) | |||
---|---|---|---|---|
Gene | log2FC | pcorrected | log2FC | pcorrected |
Top 20 dysregulated genes in active extensive UC | ||||
SPINK1 | 1.73 | 2.60 × 10−4 | 0.31 | 0.77 |
DUOXA2 | 5.46 | 2.81 × 10−4 | 2.79 | 0.07 |
PDZK1IP1 | 2.31 | 2.81 × 10−4 | 0.81 | 0.37 |
GPR110 | 4.22 | 8.57 × 10−4 | 2.30 | 0.08 |
NOS2 | 3.00 | 8.57 × 10−4 | 1.58 | 0.10 |
GPR37L1 | 2.07 | 8.57 × 10−4 | 1.11 | 0.11 |
SLC37A1 | 1.02 | 8.57 × 10−4 | 0.39 | 0.35 |
TFEC | −1.20 | 8.57 × 10−4 | −0.35 | 0.58 |
CCL28 | 1.92 | 1.47 × 10−3 | 0.51 | 0.67 |
CFB | 1.87 | 1.85 × 10−3 | 0.76 | 0.32 |
DMBT1 | 2.75 | 3.10 × 10−3 | 1.64 | 0.05 |
MUC1 | 2.11 | 3.44 × 10−3 | 1.20 | 0.08 |
PLA2G16 | 1.63 | 3.44 × 10−3 | 0.64 | 0.41 |
FUT3 | 1.14 | 3.44 × 10−3 | 0.49 | 0.30 |
NFKBIZ | 1.46 | 3.83 × 10−3 | 0.71 | 0.19 |
TIMD4 | −6.70 | 4.01 × 10−3 | −0.58 | 0.92 |
DUOX2 | 4.58 | 4.49 × 10−3 | 1.44 | 0.64 |
REG1A * | 2.44 | 4.49 × 10−3 | 1.65 | 0.03 |
TSPO2 | 2.13 | 4.49 × 10−3 | 1.18 | 0.13 |
ATP10B | 1.49 | 4.49 × 10−3 | 0.92 | 0.06 |
Dysregulated 20 genes in inactive extensive UC (REG1A is listed in the top 20 above) | ||||
MESDC1 | 0.45 | 0.37 | 1.08 | 2.89 × 10−5 |
CEBPD | 0.64 | 0.40 | 1.46 | 6.22 × 10−4 |
CARD14 | 1.55 | 0.18 | 2.11 | 9.90 × 10−3 |
REG1B * | 4.25 | 5.31 × 10−3 | 3.26 | 9.90 × 10−3 |
C2CD4B | 1.05 | 0.40 | 2.06 | 9.90 × 10−3 |
NCOA7 | 0.85 | 0.25 | 1.30 | 9.90 × 10−3 |
CD55 | 0.38 | 0.64 | 1.23 | 0.02 |
C2CD4A | 1.72 | 0.18 | 2.19 | 0.02 |
FAM83A | 1.63 | 0.23 | 2.23 | 0.02 |
HES4 | 0.83 | 0.47 | 1.71 | 0.02 |
GRAMD2 * | 1.97 | 0.02 | 1.53 | 0.02 |
HIC1 | 0.20 | 0.83 | 1.11 | 0.02 |
CXCL2 | 2.17 | 0.07 | 2.08 | 0.03 |
SOCS1 | 0.52 | 0.67 | 1.66 | 0.03 |
MUC4 * | 2.13 | 0.02 | 1.65 | 0.03 |
TIFA | 0.81 | 0.44 | 1.50 | 0.04 |
C4BPB | 1.03 | 0.13 | 1.09 | 0.05 |
CASP10 * | 1.35 | 0.03 | 1.03 | 0.05 |
EVA1B | 0.24 | 0.82 | 1.17 | 0.05 |
Saddlebrown (115 genes) | Steelblue (113 genes) | Brown (781 genes) | |
---|---|---|---|
Active UC vs CO | r = 0.47 | r = 0.49 | r = 0.44 |
p = 0.03 | p = 0.02 | p = 0.04 | |
pcorrected = 0.22 | pcorrected = 0.19 | pcorrected = 0.28 | |
Extensive vs CO | r = 0.80 | r = 0.77 | r = 0.67 |
p = 2.78 × 10−05 | p = 6.32 × 10−05 | P = 1.17 × 10−3 | |
pcorrected = 7.35 × 10−3 | pcorrected = 8.37 × 10−3 | pcorrected = 0.05 | |
Lt-sided vs CO | r = −0.42 | r = −0.15 | r = −0.34 |
p = 0.09 | p = 0.58 | p = 0.18 | |
pcorrected = 0.37 | pcorrected = 0.73 | pcorrected = 0.52 | |
Top enriched pathway in Reactome | Cytokine Signalling in Immune system | Metabolism of proteins | ER-Phagosome pathway |
Top enriched pathway in IPA | Cell Death and Survival | Protein Ubiquitination Pathway | Phagosome Maturation |
Top enriched GO biological process | Defence response to virus | Protein deubiquitination | Regulation of biological quality |
Upstream Regulator * | IFNγ, IFNα, STAT1 | EGF, EGFR, PDCD6 | NFE2L2, TCR, HSPA5 |
Overlapping dysregulated genes | 18/84 genes | - | 11/84 genes |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-S.; Vancamelbeke, M.; Verstockt, S.; Wilms, T.; Verstockt, B.; Sabino, J.; Ferrante, M.; Vermeire, S.; Cleynen, I. Molecular Changes in the Non-Inflamed Terminal Ileum of Patients with Ulcerative Colitis. Cells 2020, 9, 1793. https://doi.org/10.3390/cells9081793
Lee H-S, Vancamelbeke M, Verstockt S, Wilms T, Verstockt B, Sabino J, Ferrante M, Vermeire S, Cleynen I. Molecular Changes in the Non-Inflamed Terminal Ileum of Patients with Ulcerative Colitis. Cells. 2020; 9(8):1793. https://doi.org/10.3390/cells9081793
Chicago/Turabian StyleLee, Ho-Su, Maaike Vancamelbeke, Sare Verstockt, Tom Wilms, Bram Verstockt, João Sabino, Marc Ferrante, Séverine Vermeire, and Isabelle Cleynen. 2020. "Molecular Changes in the Non-Inflamed Terminal Ileum of Patients with Ulcerative Colitis" Cells 9, no. 8: 1793. https://doi.org/10.3390/cells9081793
APA StyleLee, H. -S., Vancamelbeke, M., Verstockt, S., Wilms, T., Verstockt, B., Sabino, J., Ferrante, M., Vermeire, S., & Cleynen, I. (2020). Molecular Changes in the Non-Inflamed Terminal Ileum of Patients with Ulcerative Colitis. Cells, 9(8), 1793. https://doi.org/10.3390/cells9081793